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In just six years after the initial description of the acquired immunodeficiency syndrome, much
has been learned about the etiologic agent, the human immunodeficiency virus. The pathogenic
mechanisms utilized by this virus to infect selectively and persistently T4+ lymphocytes and
monocyte/macrophages, leading to immunodeficiency and neurologic dysfunction, are slowly
becoming clear. Better understanding of the pathogenesis of human immunodeficiency virus
infection is essential for the rational design of therapeutic and preventive strategies to combat this
deadly virus.

The etiologic agent of the acquired immunodeficiency syndrome (AIDS) is now
known as the human immunodeficiency virus (HIV). This virus has a diameter of
approximately 100 nm, a lipid envelope, and a dense core consisting of core proteins,
RNA-dependent DNA polymerase (reverse transcriptase), and genomic RNA. In
addition to the standard retroviral gag, pol, and env genes, HIV encodes for at least five
other genes. Two multi-exon genes, tat and trs/art, are important transcriptional or
translational regulators of HIV synthesis. The functional roles of three additional
genes-sor, 3'orfand R-have not been clearly established.

HIV INFECTION OF T4+ LYMPHOCYTES

The hallmark of the immunodeficiency in AIDS is a depletion of T4+ helper-
inducer lymphocytes [1]. This defect is primarily the result of the selective tropism of
HIV. HIV selectively replicates in T4+ lymphocytes, but not in T8 + lymphocytes [2].
In addition, HIV infection of T4+ cells in vitro can be blocked by monoclonal
antibodies directed against specific epitopes on the T4 molecule [3-5]. In binding
experiments of HIV to T4+ cells, McDougal et al. [6] found that immunoprecipitation
of the T4 antigen resulted in the co-precipitation of gpl20, the major envelope
glycoprotein of HIV. Conversely, immunoprecipitation of gpl20 co-precipifated the
T4 molecule. Moreover, intracellular complexing of T4 and gpl20 has also been
demonstrated [7]. Recent studies by Maddon et al. [8] also support this idea. Certain
human epithelial cells do not express the T4 antigen and are resistant to HIV infection.
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When the T4 gene is inserted into these cells, however, they become susceptible to
HIV. Productive infection occurs and the infected cells fuse to form multinucleated
giant cells and have shortened survival. The studies cited clearly establish the T4
molecule as the receptor for HIV.

After specific binding to the target cell, HIV enters the cell and is uncoated,
although the mechanism of this process has not been clearly defined. One study has
suggested that HIV entry occurs via receptor-mediated endocytosis [8]. A more
extensive analysis by Stein et al., however, demonstrated pH-independent direct fusion
of the virus envelope to the plasma membrane [9]. Following penetration, the genomic
RNA is then transcribed into DNA by the reverse transcriptase. Subsequently, the
DNA is circularized and integrated into the host chromosome by a virus-encoded
enzyme (integrase, a product of the pol gene) during cell division. Interestingly, much
of the DNA of HIV remains unintegrated in the cytoplasm. The HIV replication cycle
is restricted at this stage until the infected cell is activated. In vitro, this is achieved by
mitogenic, antigenic, or allogeneic stimulation [5,10] or by the addition of cytokines.
Upon activation, transcription occurs, followed by protein synthesis with post-
translational processing, including protein cleavage and glycosylation. Viral proteins
and genomic RNA are then assembled at the cell surface, and mature virions are
formed by budding.
With HIV replication, the T4+ cell is killed by an as yet unclear mechanism. Could

one of the five novel genes of HIV be involved in cell killing? Tat and trs/art are
essential regulators of viral synthesis and are unlikely to be the direct cause of cell
death [11-15]. Base changes or deletions have been introduced in sor and 3'orf, but
these mutants retained their cytopathic effect [16-19], although 3'orf mutations
resulted in higher levels of virus replication, suggesting that this gene has a negative
regulatory role in HIV expression [ 17]. There is currently no evidence to implicate sor
or 3'orf in cell killing. The role of the "R" gene in this process is unknown [20].

It seems likely that HIV envelope glycoproteins play an important role in killing
T4+ cells, probably through cell-cell fusion. Fusion is observed when viral particles
bud from the cell membrane of infected T4+ cells. This process results in the
formation of syncytia (multinucleated giant cells), which then develop ballooning
cytoplasm and promptly die. Lifson et al. have shown that these syncytia are composed
of both infected and uninfected T4+ cells [21]. Uninfected T4+ cells are recruited
into the syncytia because the gpl20 on the budding virions specifically binds the T4
molecules on uninfected cells. Once bound, the fusion process is probably mediated by
a different domain on the HIV envelope, possibly the transmembrane protein (gp41)
since mutations in this region of env abolished the fusogenic property of HIV [19].
Furthermore, Sodroski et al. [22] and Lifson et al. [23] demonstrated syncytia
formation by inserting only env into T4+ cells. Insertion of env into T4- cells did not
induce syncytia. It appears that not only the glycosylated HIV envelope but also the T4
molecule is necessary for the fusion process, which provides a mechanism for killing
infected, as well as uninfected, T4+ cells. This process is not likely to be the only
mechanism, however, as normal peripheral blood lymphocytes are killed in vitro by
HIV with little or no formation of syncytia. One would need to postulate that fusion
can also involve different parts of the plasma membrane of a single HIV-infected cell.
This process of autofusion would then lead to membrane permeability changes and cell
death.

Additional mechanisms for T4+ cell depletion in vivo should be considered.
Infected cells expressing HIV on the surface would be recognized and removed by
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FIG. 1. Central role of the T4+ lymphocytes in the immune system.

immune surveillance mechanisms. In addition, uninfected T4+ lymphocytes may be
coated by free gpl 20, which would also be recognized as foreign and then cleared by
the immune system [24]. HIV-infected lymphocytes may also become more suscepti-
ble to superinfection by other pathogens, such as cytomegalovirus, herpes simplex, or

hepatitis B virus. This type of enhancement, perhaps due to the transactivating
property of the tat gene, may result in faster depletion of the T4+ lymphocyte
population.
The T4+ helper-inducer lymphocyte is the orchestrator [1] of the immune response.

It interacts, directly or indirectly via lymphokines, with monocyte/macrophages,
cytotoxic T cells, natural killer cells, and B cells (Fig. 1). Therefore, even a selective
depletion of the T4+ cell population can result in a multitude of immunologic deficits
leading to the life-threatening opportunistic infections characteristic of AIDS.

HIV INFECTION OF MONOCYTE/MACROPHAGES

Monocyte/macrophages may also express the T4 molecule on the cell surface [25],
and several studies have shown that this population can be infected by HIV [26-29].
Ho et al. found that normal blood monocyte/macrophages were infectable by HIV in
vitro, and monocytes from infected persons can harbor the virus in vivo [26]. Similar
findings were obtained by others using monocytes/macrophages derived from blood,
bone marrow, brain, and lung [27-29]. Three groups did not observe cytopathic
changes or cell death in infected monocyte/macrophages [26-28]. In contrast, Gartner
et al. reported syncytia formation, although it was not as prominent as that seen in
infected lymphocytes [29]. The relative refractoriness of infected monocyte/macro-
phages to syncytia formation and cell killing is probably due to a lower surface density
of T4 molecules. This relative resistance to HIV cytotoxicity raises the possibility that
monocyte/macrophages may serve as a reservoir for virus persistence in the host. In
addition, because monocyte/macrophages are often the initial responders to an
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infection, they may be the first type of cell to be infected by HIV. The infected
monocyte/macrophages may then transmit the virus to susceptible lymphocytes.
HIV infection of monocyte/macrophages may cause a defect in chemotaxis, which

has been described for the monocytes of AIDS patients [30]. The infection of alveolar
macrophages may explain the higher incidence of pneumocystis pneumonia in AIDS
patients compared with other immunosuppressed hosts. In addition, it is possible that
monokine release is altered by HIV infection. Enhanced release of interleukin-1 or
tumor necrosis factor could explain chronic fevers in AIDs, since both are endogenous
pyrogens produced by monocytes [31,32]. Tumor necrosis factor is also a potent
catabolic factor [32] and may be important in the pathogenesis of AIDS cachexia,
known as slim disease in Africa [33]. The infected monocyte may also serve as a vehicle
for transporting HIV to the central nervous system, leading to neurologic dysfunc-
tion.

Subacute encephalitis, also referred to as AIDS encephalopathy or AIDS dementia
complex, is the most common neurologic problem in AIDS [34]. Substantial evidence
is now available to support a direct etiologic role for HIV in this neurologic syndrome.
Shaw et al. first reported the detection of HIV DNA and RNA in a few affected brains
by Southern hybridization and in situ hybridization, respectively [35]. Subsequently,
Ho and co-workers [36] were often able to isolate HIV from brain or cerebrospinal
fluid of patients with subacute encephalitis. The amount of HIV detected in the neural
tissues frequently exceeded that of blood or other tissues [36]. Intrathecal production
of HIV-specific immunoglobulins in patients with subacute encephalitis [37] has also
been demonstrated, thus supporting the presence of HIV in the central nervous system.
These data, together with the similarities between HIV and lentiviruses capable of
inducing encephalitis, strongly support HIV as the causative agent of subacute
encephalitis. This hypothesis in turn suggests that HIV is neurotropic and that the
central nervous system may serve as a sanctuary site for the virus [36].
The predominant cell population in the brain that is infected by HIV appears to be

the monocyte/macrophage. Gabuzda et al. detected HIV antigens in mononuclear
cells in affected brains, and these cells were then morphologically identified as
monocyte/macrophages [38]. Koenig and co-workers also found the monocyte/
macrophage as the cell type in the brain infected by HIV [39]. In addition, they
showed that the multinucleated giant cells seen in subacute encephalitis contained
HIV RNA and expressed monocyte markers as demonstrated by in situ hybridization
and immunohistochemical staining, respectively. Similar results were reported by
Wiley et al. [40], although they also noted HIV infection of cerebral endothelial cells
and rare involvement of neurons and glial cells. These findings, along with previous
demonstration of HIV infection of monocyte/macrophages in vitro [26-29], suggest
that the infected monocyte/macrophage plays a central role in the pathogenesis of the
neurologic disease associated with AIDS.

HIV PERSISTENCE

All HIV-infected persons should be considered infected and infectious for life unless
an effective therapy is developed. Several viral properties contribute to this prolonged
persistence. Similar to other retroviruses, HIV DNA is integrated into the host genome
following infection. Therefore, it is difficult to eradicate HIV without also eliminating
the infected T4+ cell. In vivo restriction of viral expression is also seen in HIV
infection. Very little cell-free virus is found in infected persons and less than 1 in
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10,000 circulating lymphocytes express detectable HIV mRNA [41]. Therefore, much
of HIV appears to be restricted (or possibly latent) and not susceptible to immune
clearance mechanisms.

Infected monocyte/macrophages contribute in part to HIV persistence because of
their relative refractoriness to the cytolytic effect of HIV [26-28]. In addition, the
infected monocyte/macrophages in the brain may be protected from many immune
effector cells. These characteristics would allow monocyte/macrophages to serve as an
important reservoir for HIV. A small fraction of infected helper-inducer lymphocytes
can also survive HIV infection [42] and further contribute to virus persistence.

Considerable genomic diversity exists among HIV isolates [43-49] and the variabil-
ity is most prominent in certain "hypervariable" regions of the external envelope
glycoprotein [49]. It is widely believed without substantiation that immune selection is
responsible for the heterogeneity. Variant viruses may evade immune recognition and
contribute to viral persistence. This possibility has raised concerns about the efficacy of
one vaccine preparation in protecting against many diverse HIV isolates [50]. There is
to date, however, no evidence of HIV variants that are not recognized by the immune
system of infected persons. Indeed, molecular studies of serial isolates from infected
individuals do not support immune selection [51]. Variability of HIV may be better
explained by errors of reverse transcription coupled with functional selection. Reverse
transcriptase has an error rate several orders of magnitude greater than that of cellular
DNA polymerases [48]. These errors are then amplified by the highly cytolytic nature
of HIV, which results in multiple rounds of infection requiring many reverse-
transcription steps. Other retroviruses, particularly transforming ones, require fewer
rounds of reverse transcription and thus show less diversity [48]. HIV variants are
viable if the mutations do not disturb the functional capacity of the virus. This finding
is consistent with the observation that the hypervariable regions are primarily located
on the external envelope glycoprotein, portions of which may not have functional
importance. This finding also implies that the conserved regions of the envelope must
have essential functional roles and should be considered strategic sites in the design of a
vaccine for AIDS.

VACCINE DEVELOPMENT

No safe and effective vaccine for AIDS is currently available, and several major
obstacles in the course of vaccine development must first be overcome. The observed
genomic diversity among HIV isolates and the possibility that HIV transmission may
occur via infected cells (instead of free virus) are the principal reasons for the
prevailing pessimism regarding our ability to develop a vaccine for AIDS eventually.
In addition to these scientific considerations, we are faced with the lack of a
satisfactory animal model for evaluating HIV infection. The chimpanzee is the only
animal infectable by HIV [52]; however, chimpanzees are an endangered species and
are therefore in short supply and prohibitively expensive. Rhesus macaques are
susceptible to infection by related primate retroviruses, STLV-III [53] and HIV-2
[54], and may represent a good surrogate model system for vaccine testing. The
logistical and time constraints on clinical trials of candidate AIDS vaccines, as well as
ethical and legal issues (e.g., product liability), represent additional difficulties
anticipated in the vaccine effort [55].

There are, of course, also findings which can be viewed optimistically for the
development of AIDS vaccine. HIV neutralizing antibodies and antibody-dependent
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cell-mediated cytotoxicity (ADCC)-two important immune parameters in predicting
vaccine efficacy-have been detected in AIDS patients and seropositive individuals
[56-60]. Both neutralizing antibodies and the ADCC response have been found to be
directed against envelope glycoproteins [59,61-64]. Studies to map the precise
envelope domains important in eliciting HIV neutralizing antibodies have shown that
several fall within well-conserved regions [59]. This result suggests that the hetero-
geneity among isolates may not be a major obstacle in vaccine development and that a
single broadly protective vaccine may be possible.

Given the urgency of the AIDS epidemic, several candidate subunit vaccines have
already reached testing in chimpanzees and, in one case, clinical trials in humans,
despite the lack of full understanding of the important viral components to include or
exclude in the vaccine preparation. Several purified or recombinant gpl20 prepara-
tions have been used to immunize chimpanzees. Although specific anti-gpl 20 antibody
response developed, none has protected the animals from HIV infection when
challenged [55]. Zagury et al. have begun evaluating in human subjects (Zairians and
the principal investigator) a recombinant vaccine composed of vaccinia plus the HIV
env gene [65]. Furthermore, despite the lackluster results in chimpanzees, clinical
trials with various candidate subunit vaccines are expected to start in the United States
within a year [55].

It is possible that the "shotgun" candidate vaccines will not be protective and that a
rational and stepwise approach to vaccine design will be necessary. An ideal AIDS
vaccine should elicit immune effector responses that are significantly greater than
those induced by the native virus, because the natural responses in HIV-infected
persons are often inadequate. To this end, it will be important to define precisely the
most vulnerable portions of HIV in terms of antibody neutralization and ADCC. The
"vulnerability" of a region of the virus suggests functional importance; therefore, that
particular domain is likely to fall within invariant regions of HIV. Those critical "soft
spots" which are common to diverse isolates should then be dissected out and properly
packaged for optimal presentation to the immune system of vaccinees.

ANTI-HIV CHEMOTHERAPY

Approximately five million persons worldwide are already infected with HIV, and a
majority of them are expected to progress to AIDS or AIDS-related complex (ARC) in
seven to eight years. The development of effective chemotherapy for HIV is therefore
of paramount importance. This difficult task will undoubtedly require a rational and
organized approach to antiviral design, production, and testing. Several features of
HIV pathogenesis should be taken into consideration. First, HIV is a persistent virus
and is likely to require prolonged (possibly life-long) treatment. Therefore, a drug
should ideally be orally bioavailable and reasonably affordable. Second, HIV is
neurotropic, which necessitates adequate drug penetration into the central nervous
system. Third, better understanding of the HIV replication cycle has revealed several
critical virus-specific steps, which are prime targets for antiviral chemotherapy (Table
1). Intense investigative efforts over a short period of time have resulted in the
identification of many potentially useful compounds (Table 1), which have been
recently reviewed elsewhere [66,67].

Antiviral agents with activity against HIV reverse transcriptase include azidothy-
midine- (AZT, also known as zidovudine or Retrovirs) a 3'-azido-3'-deoxy analog of
thymidine. AZT is phosphorylated to a triphosphate form by cellular kinases and
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TABLE 1
Virus-Specific Targets for Anti-HIV Chemotherapy

Stage Potential Intervention Examples References

Binding Interference with gpl20-T4 Anti-gpl20 antibodies [5]
interaction Leu3A, OKT4A antibodies [3-5]

Peptide T [91]
Free T4 molecules

Penetration Alteration in target cell AL721 [92]
membrane fluidity

Inhibition of fusogenic do- None
main of HIV env

Reverse Inhibition of reverse tran- Azidothymidine [66-71]
Transcription scriptase Dideoxynucleosides [74]

Suramin [8 1,82]
HPA-23 [80]
Phosphonoformate [77]

Integration Inhibition of integrase None

Transcription/ Inhibition of tat function None
Translation Inhibition of trs/art function None

Interference with HIV Anti-sense RNA [93]
mRNA

Post-Translational Inhibition of glycosylation Castanospermine [94]
Processing Unknown Ribavirin (?) [84]

Inhibition of myristylation None

Inhibition of HIV protease None

Assembly/Release Inhibition of assembly or re- Interferon-alpha [87]
lease Interferon-gamma [89]

Ampligen [95]

incorporated into growing DNA chains, thereby preventing chain elongation [68]. It
inhibits HIV replication in vitro at 1-5 ,uM [69], a concentration achievable in vivo.
AZT has an oral bioavailability of 60 percent and adequate penetration into the central
nervous system [70,71]. These properties led in 1985 to a phase 1 study in AIDS
patients, which showed that drug recipients had partial reconstitution of immune
responses [70]. This result then prompted a phase 2 multi-center, collaborative,
placebo-controlled trial of AZT in 282 patients with AIDS (those following an initial
episode of pneumocystis pneumonia) or ARC. The study was prematurely terminated
in September 1986 because of significant differences observed in survival rates [72].
Nineteen patients had died in the placebo group, while only one died among drug
recipients. In addition, there were significantly fewer opportunistic infections in
AZT-treated patients, as well as improvement in their performance scores, skin test
reactivity, and T4 lymphocyte numbers. Suggestions of in vivo antiviral effect with
lower serum antigen (p24) were also evident. Six months after this study, AZT was
licensed for use in this country for adults with AIDS or advanced ARC with
established pneumocystis pneumonia or a blood T4 lymphocyte count of less than
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200/mm3. A preliminary study of AZT in patients with neurologic syndromes
associated with AIDS has demonstrated some benefit [71] and forms the basis for
more extensive investigations in the future.
AZT treatment is associated with considerable toxicity. The development of

megaloblastic anemia is common, and more than 20 percent of the patients on AZT
required blood transfusions [73]. In addition, neutropenia is another frequent (16
percent) complication, as well as headaches. Furthermore, the long-term side-effects of
this drug are unknown. Another negative feature of AZT is its current cost of
approximately $10,000 per patient per year, which is an enormous financial burden for
patients or third-party payers.

Another nucleotide analog under active investigation is 2'-3'-dideoxycytidine (ddC),
which has also demonstrated considerable in vitro anti-HIV activity [74,75]. It is
phosphorylated by cellular kinases to a triphosphate form that inhibits HIV reverse
transcriptase and its effect can be reversed by deoxycytidine [76]. Phase 1 clinical
trials with ddC are currently in progress in patients with AIDS or ARC [67].

Trisodium phosphonoformate (PFA) is a pyrophosphate analog that also inhibits
HIV reverse transcriptase in vitro [77]. Although the potential clinical use of this
compound has been limited by the lack of an orally bioavailable form, PFA crosses the
blood-brain barrier and has acceptable toxicity. Phase 1 clinical trials are now in
progress in Sweden, using intravenous infusion of PFA in AIDS and ARC patients
[78,79].
Other inhibitors of HIV reverse transcriptase include HPA-23 [80] and suramin

[81,82]; however, they have not been found to be beneficial in vivo. In fact, in clinical
studies it was concluded that suramin may actually be harmful [82].

Ribavirin is in a synthetic guanosine analog with broad-spectrum antiviral activity
against both DNA and RNA viruses [83] and has demonstrated variable activity
against HIV- 1 replication in vitro [84]. Although its mechanism of action has not been
established, it is converted to ribavirin-5'-triphosphate by cellular enzymes and may
interfere with post-transcriptional processing [83]. A number of clinical trials have
been conducted with ribavirin but have yielded contradictory or controversial results
[85,86].

Interferons appear to act late in the HIV replication cycle and interferons alpha and
beta inhibit HIV replication in vitro in a dose-dependent manner [87,88]. Recombi-
nant human interferon gamma also has some demonstrable effect in vitro [89].
Although the penetration into the central nervous system is poor [67], interferons may
be clinically useful in combination with other anti-HIV agents which act at different
sites of the replication cycle.

Combinations of the antiviral agents that act by different mechanisms at various
sites may reduce toxicity by lowering the effective concentration of an individual drug.
Advantages include enhanced efficacy related to potential additive or synergistic
activity as described for the following drug combinations in vitro [67]: AZT and
interferon-alpha, phosphonoformate and interferon, phosphonoformate and ribavirin,
and ddC and interferon-alpha. Of interest is the finding that one combination, AZT
plus ribavirin, demonstrated antagonism in vitro [90]. Ribavirin appears to inhibit
phosphorylation of AZT to its active triphosphate form. Clinical trials using synergis-
tic combinations of these drugs are under way in patients with HIV infections.

Better understanding of the biology of HIV and the development or discovery of the
antiviral agents listed in Table 1 represent major achievements in medical science, and
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yet much remains to be done. Search for other anti-HIV compounds must continue,
including those which will inhibit other virus-specific sites (e.g., the integrase,
protease, or products of tat or trs/art). Drugs with promising in vitro characteristics,
following appropriate preliminary toxicity and efficacy studies, should be quickly
brought to clinical trials, which must be properly designed and executed. Governmen-
tal regulatory agencies must also facilitate the process of review and licensure while
maintaining high scientific standards. These and other efforts will be necessary to
confront this formidable foe, HIV.
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