Synthesis of Benzofused O - and N -Heterocycles through Cascade Carbopalladation/Cross-Alkylation of Alkynes Involving the C-C Cleavage of Cyclobutanols

Marta Pérez-Gómez, Piedad Herrera-Ramírez, Delia Bautista, Isabel Saura-Llamas, and José-Antonio García-López*

Cite This: Organometallics 2022, 41, 649-658

Read Online

| ACCESS I LIll Metrics \& More \mid 国 Article Recommendations | © Supporting Information |
| :--- | :--- | :--- | :--- |

Abstract

We report a Pd-catalyzed route to heterocycles bearing a tetrasubstituted alkene fragment. Our approach merges the intramolecular carbopalladation of tethered alkynes with an alkylation step produced by the $\mathrm{C}-\mathrm{C}$ cleavage of cyclobutanol derivatives. An alkenyl-Pd(II) intermediate has been isolated and characterized by X -ray diffraction studies. Interestingly, the nature of the tethering alkynyl chain influences the E / Z stereochemistry of the alkenyl fragment in the functionalized heterocycles.

- INTRODUCTION

The development of Pd-catalyzed cascade reactions based on the carbopalladation of alkynes has become a direct entry to the synthesis of substituted alkenes. ${ }^{1-9}$ Such reactions have been performed in either intra- or intermolecular fashion, with the resulting alkenyl-Pd intermediate being coupled afterward with different species, such as boronic acids, ${ }^{10-12}$ organotin reagents, ${ }^{13-18}$ and C -, ${ }^{19} \mathrm{~N}$-, ${ }^{20,21}$ and O -nucleophiles, ${ }^{22}$ among many others (a, Scheme 1). ${ }^{23-28}$
Parallel studies have demonstrated the ability of Pd to perform the opening of strained cycloalkanols through β carbon elimination (b, Scheme 1). ${ }^{29,30}$ This process leads to a σ-alkyl-Pd(II) intermediate, which can evolve in different manners, depending on the substitution pattern of the cycloalkanol. ${ }^{31-37}$ For instance, they can participate in further intramolecular steps, or be cross-coupled with aryl-, ${ }^{38-42}$ alkenyl-, ${ }^{43,44}$ and alkynylhalides, ${ }^{45}$ or propargylcarbonates, ${ }^{46}$ among others. ${ }^{29,47,48}$ Therefore, cyclopropyl- or cyclobutyl alcohols can behave as alkylating reagents under the appropriate conditions.

The merging of both aspects of palladium chemistry (carbopalladation/alkylation via opening of cycloalkanols) has rarely been reported in the literature. Werz et al. disclosed an interesting cascade reaction relying on the formal anticarbopalladation of an internal alkyne, evolving through further intramolecular trapping of the alkenyl-Pd(II) intermediate by a tethered cyclopropanol moiety (c, Scheme 1). ${ }^{49}$ Very recently, Murakami, Chen, and co-workers reported the synthesis of 2,3dihydrobenzofurans through the use of alkenyl-tethered aryliodides and benzocyclobutanols (d, Scheme 1). ${ }^{50,51}$
With these precedents in mind, and given our interest in the topics of Pd chemistry and the processes related to $\mathrm{C}-\mathrm{C}$
cleavage, ${ }^{52-57}$ we aimed to extend the applicability of these types of cascades to the synthesis of heterocycles bearing an alkylated olefine moiety (Scheme 1).

RESULTS AND DISCUSSION

We studied the feasibility to perform the envisioned carbopalladation/alkylation cascade reaction employing the 2-bromoarylether 1a and the cyclobutanol derivative 2a (Table 1). Initial screening of experimental conditions revealed the formation of some amounts of the byproduct $\mathbf{4 a}$, likely arising from the protodepalladation of the plausible alkenyl- $\operatorname{Pd}(\mathrm{II})$ intermediate generated upon the carbopalladation of the internal alkyne moiety. The use of $10 \mathrm{~mol} \%$ of $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ along with $20 \mathrm{~mol} \%$ of PPh_{3} showed good selectivity to give the desired compound $\mathbf{3 a}$ in THF or toluene as solvents (entries 3 and 4, Table 1). Replacing PPh_{3} by other ligands such as JohnPhos, PCy_{3}, or Xantphos did not improve the yields of 3 a (entries 5-7, Table 1). The increase of the amount of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in the reaction mixture could not suppress the protodepalladation process leading to the byproduct $4 \mathbf{a}$, and other organic bases like NEt_{3} precluded the formation of $\mathbf{3 a}$. We tested Pd sources like $\mathrm{Pd}(\mathrm{OAc})_{2},\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, and $\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. While the first two were not effective for this

[^0]

Scheme 1. Merger of Carbopalladation of Alkynes and C-C Cleavage of Cycloalkanols

Previous works

a) General functionalization of alkynes through carbopalladation (See, for example, Neghishi, 1990; Takemoto, 2005; Lautens, 2015)

b) Pd-catalyzed alkylation via C-C cleavage of strained cycloalkanols (Uemura and Nishimura, 1999; Martin and Ziadi, 2012)

c) Intramolecular carbopalladation/cyclopropanol opening cascade (Werz et al, 2018)

d) Intramolecular carbopalladation/alkylation cascade of alkenes (Murakami, Liu et al., 2021; Chen, Zhang et al., 2021)

This work. Intramolecular carbopalladation/alkylation of alkynes

transformation, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ showed a comparable activity to $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$, reaching a 70% yield of the desired product.
With the optimized conditions in hand, we proceeded to study the scope and limitations of the reaction. Several aspects were assessed: the presence of electron-donating/withdrawing groups in the haloaryl moiety, the nature and length of the chain tethering the internal alkyne, and the use of different substituted cyclobutanols.

The reactions of haloaryl ethers bearing methyl, methoxy, fluoro, or trifluoromethyl substituents with the 3,3-substituted cyclobutanol 2a afforded good yields of the expected dihydrobenzofuran derivatives $\mathbf{3 b} \mathbf{b} \mathbf{e}$ (Scheme 2). The pyridine derivative $\mathbf{1 g}$ gave rise to the heterocycle 3 f , albeit in moderate yield, perhaps due to competing coordination of the pyridine moiety to $\mathrm{Pd}(\mathrm{II})$. C3-unsubstituted cyclobutanol derivatives 2 were also productive in the cascade reaction, giving the functionalized dihydrobenzofuran derivatives $3 \mathbf{g}-\mathbf{j}$ in comparable yields to those obtained with 2a (Scheme 2); therefore, the possible byproduct formation arising from β - H elimination processes seem to be overridden. The cyclobutanol derivative bearing a mesityl group in α-position led to mixtures where the desired compound $3 \mathbf{k}$ could not be identified. The compound 31 could be isolated in 44% yield from the reaction carried out employing the tertiary cyclobutanol bearing an $i-\operatorname{Pr}$ group.

Table 1. Optimization of the Carbopalladation/Alkylation Cascade ${ }^{a}$

 12		Pd(0) cat.		
entry ${ }^{\text {a }}$	Pd source ($10 \mathrm{~mol} \%$)	$\begin{gathered} \text { ligand } \\ (20 \mathrm{~mol} \%) \end{gathered}$	solvent	yield $3 a^{\text {b }}$
1	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	PPh_{3}	1,2-DCE	traces
2	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	PPh_{3}	1,4- dioxane	traces
3	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	PPh_{3}	THF	62
4	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	PPh_{3}	toluene	68
5	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	JohnPhos	toluene	-
6	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	PCy_{3}	toluene	60
7	$\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$	Xantphos	toluene	32
8	$\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$	PPh_{3}	toluene	traces
9	$\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	-	toluene	traces
10	$\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$	-	toluene	$70(67)^{c}$

${ }^{a}$ The reactions were carried out using 0.14 mmol of 1 -bromo-2-((3-phenylprop-2-yn-1-yl)oxy)benzene (1a), 1.2 equiv of 3-methyl,-1,3-diphenylcyclobutan-1-ol (2a), and 1.2 equiv of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in 4 mL of dry solvent, under nitrogen atmosphere at $100^{\circ} \mathrm{C}$, in a Carius tube for $16 \mathrm{~h} .{ }^{b}$ NMR yields using trimethylbenzene-1,3,5-tricarboxylate as standard. ${ }^{c}$ Isolated yield.

Finally, the cross-coupling reactions of $\mathbf{2 b}$ and Me- or TMSsubstituted alkynyl substrates were tested. We observed that among such substrates, only the silylated alkyne was competent to deliver the desired product 3 m in 56% yield (Scheme 2). Possibly, the substrate leading to 3 n could experience a β - H elimination upon the carbopalladation step to render an allenyl moiety, as described in other Pd-catalyzed reactions dealing with alkyl-substituted alkynes. ${ }^{58,59}$

In order to assess the stereochemistry of the exocyclic double bond present in the dihydrobenzofuran cores, a NOESY NMR experiment was carried out for compound 3d. The NOE contacts between the methylene group $\mathrm{CH}_{2 \mathrm{c}}$ and the $o-\mathrm{H}$ atoms from the Ph ring, as well as the H_{a} of the heterocycle with the $\mathrm{CH}_{2 \mathrm{~b}}$ group of the aliphatic chain, pointed out the Z-stereochemistry for these compounds (Scheme 3).

As a general feature of compounds $3 \mathbf{a}-3 \mathrm{~m}$, we observed their relative sensitivity to chromatography purification in either silica gel or alumina. The decomposition of the compounds could be minored by using silica gel previously deactivated with $\mathrm{Et}_{3} \mathrm{~N}$, and $\mathrm{Et}_{3} \mathrm{~N} /$ hexane/ EtOAc mixtures as eluents. Solutions of these compounds in CDCl_{3} also evolved to more complex mixtures over time (see the Supporting Information). The instability of these compounds might be due to the migration of the exocyclic double bond to form benzofuran derivatives, a process that could be catalyzed by Lewis acids. ${ }^{60}$

We examined the influence of the length and nature of the chain linking the 2-haloryl and alkyne fragments. The alkenylated indoline derivative 30 was obtained in good yield from the corresponding amine precursor (Scheme 4). Nevertheless, no desired product $3 p$ was produced from the related ester starting material. Substrates with one extra carbon atom in the chain reacted smoothly under the optimized conditions to produce the six-membered heterocycles $3 \mathbf{q}$ and 3r. The ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture arising from N -(2-bromo-phenyl)- N -methyl-3-phenylpropiolamide showed

Scheme 2. Scope of the Carbopalladation/Alkylation Cascade for the Synthesis of Dihydrobenzofurane Derivatives

Scope of C3-unsubstituted cyclobutanols

Miscellaneous substitution

Scheme 3. Selected NOE Contacts Observed for Dihydrobenzofurane and Oxindole Derivatives

34
the formation of the corresponding coupling product 3 s as the main component, which could be isolated in 58% yield (Scheme 5). Similarly, the oxindole derivatives $3 t$ and $3 u$ could be isolated in moderate yields from the reactions of the corresponding propiolamides and the C3-unsubstituted cyclobutanol 2b. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{3 s}-\mathbf{u}$ showed an aromatic signal belonging to the oxindole core at a relatively low chemical shift ($5.8-6.0 \mathrm{ppm}$). This shielding on H_{a} (compound $3 \mathbf{u}$, Scheme 3) is provoked by the phenyl ring on the exocyclic olefine moiety, as observed in related structures reported in the literature. ${ }^{23,61,62}$ In addition, the NOESY NMR analysis of $3 \mathbf{u}$ also confirmed the E-stereo-

Scheme 4. Scope of the Carbopalladation/Alkylation Cascade Varying the Nature of the Linking Chain

Scheme 5. Use of Propiolamide Substrates

chemistry of the exocyclic double bond. The presence of minor Z-stereoisomers in the reaction mixtures leading to $3 \mathrm{~s}-\mathbf{u}$ cannot be discarded; however, we were unable to isolate such minor components of the crude mixtures and identify their nature unambiguously.

The plausible mechanistic pathway for this reaction is depicted in Scheme 6. The aryl-Pd species A would form upon oxidative addition of the $\mathrm{C}-\mathrm{Br}$ bond present in the starting material 1a to $\operatorname{Pd}(0)$ (Chart 1). Next, the intramolecular syn carbopalladation of the tethered alkyne would render the intermediate \mathbf{B}. At this stage, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ would assist the deprotonation of the cycloalkanol, along with the removal of the halogen ligand from the coordination sphere, allowing the formation of the alkoxide complex \mathbf{C}. The opening of the strained cycloalkanol through β-C cleavage would render the σ-alkyl-Pd(II) intermediate \mathbf{D}, from which reductive elimination could take place to deliver the substituted olefin 3a upon $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond formation.

The fact that propiolamide substrates afford the Ealkenylated oxindoles $3 \mathbf{s}-\mathbf{u}$ as main coupling products reveals that in those cases the alkenyl-Pd(II) intermediate, arising from the syn carbopalladation step, could undergo an isomerization process. There are several precedents in the literature of related Pd -catalyzed cascade reactions involving the syn carbopalladation of alkynes and subsequent isomerization prior to the final $\mathrm{C}-\mathrm{Pd}$ bond functionalization. ${ }^{14,22,25,63-67}$ Generally, the isomerization of the alkenylPd intermediates is driven by steric factors. Nevertheless, α -alkyl-substituted alkynyl substrates, such as 1a, require the use of bulky phosphine ligands (Q -Phos, X -Phos, or $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ among others) to increase the steric hindrance around the Pd center and therefore promote the isomerization. ${ }^{25,63,64}$ In the case of

Scheme 6. Proposed Reaction Mechanism

 For haloaryl ethers:

For propiolamide substrates:

Chart 1. Structure and Numbering of the Staring Materials 1

α-acyl-substituted alkynyl substrates, such as propiolamides $\mathbf{1 m} \mathbf{-}$, the isomerization is a frequent feature in a range of different conditions, probably due to the conjugation of the alkenyl-Pd moiety and the carbonyl group, which might lower the energy barrier for the $\mathrm{C}-\mathrm{C}$ rotation process (Scheme $6) .{ }^{28,62,68,69}$ Likely the coordination of the carbonyl moiety might facilitate such processes. Nevertheless, the opposite isomerization has been observed in related systems (that is, the
steric factors seemed to predominate over the possible coordination of the carbonyl group in intermediates such as E). ${ }^{68,69}$

We carried out the reaction of substrate $\mathbf{1 b}$ with a stoichiometric amount of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $50{ }^{\circ} \mathrm{C}$ for 18 h under N_{2} atmosphere (Scheme 7). From the reaction

Scheme 7. Synthesis of Intermediate B

mixture, the vinyl-Pd(II) complex 4 (analogous to the intermediate B) could be isolated in 84% yield. The complex 4 was subsequently heated in toluene at $100^{\circ} \mathrm{C}$ in the presence of cyclobutanol 2 a and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. The ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixture confirmed the formation of the functionalized dihydrobenzofuran 3a in 70% yield.

The crystal structure of complex 4 was solved by X-ray diffraction studies (Figure 1, Chart 2). The PPh_{3} ligands adopted a trans disposition. The palladium atom was in a slightly distorted square-planar environment, with a mean deviation of the $\operatorname{Pd}(\mathrm{II})$ coordination plane of $0.088 \AA$. The exocyclic double bond exhibited a E geometry, with the phenyl

Figure 1. Thermal ellipsoid plot (50% probability) of complex 4 along with the labeling scheme. The hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): $\operatorname{Pd}(1)-\mathrm{I}(1)=2.6995(4), \mathrm{Pd}(1)-\mathrm{P}(1)=2.3376(8), \operatorname{Pd}(1)-\mathrm{P}(2)=$ $2.3501(9), \operatorname{Pd}(1)-C(1)=2.051(4), C(1)-C(2)=1.339(5), C(1)-$ $\mathrm{C}(11)=1.505(5) ; \mathrm{I}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)=90.85(2), \mathrm{P}(1)-\mathrm{Pd}(1)-$ $C(1)=89.59(10), C(1)-P d(1)-P(2)=89.91(10), P(2)-P d(1)-$ $\mathrm{I}(1)=90.15(2), \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)=123.4(3), C(2)-C(1)-C(11)$ $=122.9(3), \mathrm{C}(11)-\mathrm{C}(1)-\mathrm{Pd}(1)=113.7(2)$.

Chart 2. Structure and Numbering of the Intermediate Complex 4

ring located cis to the methylene group of the dihydrobenzofuran ring. The heterocyclic nucleus formed angles of 38.1° and 77.1° with the phenyl substituent at the double bond and the $\operatorname{Pd}(\mathrm{II})$ coordination plane, respectively. This way, the phenyl ring was rotated 23.3° with respect to the exocyclic double bond plane.

■ CONCLUSION

In summary, we have expanded the versatility of Pd cascades relying on intramolecular carbopalladation processes through its merging with the opening of strained cycloalkanols. Thus, the carbopalladation of tethered alkynes followed by an alkylation process delivers interesting O - and N -heterocyclic cores bearing a fully substituted exocyclic double bond. In addition, we observed a different behavior of haloarylether and propiolamide substrates, being the last ones prone to afford the coupling products arising from isomerization of the alkenyl$\mathrm{Pd}(\mathrm{II})$ intermediate.

■ EXPERIMENTAL SECTION

General Remarks. Infrared spectra were recorded on a PerkinElmer spectrum 100 spectrophotometer. High-resolution ESI mass spectra were recorded on an Agilent 6220 Accurate Mass TOF LC-MS spectrometer. Melting points were determined using a Reichert apparatus and are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a 300, 400, or 600 MHz Bruker NMR spectrometers in CDCl_{3} at 298 K (unless stated otherwise). All chemical shift values are reported in parts per million (ppm) with coupling constant (J) values reported in Hz . All spectra were referenced to TMS for ${ }^{1} \mathrm{H}$ NMR and the CDCl_{3} solvent peak for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. The anhydrous solvents were purchased from commercial sources and used as received. TLC tests were run on TLC Alugram Sil G plates and visualized under UV light at 254 nm . Chromatography: Separations were carried out on silica gel. The general procedures and characterization for the substrates 1a-o are included in the Supporting Information.
Representative Procedure A for the Synthesis of the Carbopalladation/Alkylation Cascade Products 3. A Carius tube equipped with a magnetic stirrer was charged with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ ($16 \mathrm{mg}, 10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(51 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv), 3-methyl,-1,3-diphenylcyclobutan-1-ol ($40 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv), and the corresponding substrate (1 a) ($40 \mathrm{mg}, 0.14 \mathrm{mmol}$). The tube was set under a nitrogen atmosphere, and dry toluene (4 mL) was added. The tube was sealed, and the reaction mixture was stirred for 16 h at $100^{\circ} \mathrm{C}$. After cooling the tube, the crude was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and filtered through a plug of Celite. The filtrate was concentrated under a vacuum, and the crude mixture was purified by column chromatography to afford the desired cascade product (3a). Compounds $\mathbf{3 a - 0}$ are sensitive to purification in silica gel chromatography; therefore, the silica gel was previously deactivated with $\mathrm{Et}_{3} \mathrm{~N}$. In addition, n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ and EtOAc mixtures were used as eluents.
Compound (Z)-5-(Benzofuran-3(2H)-ylidene)-3-methyl-1,3,5-triphenylpentan-1-one (3a). Prepared according to the representative procedure A from 0.14 mmol of substrate 1 a and 0.17 mmol of 3-methyl-1,3-diphenylcyclobutan-1-ol (2a). The crude
was purified by column chromatography over silica gel using 0 to 15% gradient EtOAc in n-hexane to afford the heterocycle 3a as an orange oil ($42 \mathrm{mg}, 0.095 \mathrm{mmol}, 67 \%$). IR (cm^{-1}) $\bar{\nu} 1599$ (s), 1493 (s$), 1445$ (s), 1242 (s), 1113 (s), 1039 (s), 1024 (s), 755 (s), 691 (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2$ H), 7.48-7.39 (m, 2 H$), 7.37-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.07(\mathrm{~m}, 6 \mathrm{H})$, 6.92-6.76 (m, 2 H), 5.10-4.60 (m, 2 H), 3.44-3.39 (m, 3 H), 3.10 $(\mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $197.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 164.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 147.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, 135.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 132.5 (s, CH), 130.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 129.8 (s, CH), 128.7 (s , CH), 128.2 (s, CH), 128.0 (s, CH), 127.7 (s, CH), 127.6 (s, CH), 126.9 (s, CH), 125.7 ($\mathrm{s}, \mathrm{CH}), 125.6$ ($\mathrm{s}, \mathrm{CH}), 125.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 124.1$ (s, CH), 120.3 (s, CH), $110.5(\mathrm{~s}, \mathrm{CH}), 75.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 49.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $46.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 24.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$467.1981, found 467.1986.

Compound (Z)-3-Methyl-5-(5-methylbenzofuran-3(2H)-yli-dene)-1,3,5-triphenylpentan-1-one (3b). Prepared according to the representative procedure A from 0.14 mmol of substrate $\mathbf{1 d}$ and 0.17 mmol of 3 -methyl,-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle $\mathbf{3 b}$ as a yellow oil ($41 \mathrm{mg}, 0.09 \mathrm{mmol}, 64 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu}$ 1688.4 (s), 1596.8 (s), 1492.6 (s$), 1480.1$ (s$), 1445.4$ (s$), 1213.9$ (s$)$, 755.7 (s), 691.3 (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.52(\mathrm{~m}, 2$ H), $7.50-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H})$, 7.31-7.24 (m, 3H), 7.23-7.18 (m, 2H), 7.18-7.12 (m, 3H), 7.117.04 (m, 1 H), 6.99-6.93 (m, 1 H$), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (br s, 2 H), $3.61-3.26(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3$ H), 1.66 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $162.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 147.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 144.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, 132.7 (s, CH), 130.6 (s, C q), 130.5 (s, CH), 129.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 128.8 (s , CH), 128.4 (s, CH), 128.2 (s, CH), 127.9 (s, CH), 127.8 (s, CH), $127.0(\mathrm{~s}, \mathrm{CH}), 125.8(\mathrm{~s}, \mathrm{CH}), 125.7(\mathrm{~s}, \mathrm{CH}), 125.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 124.7(\mathrm{~s}$, CH), 110.1 (s, CH), $75.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 49.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 46.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.3$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 24.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 21.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 481.2138$, found 481.2130 .

Compound (Z)-5-(5-Methoxybenzofuran-3(2H)-ylidene)-3-methyl-1,3,5-triphenylpentan-1-one (3c). Prepared according to the representative procedure A from 0.14 mmol of substrate $\mathbf{1 c}$ and 0.17 mmol of 3 -methyl,-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using gradient from 0 to $20 \% \mathrm{EtOAc}$ in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 c as a light-yellow oil ($52 \mathrm{mg}, 0.11 \mathrm{mmol}$, 78%). IR (cm^{-1}) $\bar{\nu} 1681$ (s), 1598 (s), 1481 (s), 1202 (s), 1021 (s), $755(\mathrm{~s}), 691(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.46 (ddt, $J=7.8,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36-7.31 (m, 4 H), $7.31-7.26$ (m, 2 H), $7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2$ H), 7.12-7.02 (m, 1 H$), 6.83-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.78(\mathrm{~m}, 2 \mathrm{H})$, 3.77 (s, 3 H), 3.52-3.48 (m, 1 H), 3.39-3.34 (m, 2 H), 3.11 (d, J= $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 158.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 153.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 147.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.7$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{~s}, \mathrm{CH}), 130.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 128.6$ ($\left.\mathrm{s}, \mathrm{CH}\right)$, 128.2 (s, CH), 128.0 ($\mathrm{s}, \mathrm{CH}), 127.7$ ($\mathrm{s}, \mathrm{CH}), 127.6$ ($\mathrm{s}, \mathrm{CH}), 126.9$ (s , $\mathrm{CH}), 125.8$ (s, CH), 125.6 (s, CH), 125.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 116.4 (s, CH), $110.5(\mathrm{~s}, \mathrm{CH}), 109.1(\mathrm{~s}, \mathrm{CH}), 75.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 49.4(\mathrm{~s}$, CH_{2}), $46.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 24.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS (+ESI) m/z calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 497.2087$, found 497.2066.

Compound (Z)-3-Methyl-1,3,5-triphenyl-5-(5-(trifluoromethyl)benzofuran-3-(2H)-ylidene)pentan-1-one (3d). Prepared according to the representative procedure A from 0.14 mmol of substrate $\mathbf{1 f}$ and 0.17 mmol of 3 -methyl,-1,3-diphenylcyclo-butan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 5% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3d as a light-yellow oil (50 mg , $0.097 \mathrm{mmol}, 69 \%$). IR (cm^{-1}) $\bar{\nu} 1688$ (s), 1597 (s), 1442 (m), 1481 (m), 1333 (m), 1316 (s$), 1114$ (s$), 734$ (s$), 698$ (s$).{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{br} \mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H})$, $7.49-7.43$ (m, 2 H), 7.41 (ddd, $J=8.5,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.27$ (m, 5 H), 7.24-7.21 (m, 2 H), 7.19-7.14 (m, 3 H), 7.10-7.04 (m, 1 H), 6.85-6.82 (m, 1 H), 5.02-4.89 (m, 2 H), 3.47-3.26 (m, 3 H),
$3.08(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.45 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 166.5\left(\mathrm{q}, J_{\mathrm{CF}}=1.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 146.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $143.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 134.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{~s}$, CH), 128.8 (s, CH), 128.3 (s, CH), 128.2 ($\mathrm{s}, \mathrm{CH}), 127.7$ ($\mathrm{s}, \mathrm{CH})$, $127.4(\mathrm{~s}, \mathrm{CH}), 127.3(\mathrm{~s}, \mathrm{CH}), 127.2\left(\mathrm{q}, J_{C F}=3.3 \mathrm{~Hz}, \mathrm{CH}\right), 126.0(\mathrm{~s}$, $\mathrm{CH}), 125.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 125.5(\mathrm{~s}, \mathrm{CH}), 122.6\left(\mathrm{q}, J_{\mathrm{CF}}=32,1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 121.3$ $\left(\mathrm{q}, J_{\mathrm{CF}}=3.9 \mathrm{~Hz}, \mathrm{CH}\right), 110.4(\mathrm{~s}, \mathrm{CH}), 76.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 48.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $46.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 24.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. One quaternary carbon signal is overlapped. ${ }^{19} \mathrm{~F}$-NMR $\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-61.02$ (s). HRMS (+ESI) m / z calculated for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 535.1855, found 535.1850.

Compound (Z)-5-(5-Fluorobenzofuran-3(2H)-ylidene)-3-methyl-1,3,5-triphenylpentan-1-one (3e). Prepared according to the representative procedure A from 0.14 mmol of substrate $\mathbf{1 e}$ and 0.17 mmol of 3-methyl,-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 e as a yellow oil ($39 \mathrm{mg}, 0.084 \mathrm{mmol}, 60 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu}$ 1690 (s), 1597 (s), 1474 (s), 1323 (s), 1117 (s), 743 (s), 697 (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 1$ H), $7.33(\mathrm{dt}, J=8.4,0.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1$ H), $6.86(\mathrm{td}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~s}, 2 \mathrm{H}), 3.46-3.27(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 160.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $156.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=235.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 147.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.7(\mathrm{~s}$, C_{q}), $135.4\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{~s}, \mathrm{CH}), 132.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{~s}$, $\mathrm{CH}), 128.2(\mathrm{~s}, \mathrm{CH}), 128.1(\mathrm{~s}, \mathrm{CH}), 127.7(\mathrm{~s}, \mathrm{CH}), 127.5(\mathrm{~s}, \mathrm{CH})$, 127.1 (s, CH), 125.9 (s, CH), 125.6 (s, CH), 116.0 (d, J = 24.6 Hz , $\mathrm{CH}), 110.8(\mathrm{~d}, J=26.5 \mathrm{~Hz}, \mathrm{CH}), 110.4(\mathrm{~d}, J=8.7 \mathrm{~Hz}, \mathrm{CH}), 76.1(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 49.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 46.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 24.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. The signal of one C_{q} is overlapped. ${ }^{19} \mathrm{~F}$-NMR $\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -123.57 (s). HRMS (+ESI) m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{FNaO}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+} 485.1887$, found 485.1868 .

Compound (Z)-5-(Furo[3,2-b]pyridin-3(2H)-ylidene)-3-methyl-1,3,5-triphenylpentan-1-one (3f). Prepared according to the representative procedure A from 0.10 mmol of substrate $\mathbf{1 g}$ and 0.12 mmol of 3-methyl,-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 f as a light-yellow oil ($22 \mathrm{mg}, 0.05 \mathrm{mmol}, 49 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1690$ (s), 1597 (s), 1436 (s), 1253 (s), 798 (s), 699 (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=$ $8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.15-$ $7.07(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 4 \mathrm{H}), 5.18-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.10-3.99$ $(\mathrm{m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ $(\mathrm{d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $198.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 158.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 148.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 147.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $141.6(\mathrm{~s}, \mathrm{CH}), 138.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.3$ (s , $\mathrm{CH}), 128.5(\mathrm{~s}, \mathrm{CH}), 128.1(\mathrm{~s}, \mathrm{CH}), 127.8(\mathrm{~s}, \mathrm{CH}), 127.7(\mathrm{~s}, \mathrm{CH})$, $127.3(\mathrm{~s}, \mathrm{CH}) 127.2(\mathrm{~s}, \mathrm{CH}), 126.2(\mathrm{~s}, \mathrm{CH}), 125.4(\mathrm{~s}, \mathrm{CH}), 123.0(\mathrm{~s}$, $\mathrm{CH}), 116.4(\mathrm{~s}, \mathrm{CH}), 75.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 48.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 45.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.7$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 24.8\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS (+ESI) m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$468.1934, found 468.1927.
Compound (Z)-5-(Benzofuran-3(2H)-ylidene)-1,5-diphenyl-pentan-1-one (3g). Prepared according to the representative procedure A from 0.14 mmol of substrate 1 a and 0.17 mmol of 1 -phenylcyclobutan-1-ol (2b). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in nhexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 g as a yellow oil ($28 \mathrm{mg}, 0.08 \mathrm{mmol}, 56 \%$). IR (cm^{-1}) $\bar{\nu} 1678$ (s), 1595,1497 (s), 1231 (s), 1123 (s), 998 (s), 752 (s), 697 (s). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.35$ $(\mathrm{m}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1$ H), $6.93(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ 1.93 (m, 2 H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 164.1$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 142.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.0(\mathrm{~s}, \mathrm{CH})$, $132.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 129.5(\mathrm{~s}, \mathrm{CH}), 128.8(\mathrm{~s}, \mathrm{CH}), 128.5(\mathrm{~s}, \mathrm{CH}), 128.0(\mathrm{~s}$,
$\mathrm{CH}), 127.4(\mathrm{~s}, \mathrm{CH}), 127.2(\mathrm{~s}, \mathrm{CH}), 125.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 124.1(\mathrm{~s}, \mathrm{CH})$, 120.7 (s, CH), $110.4(\mathrm{~s}, \mathrm{CH}), 75.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 33.6$ (s , $\left.\mathrm{CH}_{2}\right), 17.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$. HRMS (+ESI) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 377.1512$, found 377.1494.

Compound (Z)-5-(Benzofuran-3(2H)-ylidene)-1-(4-fluoro-phenyl)-5-phenylpentan-1-one (3h). Prepared according to the representative procedure A from 0.12 mmol of substrate $\mathbf{1 b}$ and 0.14 mmol of 1-(4-fluorophenyl)cyclobutan-1-ol (2d). The crude was purified by column chromatography over silica gel using 0 to 5% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 h as a light-yellow oil ($32 \mathrm{mg}, 0.086 \mathrm{mmol}, 72 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 3060(\mathrm{~m}), 2933(\mathrm{~m}), 1682$ (s$), 1599(\mathrm{~s}), 1454$ (m), 1408 (m), 1228 (s), 1156 (m), 1098 (w), 832 (w), 747 (s), 700 (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.15$ $(\mathrm{m}, 3 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (dt, $J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ ($\mathrm{tt}, J=7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.22-1.89 (m, 2 H). ${ }^{13} \mathrm{C} \operatorname{NMR}(75.45 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 198.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 165.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=254.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 164.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $142.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=3.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $131.6\left(\mathrm{~d}, J_{\mathrm{CF}}=9.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.6(\mathrm{~s}, \mathrm{CH}), 128.8(\mathrm{~s}, \mathrm{CH}), 127.4(\mathrm{~s}$, $\mathrm{CH}), 127.3(\mathrm{~s}, \mathrm{CH}), 125.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 124.0(\mathrm{~s}, \mathrm{CH}), 120.7(\mathrm{~s}, \mathrm{CH})$, $116.6\left(\mathrm{~d}, J_{\mathrm{CF}}=21.8 \mathrm{~Hz}, \mathrm{CH}\right), 110.4(\mathrm{~s}, \mathrm{CH}), 75.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 37.9(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 33.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 22.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}$-NMR $\left(282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -104.7 (s). HRMS (+ESI) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{FNaO}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$395.1418, found 395.1406.

Compound (Z)-5-(Benzofuran-3(2H)-ylidene)-5-phenyl-1-(p-tolyl)pentan-1-one (3i). Prepared according to the representative procedure A from 0.12 mmol of substrate $\mathbf{1 b}$ and 0.14 mmol of $1-(p-$ tolyl)cyclobutan-1-ol (2e). The crude was purified by column chromatography over alumina using 0 to 5% gradient EtOAc in n hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 i as a lightyellow oil ($34 \mathrm{mg}, 0.09 \mathrm{mmol}, 76 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 2924(\mathrm{~m}), 1683(\mathrm{~s})$, 1603 (s), 1464 (s), 1362 (m), 1226 (s), 1181 (m), 985 (m), 807 (s), 746 (s). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.69-$ $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.38$ (ddd, $J=7.7,6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.13(\mathrm{~m}, 6$ H), 6.99-6.89 (m, 1 H), 6.87-6.76 (m, 1 H), 4.91 (br s, 2 H$), 3.01$ (td, $J=7.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $1.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 164.2$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 152.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.4$ ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), $132.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 129.5(\mathrm{~s}, \mathrm{CH}), 129.2$ ($\left.\mathrm{s}, \mathrm{CH}\right), 128.8$ ($\left.\mathrm{s}, \mathrm{CH}\right)$, 128.1 (s, CH), 127.4 (s, CH), 127.2 ($\mathrm{s}, \mathrm{CH}), 124.1$ ($\mathrm{s}, \mathrm{CH}), 120.7$ (s , $\mathrm{CH}), 110.4(\mathrm{~s}, \mathrm{CH}), 75.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 33.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 21.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS (+ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 391.1669$, found 391.1656.

Compound (Z)-5-(Furo[3,2-b]pyridine-3(2H)-ylidene)-1,5-di-phenylpentan-1-one (3j). Prepared according to the representative procedure A from 0.14 mmol of substrate 1 g and 0.17 mmol of 1 -phenylcyclobutan-1-ol (2b). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 j as a yellow oil ($23 \mathrm{mg}, 0.065 \mathrm{mmol}, 46 \%$). IR (cm^{-1}) $\bar{\nu} 1678$ (s$), 1594$ (s), 1427 (s), 1258 (m), 1125 (m), 897 (s), 764 (s), 699 (s). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2$ H), 7.44 (ddt, $J=8.7,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{tt}$, $J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.97$ (s, 2 H), 3.60-3.19 (m, 2 H), 3.13-2.80 (m, 2 H), 2.16-1.59 (m, 2 $\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 158.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $148.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 141.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{~s}, \mathrm{CH}), 138.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.1$ (s, C_{q}), 133.1 ($\left.\mathrm{s}, \mathrm{CH}\right), 129.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 128.8(\mathrm{~s}, \mathrm{CH}), 128.4(\mathrm{~s}, \mathrm{CH})$, 128.1 (s, CH), 127.5 (s, CH), 127.1 (s, CH), 122.7(s, CH), 116.22 (s, CH), $74.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 31.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$. HRMS (+ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 356.1645$, found 356.1654 .

Compound (Z)-7-(Benzofuran-3(2H)-ylidene)-2-methyl-7-phenylheptan-3-one (3I). Prepared according to the representative procedure A from 0.12 mmol of substrate $\mathbf{1 b}$ and 0.14 mmol of 1 -isopropyl-clobutan-1-ol (2f). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 31 as a light-
yellow oil ($17 \mathrm{mg}, 0.053 \mathrm{mmol}, 44 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1708$ (s), 1606 (s$)$, 1586 (s), 1465 (s), 1223 (m), 1128 (m), 1087 (m), 755 (s$), 697$ (s$).$ ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2$ H), $7.31-7.27$ (m, 1 H), $7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{td}, J=7.6,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84$ (ddd, $J=8.0,1.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (s, 2 H), $2.79-$ $2.74(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 164.2(\mathrm{~s}$, C_{q}), 143.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), $133.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 129.6(\mathrm{~s}, \mathrm{CH}), 128.8$ (s, CH), 127.4 (s, CH), 127.2 ($\mathrm{s}, \mathrm{CH}), 125.5$ (s, C_{q}), 124.1 (s, CH), 120.7 (s, CH), 110.4 (s, CH), 75.1 ($\mathrm{s}, \mathrm{CH}_{2}$), 40.8 (s, CH), 39.6 (s , $\left.\mathrm{CH}_{2}\right), 33.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 21.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 18.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS $(+\mathrm{ESI}) \mathrm{m} /$ z calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 343.1668$, found 343.1659 .

Compound (Z)-5-(Benzofuran-3(2H)-ylidene)-1-phenyl-5-(trimethylsilyl)pentan-1-one (3m). Prepared according to the representative procedure A from 0.14 mmol of substrate 1 h and 0.17 mmol of 1-phenylcyclobutan-1-ol (2b). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 m as a light-yellow oil ($28 \mathrm{mg}, 0.08 \mathrm{mmol}, 57 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1685(\mathrm{~s})$, 1648 (s), 1498 (s), 1379 (s), 1253 (m), 1124 (m), 876 (s), 787 (s), $695(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.64$ $(\mathrm{m}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{ddd}, J=11.5$, $4.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.75-1.67(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 144.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $136.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.0(\mathrm{~s}, \mathrm{CH}), 131.1$ (s, C q), 129.9 (s, CH), 128.6 (s, CH), 128.1 (s, CH), 126.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 125.3 (s, CH), 120.6 (s, CH), 110.6 (s, CH), $75.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 38.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 31.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.40(\mathrm{~s}$, CH_{2}), $0.74\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS (+ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.1780$, found 351.1769 .
Compound (Z)-3-Methyl-1,3,5-triphenyl-5-(1-tosylindolin3 -ylidene)pentan-1-one (30). Prepared according to the representative procedure A from 0.14 mmol of substrate $\mathbf{1} \mathbf{j}$ and 0.17 mmol of 1,3 -diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 30% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 o as a yellow oil ($60 \mathrm{mg}, 0.10 \mathrm{mmol}, 71 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1693$ (s), 1593 (s), 1489 (s), 1365 (s), 1136 (s), 905 (s), 763 (s), 698 (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 4 \mathrm{H})$, 7.51-7.48 (m, 1 H), 7.48-7.41 (m, 3 H), 7.35-7.27 (m, 3 H), 7.257.17 (m, 4 H), 7.17-7.12 (m, 2 H), 7.11-7.05 (m, 1 H), 7.05-6.99 (m, 2 H$), 4.37-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.17(\mathrm{~m}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 147.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 145.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 144.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.6(\mathrm{~s}$, $\left.\mathrm{C}_{\mathrm{q}}\right), 137.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{~s}, \mathrm{CH}), 129.6$ (s, CH), 129.1 (s, CH), 128.8 (s, CH), 128.2 ($\mathrm{s}, \mathrm{CH}), 128.0$ ($\mathrm{s}, \mathrm{CH})$, 127.64 (s, CH), 127.60 (s, CH), 127.19 (s, CH), 127.15 (s, CH), 125.7 (s, CH), 125.5 (s, CH), 124.3 (s, CH), 123.6 ($\mathrm{s}, \mathrm{CH}), 115.6$ (s , CH), $55.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 49.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 45.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 41.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 24.0$ $\left(\mathrm{s}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Some C_{q} signals are overlapped. HRMS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$620.2230, found 620.2202.
Compound (Z)-5-(Isochroman-4-ylidene)-3-methyl-1,3,5-triphenylpentan-1-one (3q). Prepared according to the representative procedure A from 0.12 mmol of substrate 1 k and 0.14 mmol of 3 -methyl,-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 10% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle $3 \mathbf{q}$ as a white solid $(40 \mathrm{mg}, 0.087 \mathrm{mmol}, 73 \%)$. $\mathrm{mp} 130^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu}$ 1690 (s), 1589 (s), 1494 (s), 1436 (s), 1224 (s), 1112 (s), 1024 (s), 757 (s), $692(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.42 (m, 1 H), 7.34-7.27 (m, 4 H), 7.25-7.20 (m, 2 H), 7.197.10 (m, 8 H), 7.08-7.06 (m, 2 H), 4.57 ($\mathrm{s}, 2 \mathrm{H}$), 4.14-4.05 (m, 2 H), 3.47-3.37 (m, 2 H), $3.23(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9$ (s, $\left.\mathrm{C}_{\mathrm{q}}\right), 147.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 142.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.1(\mathrm{~s}$, C_{q}), $134.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.5(\mathrm{~s}, \mathrm{CH}), 131.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 129.1(\mathrm{~s}, \mathrm{CH}), 128.3$ (s , CH), 128.1 (s, CH), 127.9 (s, CH), 127.7 ($\mathrm{s}, \mathrm{CH}), 127.6$ ($\mathrm{s}, \mathrm{CH})$, 127.0 (s, CH), 126.9 (s, CH), 126.2 ($\mathrm{s}, \mathrm{CH}), 125.9$ ($\mathrm{s}, \mathrm{CH}), 125.6$ (s , $\mathrm{CH}), 124.6(\mathrm{~s}, \mathrm{CH}), 67.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 67.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 49.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 46.4$
$\left(\mathrm{s}, \mathrm{CH}_{2}\right), 41.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 25.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 481.2138$, found 481.2146 .

Compound (Z)-3-Methyl-1,3,5-triphenyl-5-(2-tosyl-2,3-di-hydroisoquinolin-4(1H)-ylidene)pentan-1-one (3r). Prepared according to the representative procedure A from 0.14 mmol of substrate 11 and 0.17 mmol of 3-methyl-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 15% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 r as a yellow oil ($60 \mathrm{mg}, 0.10 \mathrm{mmol}, 70 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1688$ (s$), 1597$ (s), 1462 (s), 1158 (s$), 905$ (s$), 726$ (s$), 699$ (s). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 5 \mathrm{H})$, $7.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H})$, 6.91-6.85 (m, 2H), $4.08(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.28$ (m, 2 H), $3.09(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9(\mathrm{~s}$, C_{q}), $146.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 143.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 141.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 139.02\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.8$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 135.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{~s}, \mathrm{CH})$, 129.9 (s, C q), 129.4 (s, CH), 128.9 (s, CH), 128.4 (s, CH), 128.2 (s , CH), 127.8 (s, CH), 127.74 (s, CH), 127.70 (s, CH), 127.3 (s, CH), 127.2 (s, CH), 127.1 ($\mathrm{s}, \mathrm{CH}), 126.8$ ($\mathrm{s}, \mathrm{CH}), 126.3$ ($\mathrm{s}, \mathrm{CH}), 125.8$ (s , $\mathrm{CH}), 125.6(\mathrm{~s}, \mathrm{CH}), 49.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 47.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 45.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 41.8$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 29.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 25.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. HRMS $(+\mathrm{ESI})$ m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 612.2567$, found 612.2568 .

Compound (E)-1-Methyl-3-(3-methyl-5-oxo-1,3,5-triphenylpentylidene)indolin-2-one (3s). Prepared according to the representative procedure A from 0.14 mmol of substrate $\mathbf{1 m}$ and 0.17 mmol of 3-methyl-1,3-diphenylcyclobutan-1-ol (2a). The crude was purified by column chromatography over silica gel using 0 to 35% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle 3 s as a yellow oil ($38 \mathrm{mg}, 0.081 \mathrm{mmol}, 58 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu}$ 1694 (s), 1616 (s), 1595 (s), 1490 (s), 1122 (s), 904 (s), 787 (s), 693 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.45$ (ddt, J $=8.7,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{ddt}, J=7.7,6.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75$ (ddd, $J=7.8,1.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=7.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 168.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 157.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 147.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 142.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 141.5$ ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), $138.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.4(\mathrm{~s}, \mathrm{CH}), 128.8(\mathrm{~s}, \mathrm{CH}), 128.44(\mathrm{~s}, \mathrm{CH})$, 128.37 (s, CH), 128.2 (s, CH), 127.9 (s, CH), 127.8 (s, CH), 127.6 (s, CH), 126.2 (s, CH), 125.6 ($\mathrm{s}, \mathrm{CH}), 123.1$ ($\mathrm{s}, \mathrm{CH}), 122.8$ ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 121.4 (s, CH), 107.4 (s, CH), 49.3 ($\mathrm{s}, \mathrm{CH}_{2}$), $46.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 42.5$ (s , $\left.\mathrm{C}_{\mathrm{q}}\right)$, $25.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 24.8\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. Some signals are overlapped. HRMS (+ESI) m / z calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$472.2271, found 472.2276 .

Compound (E)-1,5-Dimethyl-3-(5-oxo-1,5-diphenylpentylidene)indolin-2-one (3t). Prepared according to the representative procedure A from 0.14 mmol of substrate 1 n and 1 -phenylcyclobutan-1-ol (2b). The crude was purified by column chromatography over silica gel using 0 to 20% gradient EtOAc in n hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the 3 -alkylideneoxindole 3 t as a yellow oil ($25 \mathrm{mg}, 0.063 \mathrm{mmol}, 45 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1683(\mathrm{~s}), 1646(\mathrm{~s})$, 1617 (s), 1593 (s), 1489 (s), 1368 (m), 1325 (m), 1098 (m), 767 (s), $698(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.56-$ $7.40(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.94$ (ddd, $J=7.9,1.7,0.8 \mathrm{~Hz}, 1$ H), $6.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.83(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 2$ H), 3.23 (s, 3 H), $3.14-3.09$ (m, 2 H), 2.01-1.91 (m, 5 H). Some signals are overlapped. ${ }^{13} \mathrm{C}$ NMR ($75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0$ (s, C_{q}), $167.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 157.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 141.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.0(\mathrm{~s}$, C_{q}), $132.8(\mathrm{~s}, \mathrm{CH}), 130.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 129.1(\mathrm{~s}, \mathrm{CH}), 128.53(\mathrm{~s}, \mathrm{CH})$, 128.45 (s, CH), 128.4 (s, CH), 128.03 (s, CH), 126.9 (s, CH), 124.0 $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 123.9(\mathrm{~s}, \mathrm{CH}), 122.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 107.1(\mathrm{~s}, \mathrm{CH}), 38.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $34.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 21.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right) . \mathrm{HRMS}$ $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 396.1958$, found 396.1964.

Compound (E)-5-Chloro-1-methyl-3-(5-oxo-1,5-diphenylpentylidene)indolin-2-one (3u). Prepared according to the representative procedure A from 0.14 mmol of substrate 10 and
0.17 mmol of 1-phenylcyclobutan-1-ol (2b). The crude was purified by column chromatography over silica gel using 0 to 25% gradient EtOAc in n-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the heterocycle $3 \mathbf{u}$ as a yellow oil ($25 \mathrm{mg}, 0.06 \mathrm{mmol}, 43 \%$). IR $\left(\mathrm{cm}^{-1}\right) \bar{\nu} 1685(\mathrm{~s}), 1602$ (s), 1498 (s), 1338 (m), 1098 (m), 778 (s), 697 (s). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2$ H), $7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.96(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8(\mathrm{~s}$, C_{q}), $167.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 160.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 140$. Eight ($\left.\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 140.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, 136.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 132.9 (s, CH), 129.3 (s, CH), 128.9 (s, CH), 128.5 (s , CH), 128.0 (s, CH), 127.9 (s , CH), 126.74 ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), 126.70 (s, CH), $123.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 123.24(\mathrm{~s}, \mathrm{CH}), 108.2(\mathrm{~s}, \mathrm{CH}), 38.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 34.3$ (s, $\left.\mathrm{CH}_{3}\right), 25.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 22.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$. Some signals are overlapped. HRMS (+ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$416.1412, found 416.1421.

Synthesis of Complex 4. A Carius tube was charged with the substrate 1b ($100 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](350 \mathrm{mg}, 0.30$ mmol), and a magnetic stirrer. The tube was set under a nitrogen atmosphere, and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added (7 mL). The tube was sealed, and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 18 h . After the tube was cooled, the solution was filtered through a Celite plug. The filtrate was concentrated to ca. 2 mL , and n-pentane (15 mL) was added. The suspension was filtered, and the solid was washed with n-pentane ($2 \times$ 3 mL) and air-dried to give crude 4 as a bright yellow solid. Yield: 243 $\mathrm{mg}, 0.25 \mathrm{mmol}, 84 \%$. Crude complex 4 was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to give analytically pure $4 . \mathrm{mp} 204{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR $\left(400.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 7.52-7.42 (m, $\left.12 \mathrm{H}, o-\mathrm{H}, \mathrm{PPh}_{3}\right), 7.37-7.30\left(\mathrm{~m}, 6 \mathrm{H}, p-\mathrm{H}, \mathrm{PPh}_{3}\right)$, $7.25-7.18\left(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{H}, \mathrm{PPh}_{3}\right), 7.03\left(\mathrm{td},{ }^{3} \mathrm{HH}_{\mathrm{HH}}=7.8,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 4, \mathrm{C}_{6} \mathrm{H}_{4}$), 6.98 ("t", ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{H}, \mathrm{Ph}$), 6.87 (td, $\left.{ }^{3} J_{\mathrm{HH}}=7.4,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.84\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $m-\mathrm{H}, \mathrm{Ph}), 6.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{H}, \mathrm{Ph}\right), 6.45\left(" \mathrm{~d} ",{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 3, \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.35\left(" \mathrm{t}\right.$ ", $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3(\mathrm{~s}, \mathrm{C} 2), 155.5\left(\mathrm{t}, J_{\mathrm{PH}}=2.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $143.9\left(\mathrm{t}, J_{\mathrm{PH}}=2.9 \mathrm{~Hz}, i-\mathrm{C}, \mathrm{Ph}\right), 135.2\left(\mathrm{t}, J_{\mathrm{PH}}=5.9 \mathrm{~Hz}, o-\mathrm{CH}, \mathrm{PPh}_{3}\right)$, $134.4\left(\mathrm{t}, J_{\mathrm{PH}}=5.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 131.9\left(\mathrm{t}, J_{\mathrm{PH}}=22.9 \mathrm{~Hz}, i-\mathrm{C}, \mathrm{PPh}_{3}\right), 130.2$ ($\mathrm{s}, \mathrm{C} 1$), 130.0 ($\mathrm{s}, \mathrm{p}-\mathrm{CH}, \mathrm{PPh}_{3}$), 129.0 ($\mathrm{s}, o-\mathrm{CH}, \mathrm{Ph}$), 128.7 ($\mathrm{s}, \mathrm{CH} 4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 127.4\left(\mathrm{t}, J_{\mathrm{PH}}=5.0 \mathrm{~Hz}, m-\mathrm{CH}, \mathrm{PPh}_{3}\right), 126.9(\mathrm{~s}, m-\mathrm{CH}, \mathrm{Ph})$, 125.6 ($\mathrm{s}, \mathrm{p}-\mathrm{CH}, \mathrm{Ph}$), 121.9 ($\mathrm{s}, \mathrm{CH} 6, \mathrm{C}_{6} \mathrm{H}_{4}$), 119.4 ($\mathrm{s}, \mathrm{CH} 5, \mathrm{C}_{6} \mathrm{H}_{4}$), 109.1 (s, CH3), 77.1 (s, CH2). IR (Nujol, cm^{-1}) $\bar{\nu} 1590$ (w), 1231 (m), 1093 (m), 742 (s), 691 (s), 520 (s), 509 (s), 494 (m). Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{41} \mathrm{IOP}_{2} \mathrm{Pd}$: C, 63.47; H, 4.28. Found: C, $63.55 ; \mathrm{H}, 4.33$.
Single-Crystal X-ray Structure Determination. Single crystals of complex 4, suitable for an X-ray diffraction study, were obtained by slow diffusion of n-pentane into a solution of 4 in CHCl_{3}.
Data Collection. A crystal suitable for X-ray diffraction was mounted in inert oil on a glass fiber and transferred to a Bruker diffractometer. Data were recorded at $100(2) \mathrm{K}$, using graphitemonochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ and omega and phi scan mode. Multiscan absorption correction was applied.
Structure Solution and Refinements. The crystal structure was solved by dual method, and all non-hydrogen atoms were refined anisotropically on F^{2} using the program SHELXL-2018/3. ${ }^{70}$ Hydrogen atoms were refined using the riding model.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.2c00015.

Experimental procedures and compound characterization for staring materials 1 and NMR spectra of the new compounds (PDF)

Accession Codes

CCDC 2132049 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

- AUTHOR INFORMATION

Corresponding Author

José-Antonio García-López - Grupo de Química
Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain; © orcid.org/0000-0002-8143-7081; Email: joangalo@um.es

Authors

Marta Pérez-Gómez - Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
Piedad Herrera-Ramírez - Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
Delia Bautista - ACTI, Universidad de Murcia, E-30100 Murcia, Spain
Isabel Saura-Llamas - Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain; © orcid.org/0000-0001-8335-6747
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.organomet.2c00015

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Ministerio de Ciencia, Innovación y Universidades (Spain), FEDER "Una manera de hacer Europa" (Project PGC2018-100719-BI00), and Fundación Séneca Región de Murcia (19890/GERM/15) for financial support. J.-A. GarcíaLópez is thankful to MCIN for a Ramón y Cajal Fellowship RYC-2016-20137. M. Pérez-Gómez acknowledges CARMFundación Séneca for a postdoctoral fellowship cofinanced in 92\% by the European Social Fund and "Iniciativa de Empleo Juvenil". P. Herrera-Ramírez acknowledges the University of Murcia for a research initiation grant.

REFERENCES

(1) Negishi, E. I.; Copéret, C.; Ma, S.; Liou, S. Y.; Liu, F. Cyclic Carbopalladation. A Versatile Synthetic Methodology for the Construction of Cyclic Organic Compounds. Chem. Rev. 1996, 96 (1), 365-393.
(2) Gevorgyan, V.; Yamamoto, Y. Carbopalladation of Alkynes Followed by Trapping with Electrophiles. In Handbook of Organopalladium Chemistry for Organic Chemistry; John Wiley \& Sons, Ltd., 2002; Vol. 3, pp 1361-1367.
(3) Cacchi, S.; Fabrizi, G. Carbopalladation of Alkynes Followed by Trapping with Nucleophilic Reagents; John Wiley \& Sons, Ltd., 2002.
(4) Chinchilla, R.; Nájera, C. Chemicals from Alkynes with Palladium Catalysts. Chem. Rev. 2014, 114 (3), 1783-1826.
(5) Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Alkenylation of Arenes and Heteroarenes with Alkynes. Chem. Rev. 2016, 116 (10), 5894-5986.
(6) Düfert, A.; Werz, D. B. Carbopalladation Cascades Using Carbon-Carbon Triple Bonds: Recent Advances to Access Complex Scaffolds. Chem. - A Eur. J. 2016, 22 (47), 16718-16732.
(7) Gabriele, B.; Mancuso, R.; Veltri, L.; Ziccarelli, I.; Della Ca', N. Palladium-Catalyzed Double Cyclization Processes Leading to Polycyclic Heterocycles: Recent Advances. Eur. J. Org. Chem. 2019, 2019 (31-32), 5073-5092.
(8) Schitter, T.; Reding, A.; Werz, D. B. Cascades Involving Anti -Carbopalladation Steps: From Our Initial Hypothesis to Natural Product Synthesis. Synlett 2019, 30 (11), 1275-1288.
(9) Zhang, F.; Xin, L.; Yu, Y.; Liao, S.; Huang, X. Recent Advances in Palladium-Catalyzed Bridging C-H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents. Synth. 2021, 53 (2), 238-254.
(10) Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Marinelli, F. Palladium-Catalyzed Cascade Reactions of 1-(3-Arylprop-2-Ynyloxy)-2-Bromo Benzene Derivatives with Organoboron Compounds. J. Org. Chem. 2013, 78 (9), 4490-4498.
(11) Lv, W.; Liu, S.; Chen, Y.; Wen, S.; Lan, Y.; Cheng, G. Palladium-Catalyzed Intermolecular Trans-Selective Carbofunctionalization of Internal Alkynes to Highly Functionalized Alkenes. ACS Catal. 2020, 10 (18), 10516-10522.
(12) Castanheiro, T.; Donnard, M.; Gulea, M.; Suffert, J. Cyclocarbopalladation/Cross-Coupling Cascade Reactions in Sulfide Series: Access to Sulfur Heterocycles. Org. Lett. 2014, 16 (11), 30603063.
(13) Negishi, E. i.; Noda, Y.; Lamaty, F.; Vawter, E. J. Effects of Organometals on the Palladium-Catalyzed Tandem CarbopalladationCross Coupling for Preparing Stereodefined Exocyclic Alkenes. Tetrahedron Lett. 1990, 31 (31), 4393-4396.
(14) Milde, B.; Reding, A.; Geffers, F. J.; Jones, P. G.; Werz, D. B. Intramolecular Trans-Dicarbofunctionalization of Alkynes by a Formal Anti-Carbopalladation/Stille Cascade. Chem. - A Eur. J. 2016, 22 (41), 14544-14547.
(15) Suffert, J.; Salem, B.; Klotz, P. Cascade Cyclization: Carbopalladative Cyclization Followed by Electrocyclic Closure as a Route to Complex Polycycles [12]. J. Am. Chem. Soc. 2001, 123 (48), 12107-12108.
(16) Salem, B.; Delort, E.; Klotz, P.; Suffert, J. Cyclocarbopalladation: 5-Exo-Dig Cyclization versus Direct Stille Cross-Coupling Reaction. The Influence of the α, β-Propargylic Substitution. Org. Lett. 2003, 5 (13), 2307-2310.
(17) Salem, B.; Suffert, J. A 4-Exo-Dig Cyclocarbopalladation/ 8π Electrocyclization Cascade: Expeditious Access to the Tricyclic Core Structures of the Ophiobolins and Aleurodiscal. Angew. Chemie - Int. Ed. 2004, 43 (21), 2826-2830.
(18) Bour, C.; Suffert, J. Cyclocarbopalladation: Sequential Cyclization and C-H Activation/Stille Cross-Coupling in the Pd-5-Exo-Dig Reaction. Org. Lett. 2005, 7 (4), 653-656.
(19) Zhang, D.; Liu, Z.; Yum, E. K.; Larock, R. C. Synthesis of Indenes by the Transition Metal-Mediated Carboannulation of Alkynes. J. Org. Chem. 2007, 72 (1), 251-262.
(20) Larock, R. C.; Yum, E. K.; Refvik, M. D. Synthesis of 2,3Disubstituted Indoles via Palladium-Catalyzed Annulation of Internal Alkynes. J. Org. Chem. 1998, 63 (22), 7652-7662.
(21) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. Synthesis of Aromatic Heterocycles via Palladium-Catalyzed Annulation of Internal Alkynes. J. Org. Chem. 1995, 60, 3270-3271.
(22) Schitter, T.; Jones, P. G.; Werz, D. B. Intramolecular PdCatalyzed Formal Anti-Carboalkoxylation of Alkynes: Access to Tetrasubstituted Enol Ethers. Chem. - A Eur. J. 2018, 24 (51), 1344613449.
(23) Yanada, R.; Obika, S.; Oyama, M.; Takemoto, Y. Stereoselective Synthesis of 3-Alkylideneoxindoles Using Tandem InMediated Carbometalation and Pd-Catalyzed Cross-Coupling Reaction. Org. Lett. 2004, 6 (16), 2825-2828.
(24) Suarez, L. L.; Greaney, M. F. Tandem Indole C-H Alkenylation/Arylation for Tetra-Substituted Alkene Synthesis. Chem. Сommun. 2011, 47 (28), 7992-7994.
(25) Le, C. M.; Menzies, P. J. C.; Petrone, D. A.; Lautens, M. Synergistic Steric Effects in the Development of a Palladium-

Catalyzed Alkyne Carbohalogenation: Stereodivergent Synthesis of Vinyl Halides. Angew. Chemie - Int. Ed. 2015, 54 (1), 254-257.
(26) Fan, L.; Hao, J.; Yu, J.; Ma, X.; Liu, J.; Luan, X. Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. J. Am. Chem. Soc. 2020, 142 (14), 6698-6707.
(27) Cheng, C.; Zuo, X.; Tu, D.; Wan, B.; Zhang, Y. Synthesis of 3,4-Fused Tricyclic Indoles through Cascade Carbopalladation and CH Amination: Development and Total Synthesis of Rucaparib. Org. Lett. 2020, 22 (13), 4985-4989.
(28) Cheng, C.; Zhang, Y. Palladium-Catalyzed Anti -Carbosilylation of Alkynes to Access Isoquinolinone-Containing Exocyclic Vinylsilanes. Org. Lett. 2021, 23 (15), 5772-5776.
(29) Le Bras, J.; Muzart, J. Pd-Catalyzed Reactions of Cyclopropanols, Cyclobutanols and Cyclobutenols. Tetrahedron 2020, 76 (12), 130879.
(30) Fumagalli, G.; Stanton, S.; Bower, J. F. Recent Methodologies That Exploit C-C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. Chem. Rev. 2017, 117 (13), 9404-9432. (31) Nishimura, T.; Ohe, K.; Uemura, S. Palladium (II) -Catalyzed Oxidative Ring Cleavage of Tert -Cyclobutanols under Oxygen Atmosphere. J. Am. Chem. Soc. 1999, 121, 2645-2646.
(32) Nishimura, T.; Ohe, K.; Uemura, S. Oxidative Transformation of Tert-Cyclobutanols by Palladium Catalysis under Oxygen Atmosphere. J. Org. Chem. 2001, 66 (4), 1455-1465.
(33) Larock, R. C.; Reddy, C. K. Synthesis of 2-Alkylidenecyclopentanones via Palladium-Catalyzed Cross-Coupling of 1-(1Alkynyl)Cyclobutanols and Aryl or Vinylic Halides. Org. Lett. 2000, 2 (21), 3325-3327.
(34) Ethirajan, M.; Oh, H. S.; Cha, J. K. Formation of FiveMembered Carbocycles by Intramolecular Palladium-Catalyzed Ring Opening of Tert-Cyclobutanols. Org. Lett. 2007, 9 (14), 2693-2696. (35) Ydhyam, S.; Cha, J. K. Construction of Seven-Membered Carbocycles via Cyclopropanols. Org. Lett. 2015, 17 (23), 58205823.
(36) Davis, D. C.; Walker, K. L.; Hu, C.; Zare, R. N.; Waymouth, R. M.; Dai, M. Catalytic Carbonylative Spirolactonization of Hydroxycyclopropanols. J. Am. Chem. Soc. 2016, 138 (33), 10693-10699.
(37) Wang, Q.; Chen, R.; Lou, J.; Zhang, D. H.; Zhou, Y. G.; Yu, Z. Highly Regioselective C-H Alkylation of Alkenes through an Aryl to Vinyl 1,4-Palladium Migration/C-C Cleavage Cascade. ACS Catal. 2019, 9 (12), 11669-11675.
(38) Nishimura, T.; Uemura, S. Palladium-Catalyzed Arylation of Tert-Cyclobutanols with Aryl Bromide via C-C Bond Cleavage: New Approach for the γ-Arylated Ketones. J. Am. Chem. Soc. 1999, 121 (47), 11010-11011.
(39) Nishimura, T.; Matsumura, S.; Maeda, Y.; Uemura, S. Palladium-Catalysed Asymmetric Arylation of Tert-Cyclobutanols via Enantioselective C-C Bond Cleavage. Chem. Commun. 2002, 1, 50-51.
(40) Rosa, D.; Orellana, A. Palladium-Catalyzed Cross-Coupling of Cyclopropanol-Derived Ketone Homoenolates with Aryl Bromides. Chem. Commun. 2013, 49 (47), 5420-5422.
(41) Cheng, K.; Walsh, P. J. Arylation of Aldehyde Homoenolates with Aryl Bromides. Org. Lett. 2013, 15 (9), 2298-2301.
(42) Ziadi, A.; Martin, R. Ligand-Accelerated Pd-Catalyzed Ketone γ-Arylation via C-C Cleavage with Aryl Chlorides. Org. Lett. 2012, 14 (5), 1266-1269.
(43) Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S. Allenylation of Tert-Cyclobutanols via Enantioselective C-C Bond Cleavage. J. Am. Chem. Soc. 2003, 125, 8862-8869.
(44) Weber, M.; Owens, K.; Masarwa, A.; Sarpong, R. Construction of Enantiopure Taxoid and Natural Product-like Scaffolds Using a CC Bond Cleavage/Arylation Reaction. Org. Lett. 2015, 17 (21), 5432-5435.
(45) Ziadi, A.; Correa, A.; Martin, R. Formal γ-Alkynylation of Ketones via Pd-Catalyzed C-C Cleavage. Chem. Commun. 2013, 49 (39), 4286-4288.
(46) Wu, P.; Jia, M.; Ma, S. Pd-Catalyzed Coupling Reaction of Cyclobutanols with Propargylic Carbonates. Org. Chem. Front. 2019, 6 (11), 1757-1761.
(47) McDonald, T. R.; Mills, L. R.; West, M. S.; Rousseaux, S. A. L. Selective Carbon-Carbon Bond Cleavage of Cyclopropanols. Chem. Rev. 2021, 121 (1), 3-79.
(48) Murakami, M.; Ishida, N. Cleavage of Carbon-Carbon σ Bonds of Four-Membered Rings. Chem. Rev. 2021, 121 (1), 264-299.
(49) Reding, A.; Jones, P. G.; Werz, D. B. Intramolecular TransCarbocarbonation of Internal Alkynes by a Cascade of Formal AntiCarbopalladation/Cyclopropanol Opening. Org. Lett. 2018, 20 (22), 7266-7269.
(50) Liu, L.; Cheng, F.; Meng, C.; Zhang, A.-A.; Zhang, M.; Xu, K.; Ishida, N.; Murakami, M. Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catal. 2021, 11 (14), 8942-8947.
(51) Cao, K.; Zhang, Z.-M.; Zhang, J.; Chen, F. Palladium-Catalyzed Asymmetric Cross-Coupling Reactions of Cyclobutanols and Unactivated Olefins. Org. Lett. 2021, 23 (24), 9520-9525.
(52) Pérez-Gómez, M.; Azizollahi, H.; Franzoni, I.; Larin, E. M.; Lautens, M.; García-López, J. A. Tandem Remote Csp 3 -H Activation/Csp ${ }^{3}$-Csp ${ }^{3}$ Cleavage in Unstrained Aliphatic Chains Assisted by Palladium(II). Organometallics 2019, 38 (4), 973-980.
(53) Azizollahi, H.; Mehta, V. P.; García-López, J. A. Pd-Catalyzed Cascade Reactions Involving Skipped Dienes: From Double Carbopalladation to Remote C-C Cleavage. Chem. Commun. 2019, 55 (69), 10281-10284.
(54) Azizollahi, H.; Pérez-Gómez, M.; Mehta, V. P.; García-López, J. A. Synthesis of [3.4]-Spirooxindoles through Cascade Carbopalladation of Skipped Dienes. Adv. Synth. Catal. 2020, 362, 1899-1904.
(55) Azizollahi, H.; García-López, J.-A. Recent Advances on Synthetic Methodology Merging. molecules 2020, 25, 5900.
(56) Garcia-Lopez, J. A.; Oliva-Madrid, M. J.; Bautista, D.; Vicente, J.; Saura-Llamas, I. Sequential Insertion of Alkynes, Alkenes, and CO into the Pd-C Bond of Ortho-Palladated Primary Phenethylamines: From H3-Allyl Complexes and Enlarged Palladacycles to Functionalized Arylalkylamines. Organometallics 2021, 40 (4), 539-556.
(57) García-López, J.; Saura-Llamas, I. Chasing C,C-Palladacycles. Eur. J. Inorg. Chem. 2021, 2021, 3655-3683.
(58) Chapman, L. M.; Adams, B.; Kliman, L. T.; Makriyannis, A.; Hamblett, C. L. Intramolecular Heck Reactions of Aryl Chlorides with Alkynes. Tetrahedron Lett. 2010, 51 (11), 1517-1522.
(59) Nella, N.; Parker, E.; Hitce, J.; Larini, P.; Jazzar, R.; Baudoin, O. Efficient Pd-Catalyzed Allene Synthesis from Alkynes and Aryl Bromides through an Intramolecular Base-Assisted Deprotonation (IBAD) Mechanism. Chem. - A Eur. J. 2014, 20 (41), 13272-13278.
(60) Kundal, S.; Jalal, S.; Paul, K.; Jana, U. Fe(OTf)3-Catalyzed Aromatization of Substituted 3-Methyleneindoline and Benzofuran Derivatives: A Selective Route to C-3-Alkylated Indoles and Benzofurans. Eur. J. Org. Chem. 2015, 2015 (25), 5513-5517.
(61) Miura, T.; Toyoshima, T.; Takahashi, Y.; Murakami, M. Stereoselective Synthesis of 3-Alkylideneoxindoles by PalladiumCatalyzed Cyclization Reaction of 2-(Alkynyl)Aryl Isocyanates with Organoboron Reagents. Org. Lett. 2008, 10 (21), 4887-4889.
(62) Schönhaber, J.; D’Souza, D. M.; Glißmann, T.; Mayer, B.; Janiak, C.; Rominger, F.; Frank, W.; Müller, T. J. J. Domino Insertion-Coupling Synthesis of Solid-State Luminescent Propynylidene Indolones. Chem. - A Eur. J. 2018, 24 (55), 14712-14723.
(63) Pawliczek, M.; Milde, B.; Jones, P. G.; Werz, D. B. Intramolecular Formal Anti-Carbopalladation/Heck Reaction: Facile Domino Access to Carbo- and Heterooligocyclic Dienes. Chem. - A Eur. J. 2015, 21 (35), 12303-12307.
(64) Reding, A.; Jones, P. G.; Werz, D. B. Trans-Carbocarbonation of Internal Alkynes through a Formal Anti-Carbopalladation/C-H Activation Cascade. Angew. Chemie - Int. Ed. 2018, 57 (33), 1061010614.
(65) Reding, A.; Ohta, N.; Sebrantke, P.; Jones, P. G.; Nakao, Y.; Werz, D. B. Intramolecular Trans-Carbocarbonation of Carbon-

Carbon Triple Bonds by an Anti-Carbopalladation/Suzuki Coupling Cascade. ChemCatChem. 2020, 12 (13), 3459-3462.
(66) Parveen, N.; Sekar, G. Palladium Nanoparticle-Catalyzed Stereoselective Domino Synthesis of 3-Allylidene-2(3 H)-Oxindoles and 3-Allylidene-2(3 H)-Benzofuranones. J. Org. Chem. 2020, 85 (7), 4682-4694.
(67) Pawliczek, M.; Schneider, T. F.; Maaß, C.; Stalke, D.; Werz, D. B. Formal Anti-Carbopalladation Reactions of Non-Activated Alkynes: Requirements, Mechanistic Insights, and Applications. Angew. Chemie - Int. Ed. 2015, 54 (13), 4119-4123.
(68) Gabriele, B.; Salerno, G.; Veltri, L.; Costa, M.; Massera, C. Stereoselective Synthesis of (E)-3-(Methoxycarbonyl)Methylene-1,3-Dihydroindol-2-Ones by Palladium-Catalyzed Oxidative Carbonylation of 2-Ethynylanilines. Eur. J. Org. Chem. 2001, 2001 (24), 4607.
(69) Le, C. M.; Hou, X.; Sperger, T.; Schoenebeck, F.; Lautens, M. An Exclusively Trans-Selective Chlorocarbamoylation of Alkynes Enabled by a Palladium/Phosphaadamantane Catalyst. Angew. Chemie - Int. Ed. 2015, 54 (52), 15897-15900.
(70) (a) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3-8. (b) Sheldrick, G. M. SHELXL-2018/3, Program for the Refinement of Crystal Structure; University of Göttingen: Göttingen, Germany, 2018.

[^0]: Received: January 11, 2022
 Published: March 3, 2022

