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Purpose: Regulation of inducers and transcription factor families influence epithelial–mesenchymal transition (EMT), a contributing
factor to breast cancer invasion and progression.
Methods: Molecular subtypes were classified based on EMT-related mRNAs using ConsensusClusterPlus package. Differences in
tumor immune microenvironment and prognosis were assessed among subtypes. Based on EMT genes, a gene signature for prognosis
was built using TCGA training set by performing multivariate and univariate Cox regression analyses. Prediction accuracy of the
signature was validated by receiver operating characteristic (ROC) curves and overall survival analysis on internal and external
datasets. By conducting univariate and multivariate Cox regression analyses, the risk signature as an independent prognostic indicator
was assessed. A nomogram was constructed and validated by calibration analysis and decision curve analysis (DCA).
Results: Five molecular subtypes were characterized based on EMT genes. Patients in Cluster 2 exhibited an activated immune state
and a better prognosis. An 11-EMT gene-signature was built to predict breast cancer prognosis. After validation, the signature showed
independence and robustness in predicting clinical outcomes of patients. A nomogram combining the RiskScore and pTNM_stage
accurately predicted 1-, 2-, 3-, and 5-year survival chance. In comparison with published model, the current model showed a higher
area under the curve (AUC).
Conclusion:We characterized five breast cancer subtypes with distinct clinical outcomes and immune status. The study developed an
11-EMT gene-signature as an independent prognostic factor for predicting clinical outcomes of breast cancer.
Keywords: epithelial–mesenchymal transition, breast cancer, gene signature, molecular subtypes, nomogram

Introduction
The American Cancer Society’s Global Cancer Statistics 2020 showed that breast cancer, as a common female cancer,
accounted for 30% of all cancers in women, ranking the first in incidence and second in mortality among female
malignancies.1,2 Since 2004, the incidence of breast cancer continued to show a slow increase (about 0.3% per year).3

Current treatments for breast cancer are radiation therapy, surgery, hormone therapy, chemotherapy, immunotherapy and
biologically targeted therapy,4–6 and due to continued advances in treatment, high-quality prevention and early detection,
mortality of breast cancer has experienced a decline. However, there are still great challenges in improving the treatment of
breast cancer, and patients continue to experience recurrence and metastasis.7 This also requires the discovery of new
targets and biomarkers for predicting and treating breast cancer.

Epithelial cells transform into mesenchymal cells during the process of epithelial mesenchymal transition (EMT), which is
characterized by downregulation in the expression of cell adhesion molecules7,8 and upregulation in the expression of
waveform proteins.9,10 Breast cancer of epithelial origin accounts for 95% of all breast cancers,11 and basal-like breast
cancers are more likely to undergo epithelial mesenchymal transition.12 It has been found that breast cancer cells with EMTare
more prone to metastasis.13,14 Hiscox et al found that cell-cell junction loss during tamoxifen-resistant MCF7 (TAMR) cell
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culture, and that epithelial mesoplasmic transformation (EMT) cells show changes in morphological characteristics.15

Inhibition of tumor EMT progression has become an effective method in anti-tumor therapy, and combined treatment of
CORM-A1 andDETA/NO can inhibit tumor EMT progression to achieve an anti-tumor effect.16 Still, more studies are needed
to systematically elucidate the EMT phenotype of breast cancer and its relationship to prognosis.

Developments in high-throughput genetic testing and large-scale gene expression datasets allow researchers to more
accurately identify the key molecular features and combine them with clinical features to better design individualized
plans of treatment.17–19 Therefore, we aimed to identify EMT-related genes for breast cancer and predict patient survival.

Materials and Methods
Study Cohort and Data Preprocessing
Relevant clinical data of the samples and RNA-sequencing (RNA-seq) data of breast cancer were retrieved from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) on December 13, 2019. Raw data were normalized and
then converted by log2. After removing the samples with incomplete follow-up, 1043 samples of breast cancer were
retained and randomly grouped according to the ratio of training set: validation set = 1:1 to ensure unbiased distribution
of Age, Stage and Grade stages. Finally, 522 cases and 521 samples from TCGA training dataset and TCGA validation
dataset were kept.

Three microarray ovarian carcinoma datasets (accession: GSE20685, GSE58812 and GSE31448) were acquired from
the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database (on the GPL570 platform). The three
datasets contained 327, 107, and 357 breast cancer patients, respectively, and served as external validation sets. See
Table 1 for the clinical features of breast cancer samples in the validation and training sets.

A total of 1011 EMT-related genes were collected from publicly open databases (dbEMT: http://dbemt.bioinfo-
minzhao.org/20 MSigDB: http://software.broadinstitute.org/gsea/msigdb/index.jsp).

Classification of Breast Cancer
Clustering of ovarian carcinoma samples was based on the expression of EMT-related mRNAs using the
ConsensusClusterPlus package in R (version 1.54.0),21 and 80% of the samples were re-sampled. The optimal k was
clusters k = 2, 3, 4, ·····9 after multiple sampling to take the cumulative distribution function (CDF) index close to the
approximate maximum. Next, principal component analysis (PCA) was performed to verify the current classification
based on the mRNA expression profiles of breast cancer.

The Distribution of Clinicopathological Features in Subtypes
Samples with various clinicopathological features, including age (≥58 and <58), M stage, T stage, N stage, stage classical
molecular subtypes of breast cancer and six immune subtypes, were distributed across the above five subtypes. In each
subgroup, the cancer samples were classified into two risk groups (high and low). The distributions of clinicopathological
features among subtypes were assessed by Log rank test.

Immune Cells Infiltration Analysis
TIMER (tumor immune estimation resource) was used to assess the six immune scores of CD8 T cell, CD4 T cell, B cell,
Neutrophil, Macrophage, and Dendritic cell in the five Clusters. The ESTIMATE (version 2.0.0) package in R was
applied to evaluate the StromalScore, ImmuneScore, and ESTIMATEScore in the five Clusters. Log rank test was
performed for comparison.

Analysis on Differentially Expressed Genes (DEGs)
Under FDR < 0.05 and |logFC|≥1, DESeq2 package was used to identify DEGs from five clusters and normal samples. DGEs
intersecting with EMT genes were regarded as EMT-related DEGs. KEGG pathways and Gene Ontology (GO) function
enrichment (molecular functions (MF), cellular components (CC), biological processes (BP)) were conducted using R
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package ClusterProfiler. Then, a PPI network of DEGs was created using STRING database (https://string-db.org/),22 and the
crucial sub-network was developed in Cytoscape 3.7.2 using the MCODE APP.23

Screening of Stable Feature Genes
Based on the DEGs obtained, prognosis-related EMT genes from TCGA training set were screened according to p < 0.05
using performing univariate Cox regression survival analysis. Subsequently, independent prognostic markers for breast
cancer OS were filtered using LASSO Cox regression (in R package glmnet). The RiskScore was calculated using the
following formula:

Risk Score ¼ ∑
n

i¼1
Coefficient ðmRNAiÞ � Expression ðmRNAiÞ

Coefficient(mRNAi) was the coefficient of each gene in which n shows gene number in a module. Expression(mRNAi)
represented a gene mRNA expression.

Samples in the TCGA training were grouped into high-risk and low-risk groups by the cut-off of median RiskScore.
The prognostic significance of RiskScore in the two groups was analyzed using Kaplan Meier. Receiver operating
characteristic (ROC) curves were used to assess the sensitivity and specificity. The relationship between clinical
parameters and RS was further studied.

We also validated the current risk signature in TCGA validation, the entire TCGA dataset, GSE20685, GSE58812 and
GSE31448 dataset.

Table 1 Clinical Information of Datasets

Characteristic Training Set Validation Set p value GSE20685 GSE58812 GSE31448
(n = 522) (n = 521) (n = 327) (n = 107) (n = 357)

Age(years) ≤58 270 255 0.403 274 57 242

>58 252 266 53 50 114

Survival status Alive 449 445 0.849 244 78 167
Dead 73 76 83 29 83

Gender Female 519 512 0.145 327 — —

Male 3 9 0 — —
Pathologic_T T1 131 144 0.154 101 — 67

T2 292 306 188 — 141

T3 79 55 26 — 70
T4 18 19 12 — 0

Pathologic_N N0 231 255 0.49 137 — 119

N1 185 166 87 — 139
N2 57 55 63 — —

N3/NX 49 45 40 — —

Pathologic_M M0 422 435 0.359 319 — —
M1/MX 96 84 8 — —

Tumor Stage Stage I 75 103 0.137 — — —

Stage II 307 282 — — —
Stage III 117 117 — — —

Stage IV 10 9 — — —

Molecular subtype Basal 72 59 0.124 — — 98
Her2 36 25 — — 26

LumA 187 217 — — 90

LumB 83 99 — — 49
Normal 13 9 — — 31

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S343885

DovePress
3499

Dovepress Hou et al

Powered by TCPDF (www.tcpdf.org)

https://string-db.org/
https://www.dovepress.com
https://www.dovepress.com


Independence of the Prognostic Model
Univariate Cox regression analysis was conducted to examine the relationships between age, pT, pN, pM, pTNM_stage,
Luminal_subtype and RiskScore. Clinical factors that could independently predict the outcomes of breast cancer patients
were determined by multivariate Cox regression survival analysis according to Hazard ratio (HR), 95% confidence
interval (CI) and p-value.

A Predictive Nomogram Was Developed
RiskScore and pTNM_stage, which are the two independent prognostic factors, were incorporated into a nomogram
model for predicting the 1-, 2-, 3-, and 5-year survival using R package rms. The calibration plots were generated to
examine nomogram-predicted survival and actual survival using the rms package in R. Decision curve analysis (DCA)
curve and AUC curve were employed to compare the prediction model combined with clinical outcome for evaluating
whether the nomogram was suitable in clinical practice.

Comparison with Published Models
To verify the strong performance of our model, three recently published breast cancer prognosis models (four-mRNA
model by Qi et al,24 19 genes signature by Su et al,25 and the six-gene signature by Wang et al26) were recruited for
comparison. To ensure comparability, the same method was applied to calculate risk score of TCGA samples using the
genes in the models. The ROC of each model and KM curve was analyzed.

Results
Five Molecular Subtypes of EMT-Related mRNAs in Breast Cancer
From 979 EMT genes, univariate Cox analysis filtered 119 EMT genes used, which showed different expression changes
across 1043 breast cancer samples. Unsupervised hierarchical clustering on the 119 EMT genes classified five major
sample clusters, namely, Cluster 1, Cluster 2, Cluster 3, Cluster 4 and Cluster 5 (Figure 1A). The results of PCA principal
component analysis on 979 EMT genes indicated that the five subtypes had significant differences (Figure 1B). From the
heat map analysis of genes, it could be observed that the overall EMT gene expression of Cluster 2 was low, while the
EMT gene expression of Cluster 3 and 5 was high (Figure 1C). Based on the survival risk curve, patients in Cluster 2
showed a significantly longer overall survival, while Clusters 1 and 5 had obviously poor prognosis (Figure 1D).

Association Between Five Subtypes, Clinical Features and Known Subtypes
In TCGA dataset, 1043 cases were included to analyze the relationship between clinicopathological characteristics and
the clusters using chi-square test. It was found that the Cluster 4 samples were younger, and that all the clusters were
significantly associated with clinicopathological characteristics (Figure 2).

In 2018, Vesteinn Thorsson et al identified 6 immune subtypes for 33 tumors in TCGA (DOI: 10.1016/j.i mmuni.
2018.03.023), including C6 (TGF-beta advantage), C5 (silence on immunological), C4 (lymphocyte depletion), C3
(inflammation), C2 (INF-r dominant), and C1 (healing). Comparative analysis demonstrated that there was more C4
(lymphocyte depletion) samples in Cluster 1, more C2 (INF-R dominant) cases in Cluster 2 and Cluster 4, and more C3
(inflammation) patients in Cluster 3 and Cluster 5 (Figure 3A). Cluster 4 had higher Basal samples, and Cluster 3 and
Cluster 5 had the highest percentage of LumA samples compared with classical subtypes (Figure 3B).

Relations Between Tumor Immune Microenvironment and the Five Subtypes
Tumor immune microenvironment plays an important role in cancers. The association between tumor immune micro-
environment and two subtypes was examined. TIMER tool was used to calculate CD4 T cell, B cell, Neutrophil, CD8 T
cell, Macrophage and Dendritic cell score of each breast cancer sample in TCGA dataset, and the results showed that the
scores of the six immune cells were higher in Cluster 3 and lower in Cluster 1 than those in the other subtypes
(Figure 4A). Furthermore, the StromalScore, ImmuneScore and ESTIMATEScore of the breast cancer samples were
determined using the ESTIMATE. Our data revealed that StromalScore was higher in Cluster 3, while ImmuneScore and
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Figure 1 Five molecular subtypes of EMT-related mRNAs in breast cancer. (A) Upper left, CDF curves; Lower left, CDF Delta area curve; Right side, Delta area curve of
consensus clustering, indicating the relative change in area under the cumulative distribution function (CDF) curve for each category number k compared with k-1. The
horizontal axis represents the category number k and the vertical axis represents the relative change in area under CDF curve; Heatmap of sample clustering at k = 5. (B)
Principal components analysis (PCA) among five clusters based on the EMT-related genes. (C) Heat map analysis of EMT-related genes showed that the overall EMT genes
expression of Cluster 2 were low, while high in Cluster 3 and 5. (D) Kaplan-Meier prognosis curves of 5 clusters showed that samples in Cluster 2 had best prognosis.
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Figure 2 Association between five subtypes and clinical features. (A) Distribution of age samples in 5 subtypes; (B) Distribution of T-stage samples in 5 subtypes; (C)
Distribution of N-stage samples in 5 subtypes. (D) Distribution of M-stage samples in 5 subtypes. (E) Distribution of Stage staged samples in 5 subtypes. (F) Distribution of
typical molecular subtype samples in 5 subtypes. Chi-square test was used, *P<0.05.
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Figure 3 Association between five subtypes and known subtypes. (A) Distribution of published subtypes in 5 subtypes, where different colors represent published isoforms;
(B) Distribution of typical molecular subtype (Basal, Her2, LumA, LumB and Normal) samples in 5 subtypes. Chi-square test was used, *P<0.05.
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ESTIMATEScore were higher in Cluster 2 (Figure 4B). It was found that the immune and matrix scores were higher in
the group with favorable prognosis.

Identification of Differentially Expressed Genes (DEGs)
Based on the gene expression profiles of breast cancer, EMT-associated DEGs among five subtypes and normal samples
were selected using DESeq2. There were 5014 DEGs in Cluster 1, 5628 DEGs in Cluster 2, 3607 DEGs in Cluster 3,
5803 DEGs in Cluster 4, 4093 DEGs Cluster 5. Finally, a total of 4908 DEGs were filtered after the duplication has been
removed (Figure 5A). Among them, there were a total of 387 intersections with EMT genes (Figure 5B).

Next, the KEGG and GO function enrichment analysis was conducted using the R software package Clusterprofiler
on 387 EMT-related DEGs. Based on the pathway enrichment analysis, the DEGs were enriched in 80 KEGG pathways,

Figure 4 Association between five subtypes and tumor immune microenvironment. (A) B cell score, CD4 cell score, CD8 cell score, Neutrophil cell score, Macrophage cell
score and Dendritic cell score were higher in Cluster 3, while lower in Cluster 1. (B) Immune Score, StromalScore and ESTIMATE Score in five molecular subtypes.
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Figure 5 Identification of differentially expressed genes (DEGs). (A) The shared differentially expressed genes among the 5 subtypes. (B) The shared differentially expressed
genes of subtypes intersected with EMT genes. (C) 387 genes mapped to the protein interactions network, red represents differentially up-regulated genes and purple
represents differentially down-regulated genes; (D) Hub nodes identified by Degree method; (E) Hub nodes in the network identified by Closeness algorithm; (F) Hub
nodes identified by Betweenness, where the redder color means higher score; (G–I) Degree distribution of the network, Closeness distribution of the network, and
Betweenness distribution of the network.
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such as Wnt signaling pathway, PI3K-Akt signaling pathway, Breast cancer (Figure S1A). GO analysis results indicated
that 387 genes were significantly enriched in 2277 BP terms, 53 CC terms and 92 MF terms (Figure S1B–D).

As the study of interaction network between proteins could help to mine key genes, to identify the potential regulatory
genes for breast cancer, we mapped the 387 EMT-related DEGs into a human PPI network. The PPI network of DEGs
was built with the use of STRING database, and then 387 genes were mapped to 1429 interaction relationships
(Figure 5C). Based on the Closeness, Degree, and Betweenness methods, hub node identification was further used by
Cytohubba module in Cytoscope, and hub genes obtained by the three analysis methods were basically the same
(Figure 5D–F). The distribution of degrees in the network presented a power-law distribution (Figure 5G), the closeness
of most nodes in the network was overall higher above 5 (Figure 5H), and the Betweenness of most nodes in the network
was overall lower below 10 (Figure 5I). The nodes simultaneously meet Degree, Closeness and Betweenness and above
their median value were considered as the hub gene of the pathway network. Here, a total of 113 genes were identified to
closely participate in the initiation and development of breast cancer.

EMT-Associated Prognostic Markers Among DEGs and a Risk Signature Established
To identify EMT-associated prognostic markers from the DEGs, we conducted univariate Cox regression analysis on overall
survival (OS) data from 522 TCGA training tumor samples and the RNAseq illuminaHiseq data. The results demonstrated that
11 DEGs were significantly related to the OS (p < 0.05). The most representative prognostic mRNAmarkers were screened by
performing LASSOCox regression analysis, the results showed (Figure 6A) 7 down-regulated genes and 4 up-regulated as the
powerful representative prognostic markers. Furthermore, the risk score was calculated based on the coefficient of each
marker obtained from the LASSO analysis as follows: RiskScore11 = −0.05*IRS2+0.274*EZR-0.027*VIM+0.188*F11R-
0.245*MMP7-0.182*LEF1+0.077*ERBB2+0.349*SDC1-0.046*CCND2-0.086*CXCL9-0.117*TLN1.

Based on the median risk score value, TCGA training breast cancer patients were grouped into the low- and high-risk
groups. The number of deceased patients was found to be gradually increasing as the risk score increased. Distinct
differences in the expression of the 13 genes were detected between the two risk groups (Figure 6B). The sensitivity and
specificity AUC values were 0.618, 0.761, 0.712 and 0.703 for 1-, 2-, 3-, and 5-year ROC curve (Figure 6C),
respectively, suggesting a strong prediction ability. In the high-risk group, the OS of patients was lower than in the
low-risk group (Figure 6D).

The Stability and Reliability of the Signature in Predicting Prognosis of Breast Cancer
The prognostic significance of the risk score was also validated based on 11 EMT-related genes screened from TCGA
internal dataset and entire TCGA dataset. Consistent with the training set, the AUCs of the ROC curves for 1-, 2-, 3-, and
5-year OS were 0.784, 0.634, 0.652 and 0.634, respectively, which demonstrated a high accuracy and relatively high
sensitivity of the model. Moreover, breast cancer patients of TCGA internal dataset in the high-risk group tended to show
a shorter OS time than those in the low-risk group (Figure 7A). As expected, in entire TCGA dataset, the AUCs of the
ROC curves for 1-, 2-, 3-, and 5-year OS were 0.724, 0.692, 0.697 and 0.667, respectively, and there were significant OS
differences of the two risk groups (Figure 7B).

Cross-platform validation could explain the broad applicability of the model, and three independent external
datasets (GSE20685, GSE58812 and GSE31448 datasets) were used for verification. In GSE20685 dataset, the
AUCs of the ROC curves for 1-, 2-, 3-, and 5-year OS were 0.762, 0.805, 0.686 and 0.669, respectively, and breast
cancer patients in the low-risk group presented a longer OS than the high-risk group (Figure 7C). In GSE58812
dataset, the AUCs of the ROC curves for 2-, 3-, and 5-year OS were 0.711, 0.681 and 0.722, respectively, and those in
the high-risk group had a poorer OS than the low-risk group (Figure 7D). In GSE58812 dataset, the AUCs of the ROC
curves for 1-, 2-, 3-, and 5-year OS were 0.677, 0.606, 0.592 and 0.608, respectively, with significant differences of
OS between two groups (Figure 7E).
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Figure 6 Establishment of an EMT-related genes risk signature. (A) The confidence interval under each lambda, the change trajectory of each independent variable,
the horizontal axis represents the independent variable lambda value, and the vertical axis represents the coefficient of the independent variable; Univariate
survival Cox result forest plot of 11 genes; (B) A: risk score, survival time and survival status and 11 gene expressions in the The Cancer Genome Atlas training
set; (C) Receiver operating characteristic curve and area under the curve of 11-genes signature classification in The Cancer Genome Atlas training set; (D)
Kaplan-Meier survival curve of 11-genes signature in the training set.
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Figure 7 Evaluation of the stability and reliability of the signature. (A) Receiver-operating characteristic curve and Kaplan-Meier survival curve of 11-genes signature
classification in The Cancer Genome Atlas internal validation set. (B) Receiver operating characteristic curve and Kaplan-Meier survival curve of 11-genes signature
classification in entire The Cancer Genome Atlas dataset. (C) Receiver operating characteristic curve and Kaplan-Meier survival curve of 11-genes signature classification in
GSE20685 dataset. (D) Receiver operating characteristic curve and Kaplan-Meier survival curve of 11-genes signature classification in GSE58812 dataset. (E) Receiver
operating characteristic curve and Kaplan-Meier survival curve of 11-genes signature classification in GSE31448 dataset.
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Analysis RiskScore and Clinicopathological Features
Clinicopathological data, including T Stage, Age, S Stage, M Stage, N Stage, and classical classification, came from the
TCGA dataset. Chi-square test demonstrated that, except for M Stage, all other clinical factors showed great differences
between the two risk groups (high and low) (Figure S2A–F).

Risk score prognostic characteristics were investigated by stratification analysis. In ≥58 and <58 subgroups, patients
with high risk scores developed a poor prognosis than those who scored as having a low risk. In the high-risk group,
patients at stage II and III showed a poorer prognosis than those in the low-risk group. Regardless of whether it was a T2
or T3, high-risk score seemed to be related to a shorter time of survival than those with a low-risk score. At N2 and N3
stages, a high-risk group of patients demonstrated a shorter time of survival. We also found that at LumB stage, the high-
risk score was indicative of a shorter survival (Figure S3).

The RiskScore as an Independent Factor for Breast Cancer Prognosis
The independence of the risk score on prognosis prediction of breast cancer was evaluated. The results of univariate cox
regression analysis on the training set showed that prognosis of breast cancer patient was significantly associated with T
stage [p < 0.0001 and HR (95% CI) = 1.46 (1.195–1.784)], Age [p < 0.0001 and HR (95% CI) = 1.035 (1.022–1.049)],
Stage [p < 0.000 and HR (95% CI) = 1.737 (1.483–2.033)], N stage [p < 0.0001 and HR (95% CI) = 1.608 (1.405–
1.839)], and risk score [p < 0.001 and HR (95% CI) = 2.176 (1.655–2.861)] (Figure 8A). Multivariate cox regression
analysis demonstrated that risk score [p < 0.001 and HR (95% CI) = 1.667 (1.228–2.291)], Stage [p = 0.004 and HR
(95% CI) = 1.81 (1.207–2.713)], and Age [p < 0.0001 and HR (95% CI) = 1.036 (1.228–2.291)] were the independent
prognostic factors for breast cancer (Figure 8B).

Development of a Personalized Prognostic Prediction Nomogram for Breast Cancer
Age, stage and risk scores were three independent prognostic factors used here to develop a nomogram to predict
the 1-, 2-, 3-, and 5-year survival of the TCGA dataset samples (Figure 9A). The data showed that the 1-, 2-, 3-, and
5-year OS evaluated by the nomogram was highly close to the actual time of survival (Figure 9B). ROC analysis
indicated a high potential of the nomogram in clinical application (AUC = 0.8) (Figure 9C). The performance of the
nomogram model was reflected by the DCA curve (Figure 9D).

Superiority of the Model
Three recently published breast cancer prognostic models (four-mRNA model by Qi, 19 genes signature by Su et al,25

six-gene signature by Wang) were compared with our model. To allow the models to be more comparable, the RiskScore
of breast cancer samples in TCGA data was calculated with the same method using corresponding genes from the three
models, the ROC of each model was determined, and subsequently the samples were divided into two groups (high-risk
and low-risk), according to the median risk score. For Qi’s model, AUCs of the ROC curves for 2-, 3-, and 5-year OS
were 0.52, 0.55 and 0.56, respectively, and marginal prognostic difference was detected between the two risk groups
(Figure 10A). For Su’s model, the AUCs of the ROC curves for 1-, 2-, 3-, and 5-year OS were 0.68, 0.67, 0.69 and 0.68,
respectively, and a significant prognostic difference was detected between two risk groups (Figure 10B). For Wang’s
model, the AUCs of the ROC curves for 1-, 2-, 3-, and 5-year OS were 0.57, 0.6, 0.65 and 0.65, respectively, and there
was significant prognostic difference between two risk groups (Figure 10C). In general, our model showed a better
performance than the three models.

Discussion
The most important marker of EMT is the down-regulation of E-cadherin in tumors. Protein e-cadherin can span cell
membrane and tightly bind to adjacent cells, and is an important molecule in maintaining epithelial cell properties. The
absence or down-regulation of protein e-cadherin enhances the distant spread of cancer.27,28 Other related transcription
factors, for instance, TWIST, snail, and zinc finger E-box binding (ZEB), play important roles in EMT, including in
promoting cell migration, proliferation, invasion, and angiogenesis.29 Currently, EMT status is believed to be related to
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survival of cancer patients, and some EMT-related gene signatures have been established to predict survival of patients
with cancer. For instance, study has found that 130-gene-EMT-core signature is associated with non-basal-type tumors,
but not with the pattern of distant metastasis.30 Common cancer stem cells and EMT signatures based on ALDH1A1,
SFRP1, miR-139, miR-21, and miR-200c were found to be useful as prognostic biomarkers for breast cancer.31 EMT-
related features comprised of 51 gene pairs (51-GPS) have been applied to predict recurrence risk in patients with stage II
CRC.32 Seven EMT-associated gene signatures were used to predict survival of glioma patients.33 In addition, Cai et al
showed that EMT was associated with DFS, OS, and PFS in endometrial cancer patients and also performed EMT
scores.34 Cheng et al developed a novel 51-gene signature from microdissected tumor epithelium related to late disease
recurrence in breast cancer.35 However, research on the relationship between prognosis of breast cancer patients and
EMT-related genes is limited. Although examining individual biomarker levels could improve diagnosis, they are mostly
not able to accurately predict prognosis. Moreover, a single marker could not represent the effect of EMT, as it is a
complex process in cancer. Therefore, it is necessary to conduct a comprehensive analysis of EMT-related genes to define
the cell state between EMT and breast cancer progression. Thus, we used a more reliable and accurate set of EMT-related
gene markers to assess clinical outcomes in patients with breast cancer. In this work, EMT-related genetic characteristics
were employed to predict breast cancer patients’ survival, and achieved a relatively accurate prediction.

Figure 8 The RiskScore is an independent prognostic factor for breast cancer. (A) Univariate cox regression analysis of RiskScore and Clinicopathological Features. (B)
Multivariate cox regression analysis of RiskScore and Clinicopathological Features.
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Figure 9 Development of a personalized prognostic prediction nomogram for breast cancer. (A) Nomogram for prediction of the 1-, 2-, 3-, and 5-year survival probability in
the The Cancer Genome Atlas dataset. (B) The calibration plots for predicting patient 1-year, 2-year, 3-year and 5-year overall survival. (C) Receiver operating characteristic
curve of Age, Stage, RiskScore and Nomogram. (D) Decision curve analysis curve of Age, Stage, RiskScore and Nomogram.
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First, based on 119 EMT genes related to breast cancer prognosis, 1043 breast cancer samples were divided into 5
subtypes, among which Cluster 2 samples had the most favorable prognosis. A total of 387 EMT-related differentially
expressed genes were identified in 5 molecular subtypes, among which 113 breast cancer-related hub genes were
screened by PPI network. After univariate and multivariate Cox regression analysis, 11 EMT-related differentially
expressed genes associated with OS were determined to predict the prognosis of breast cancer patients (P < 0.05).

Figure 10 Superiority of the model. (A) Receiver operating characteristic curve and Kaplan-Meier survival curve of Qi’ model. (B) Receiver operating characteristic curve
and Kaplan-Meier survival curve of Su’ model. (C) Receiver operating characteristic curve and Kaplan-Meier survival curve of Wang’ model.
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Next, we established a prognostic risk score model, and significant OS differences were detected between the two risk
groups with independent prognostic power (P < 0.0001). Additionally, a nomogram integrating clinical features was
developed to offer a more convenient method for estimating the prognosis of patients with breast cancer.

Subtypes of breast cancer with clinical features and “intrinsic” subtypes (LumA, LumB, HER2, Basal, and Normal)
have been extensively studied using microarray and hierarchical cluster analyses.36–38 To verify the reliability of the five
molecular subtypes in this study, five clusters were assigned to these known subtypes. Analysis of clinical characteristics
showed that these five clusters had more samples corresponding to early clinical characteristic breast cancer samples,
which was probably caused by insufficient sample size. Analysis of “intrinsic” subtype matching showed that Cluster 4
had higher Basal samples, and Cluster 5 had the highest percentage of LumA samples.

The literature review also showed the influence of 11 signature genes on breast cancer. In a mouse model of breast
cancer and cell lines, IRS2 has been found to regulate mammary tumor metastasis because lack of IRS2 reduces
invasiveness of the cells.39–41 EZR with a high mRNA expression is associated with a poor overall survival (OS) of
patients diagnosed with breast cancer.42 Atefeh Shirkavand et al reported that hypomethylation of VIM genes plays a
significant role in breast cancer patients as compared with the normal.43 Currently, the significance of F11R/JAM-A in
breast cancer remains controversial. F11R/JAM-A deficiency induces invasion of breast cancer cells,44,45 while over-
expression of the protein is associated with poor prognosis.46 A study identified MMP7 expression as an independent
predictive factor of complete pathological response in a large breast cancer patient cohort.47 The expression of LEF-1 is
significantly related to the lymph node metastasis and breast cancer tumor size.48 Clinical studies showed that patients
with ErbB2+ breast cancer could benefit from anti-erbB2 therapy.49 In breast cancer, SDC1 expression is higher than in
normal tissues, and this is associated with age, high risk of HER2 in lymph nodes, and higher SBR grade status.50

Compared to paired normal samples, the CCND2 promoter hypermethylation rate is 40.9% and 44.4% in breast tumors
and circulating cellular DNA of patients’ plasma, respectively.51 Overexpression of CXCL9 leads to a lower metastatic
spread and reduces tumor growth in murine breast cancer models.52 TLN1 loss-of-function greatly enhances chemo-
sensitivity in triple-negative breast cancer (TNBC) cell lines to docetaxel.53 These data indicated the importance of these
11 genes in breast cancer. Although the biological functions of these 11 genes in breast cancer have been reported, their
roles in tumorigenesis and prognosis still need to be further investigated.

Conclusion
In conclusion, based on the results of EMT signaling pathway enrichment, we identified a novel EMT-related genetic
signature associated with breast cancer prognosis and it was validated as an independent factor for breast cancer
prognosis. In addition, by integrating EMT-related genetic characteristic with pTNM_stage, we developed a model
that can be used to effectively predict the prognosis of breast cancer patients.

The Reason for Exemption
TCGA and GEO belong to public database. The patients involved in the database have obtained ethical approval. This
work did not include any experiments on humans or animals. Users can download relevant data for free for research and
publishing relevant articles. Our study is based on open-source data, so there are no ethical issues and other conflicts of
interest. The waived ethics approval was approved by the Ethics Committee of Wuzhong People’s Hospital of Suzhou
City, and the publication of this study is in accordance with the Declaration of Helsinki.
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