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Simple Summary: In recent years, the incidence of thyroid cancer has been increasing globally, with
papillary thyroid cancer (PTCa) being the most prevalent pathological type. Although PTCa has been
regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and
progress despite surgery and radioactive iodine treatment. Therefore, searching for new targets and
therapies is required. We utilized bioinformatics analyses to identify critical theranostic markers
for PTCa. We found that DPP4/CTNNB1/MET is an oncogenic signature that is overexpressed in
PTCa and associated with disease progression, distant metastasis, treatment resistance, immuno-
evasive phenotypes, and poor clinical outcomes. Interestingly, our in silico molecular docking
results revealed that sitagliptin, an antidiabetic drug, has strong affinities and potential for targeting
DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. Collectively,
our findings suggest that sitagliptin could be repurposed for treating PTCa.

Abstract: In recent years, the incidence of thyroid cancer has been increasing globally, with papillary
thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80%
of all cases. Although PTCa has been regarded to be slow growing and has a good prognosis, in
some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment.
In addition, most cancer treatment drugs have been shown to be cytotoxic and nonspecific to cancer
cells, as they also affect normal cells and consequently cause harm to the body. Therefore, searching
for new targets and therapies is required. Herein, we explored a bioinformatics analysis to identify
important theranostic markers for THCA. Interestingly, we identified that the DPP4/CTNNB1/MET
gene signature was overexpressed in PTCa, which, according to our analysis, is associated with
immuno-invasive phenotypes, cancer progression, metastasis, resistance, and unfavorable clinical

outcomes of thyroid cancer cohorts. Since most cancer drugs were shown to exhibit cytotoxicity
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and to be nonspecific, herein, we evaluated the anticancer effects of the antidiabetic drug sitagliptin,
which was recently shown to possess anticancer activities, and is well tolerated and effective. Interest-
ingly, our in silico molecular docking results exhibited putative binding affinities of sitagliptin with
DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. This suggests
that sitagliptin is a potential THCA therapeutic, worthy of further investigation both in vitro and
in vivo and in clinical settings.

Keywords: sitagliptin; thyroid cancer (THCA); papillary thyroid cancer (PTCa); thyroidectomy;
metastasis; drug resistance

1. Introduction

Thyroid cancer (THCA) is the most prevalent malignancy of the endocrine system,
and the 9th most common cancer in the world [1,2], accounting for approximately 600,000
newly diagnosed cases annually on a global scale [3], with high rates of morbidity reported
in recent years [4]. THCA is divided into various subtypes, including anaplastic thyroid
cancer (ATC), papillary thyroid carcinoma (PTCa), and follicular thyroid carcinoma (FTC),
with PTCa being the most prevalent, as it accounts for approximately 85% of THCA [5,6].
PTC and FTC are well-differentiated thyroid cancers with an optimal prognosis of about
10 years disease-specific survival [7]. However, the ATC is poorly differentiated with
proliferative stem-cell-like properties, resistance to therapies, and accounts for the majority
of thyroid-cancer-related deaths [8,9]. The rapid increase in thyroid cancer, particularly
PTCa, has been accredited to the availability and sensitive use of ultrasonography and
other diagnostic imaging modalities [10,11], which have likely led to a massive detection
and diagnosis of a large reservoir of subclinical, indolent lesions of the thyroid [12,13].
Studies have also implicated obesity, hormonal imbalance, metabolic syndromes, and
environmental pollutants in the development of PTCa [14].

Patients with PTCa usually show good clinical outcomes compared with other cancers;
however, there is also a very high rate of relapse post-treatment, leading to distant metasta-
sis [15,16]. About 11% of patients with PTC present with distant metastases outside the
neck and mediastinum [17]. Moreover, long-term survival outcomes for aggressive PTC
subgroups exhibit heterogeneous clinical behavior and a wide range of mortality risks, sug-
gesting that treatment should be tailored to specific histologic subtypes [18]. The diagnostic
criteria for PTC allow it to demonstrate various histological features and growth patterns;
different variants of PTCa are recognized, including classic, microcarcinoma, encapsulated,
follicular, diffuse sclerosing, tall cell, columnar cell, cribriform-morular, hobnail, solid,
oncocytic, spindle cell, clear cell, and Warthin-like variants [19]. However, among these
variants, tall cell, columnar cells, and hobnail variants are of undoubted clinical significance,
since they are aggressive variants associated with aggressive clinicopathological features
and worse prognosis than for classic and encapsulated PTC [20-22].

Surgery, endocrine therapy, and radioiodine therapy are well-known therapy regimens
for PTCa, offering a good prognosis; however, the aggressive variants of PTCa progress de-
spite surgery and radioactive iodine treatment [23]. In addition, tumor recurrence in PTCa
is associated with therapeutic resistance which increases the death toll in patients [24-26].
Unfortunately, an upsurge in the incidence of aggressive PTCs was observed at a rate
higher than that seen in well-differentiated PTCs or anaplastic thyroid carcinomas (ATCs)
in the past two decades in a study of a large cohort of thyroid cancers [22]; therefore, there
is an urgent need to identify novel diagnostic and prognostic molecular biomarkers that
could also be used as molecular targets for the development of new drugs or in repurposing
existing drugs for the treatment of PTCa.

Increasing evidence shows that dipeptidyl aminopeptidase IV (DPP IV) is associated
with cancer development and progression [27,28]; DPP4 is an adenosine deaminase com-
plex protein, and was demonstrated to be upregulated in THCA, particularly in PTCa,
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and is associated with tumor aggression and poor prognoses [29-31]. Moreover, high
expression of DPP4 was shown to promote distance metastasis and stemness in esophageal
adenocarcinoma and colorectal cancer [32,33]. However, the prognostic role of DPP4 ex-
pression and its role in THCA metastasis remains elusive [7,29,31]. Studies have shown
that DPP4 and b-catenin crosstalk to regulate critical cellular processes, including motility
and invasion [34]. A study involving lung cancer patients has revealed that the expres-
sion levels of 3-catenin correlate with DPP4 expression [35] and contributed to tumor
metastasis [34,36]. An experimental study has also reported that activating mutation of
Ctnnbl induced DPP4 overexpression in epidermal keratinocytes of LRIG1* stem cells [37].
Research has illuminated that inhibitors of DPP4 exert their therapeutic effect via mod-
ulation of the Wnt/3-catenin signaling pathway [38]. Sitagliptin, an inhibitor of DPP4,
has also been reported to provide renal protection via inhibition of the tubulointerstitial
Wnt/ 3-catenin signaling pathway in diabetic nephropathy [39].

Accumulating studies demonstrated a pivotal correlation between distant metastasis
in PTCa and MET (MET proto-oncogenic receptor tyrosine kinase) [40]. Approximately
70% of PTCas were reported to overexpress the MET gene, and it is associated with poor
prognoses [41]. In addition, Rossana et al. also demonstrated that higher expression
levels of MET in PTCa promoted cancer growth and distance metastasis [42,43]. MET is a
transmembrane tyrosine kinase identified as a high-affinity receptor for hepatocyte growth
factor (HGF), and both MET and HGF were demonstrated to be expressed in PTCa [42],
and consequently promote progression and secondary metastasis [44]. Additionally, MET
was shown to activate 3-catenin (CTNNBI), an important component of the canonical Wnt
pathway [45,46]. CTNNB1 was recently reported to be mutated in PTCa, and to ultimately
promote cancer development and stemness [47,48]. Moreover, upregulated MET was also
demonstrated to regulate the expression of mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3K)/AKT, signal transducer and activator of transcription
3 (STAT3), and nuclear factor (NF)-xB pathways in THCA [40,49]. This suggests that MET
is a crucial target gene in THCA, and worthy of further investigation. To date, most
drugs used for cancer treatment are cytotoxic and usually not specific to cancer cells,
but also affect normal cells; therefore, there is still a huge gap in finding more sensitive
and specific drugs for cancer. Recent studies suggested an association between cancer
occurrence and antidiabetic medicaments. Sitagliptin is a standard inhibitor of DPP4,
widely used for treating diabetes, and was shown to possess anticancer activities, as well
as being efficacious and well tolerated [50]. In the present study, we predicted the potential
anticancer activities of sitagliptin as a target for DPP4/CTNNB1/MET oncogenic signatures,
which are overexpressed in THCA.

2. Materials and Methods
2.1. Microarray Data Acquisition and Identification of Differentially Expressed Genes (DEGs)

Gene expressions of four THCA datasets (GEO3467, GEO36787, GEO6004, and GEO33630)
were extracted from the NCBI gene expression omnibus. The acquired datasets were further
analyzed using GEO2R (https:/ /www.ncbi.nlm.nih.gov/geo/geo2r/ accessed on 5 September
2021), and results contained DEG profiles from THCA patients compared to normal samples.
To control the false discovery rate (FDR), the Benjamini-Hochberg adjustment was applied to
p values (adjusted (adj.) p values), to moderate the balance between detection of significant
genes and possible false-positive values. The fold-change (FC) threshold was set to 1.5, and
adj. p < 0.05 was considered statistically significant. Venn diagrams were constructed using
the Bioinformatics and Evolutionary Genomics (BEG) online tool (http:/ /bioinformatics.psb.
ugent.be/webtools/Venn/ accessed on 6 September 2021).

2.2. Differential Expression of the THCA Gene Hub

Differential expressions of THCA gene profiles between tumor tissues and normal adja-
cent tissues of the Cancer Genome Atlas (TCGA) database were analyzed using UALCAN
(http:/ /ualcan.path.uab.edu accessed on 12 September 2021), an online web portal used to
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identify gene expression levels between primary tumors compared to normal tissue sam-
ples [51]. Moreover, we explored the cBioPortal online web tool (https://www.cbioportal.org
accessed on 19 September 2021), which categorizes gene alterations based on percentages
of individual genes due to amplification [52]. For further analysis, we used the cBioPortal
correlation sub-tool to determine gene expression correlations with positive Spearman and
Pearson correlation coefficients with p < 0.05 as statistically significant.

2.3. Comparisons of DPP4/CTNNB1/MET Expressions in Normal, Primary, and Metastatic
Tumor of Thyroid Cancer Cohorts

To compare expression levels of the DPP4/CTNNB1/MET oncogenes among normal, tu-
mor, and metastatic tissues, we explored the tumor, normal, and metastatic plot (TNMplot),
(https:/ /tnmplot.com/analysis/ accessed on 21 September 2021), an RNA-sequence-based
rapid analysis, which is used to compare data of selected genes [53]. Data were compared
using the Kruskal-Wallis test, which is a method used to test samples originally from
the same distribution of specimens, followed by Dunn’s test, which assesses the signifi-
cance of gene expressions in promoting THCA tumor metastasis, with p < 0.05 considered
statistically significant.

2.4. Interaction Network and Gene Enrichment Analysis

An interaction network analysis was constructed using the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING, https:/ /string-db.org/ accessed on 25 September
2021) database [54], and GeneMANIA [55] (http://genemania.org/data accessed on 28
September 2021), which are online web tools developed to analyze interaction networks.
The STRING database was used under a high confidence of 0.700, and protein enrichment
of p < 6.0 x 10~ was obtained. Interactions among genes were analyzed according to
correlations based on experimental data (pink), gene neighborhoods (green), gene fusion
(red), gene co-occurrences (blue), and gene co-expression (black). Moreover, we explored
the Network Analyst user-friendly online tool (https:/ /www.networkanalyst.ca/ accessed
on 5 October 2021) to analyze co-expressed gene enrichment from the biological processes
databases; herein we applied the Igraph R package visualization tool for analysis [56].
Furthermore, gene ontology (GO), biological processes (BPs), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were analyzed using FunRich soft-
ware (http:/ /www.funrich.org accessed on 9 October 2021), an open access, stand-alone
functional enrichment and network analytical tool [57].

2.5. Analysis of Genomic Alterations and Mutations of the DPP4/CTNNB1/MET Oncogenes
in THCA

Mutations of DPP4/CTNNB1/MET oncogenic expressions in THCA were analyzed
using cBioPortal software. Herein, we analyzed altered frequencies of these oncogenes in
THCA. Furthermore, we explored the muTarget platform (https:/ /www.mutarget.com/
accessed on 11 October 2021), a platform linking changes in gene expressions and the
mutation status of solid tumors, based on a genotype analysis, to determine associations
between DPP4/CTNNB1/MET and alterations in gene expressions in THCA. Differences
in expressions between the mutant group and wild-type (WT) group were considered
statistically significant at p < 0.05.

2.6. Correlations of DPP4/CTNNB1/MET Expressions and Tumor Infiltration Levels of Immune
and Immunosuppressive Cells in THCA

The Tumor Immune Estimation Resource (TIMER) (https:/ /cistrome.shinyapps.io/
timer/ accessed on 18 October 2021) is an online computational tool used to analyze
the nature of tumor immune interactions across different cancer types [58]. Herein, we
determined correlations of DPP4/CTNNB1/MET expressions and tumor infiltration levels
of tumor associated macrophages (M2 TAM), regulatory T cell (Treg), cancer-associated
fibroblast (CAF), and cluster of differentiation 8-positive (CD8* T cell), using a set of
gene markers of immune infiltration model, as described previously [59,60]. The strength
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of correlations between the genes and immune cells is reflected by the purity-adjusted
partial Spearman’s rho value, where a value of r > 1 means a perfect positive correlation
and a value of r < —1 means a perfect negative correlation, with p < 0.05 considered
statistically significant.

2.7. In Silico Molecular Docking of the DPP4/CTNNB1/MET Oncogenes with Sitagliptin

The potential inhibitory effects of sitagliptin on THCA hub genes of DPP4, CTNNBI,
and MET were analyzed by molecular docking simulations, compared to the standard
inhibitors of CTNNB1 and MET of PNU-74654 and crizotinib, respectively. The 3D struc-
tures of sitagliptin (CID: 4369359), PNU-74654 (CID:9836739), and crizotinib (CID:116250)
were retrieved from the pubchem database (https://pubchem.ncbi.nlm.nih.gov/ accessed
on 22 October 2021), in the spatial data file (SDF) format, and consequently converted
to PDB file format using the PyYMOL visualization tool [61] (https://pymol.org/2/ ac-
cessed on 22 October 2021), while the crystal structures of DPP4 (PDB:20NC), CTNNB1
(PDB:1JDH), and MET (PDB:3DKF) were downloaded from the protein database (PDB),
(https:/ /www.rcsb.org/ accessed on 22 October 2021), in PDF file format. File prepara-
tion for molecular docking was as described in previous studies [62—-64]. Using autodock
software, an in silico molecular docking tool [65], all PDB files were converted to PDBQT
file formats, and docking was accordingly performed using autodock, as described previ-
ously [66,67]. For further analysis, we used PyMol to analyze ligand—receptor interactions
in 3D view, and finally used the discovery studio web tool [68] for data interpretation.

3. Results
3.1. Identification of Common Oncogenes in THCA

Microarray datasets were downloaded from the NCBI-GEO database to identify DEGs
in THCA. Commonly expressed oncogenes were identified from THCA tissues compared
to adjacent normal tissues obtained from different studies. Volcano plots were used to
show all DEGs from all selected datasets, and accordingly, the GSE3467, GSE3678, GSE6004,
and GSE33630 datasets, respectively, displayed 691, 449, 1455, and 789 upregulated genes
and 1088, 1232, 2890, and 1568 downregulated genes (Figure 1A-D). The relatedness of all
samples in each dataset to each other was analyzed by uniform manifold approximation
and projection (UMAP), in which the number of nearest neighbors was used for calculations
as indicated in each plot (Figure 1E-H). In total, 123 overlapping genes were obtained using
Venn diagrams, as observed from THCA tissues compared with normal tissues (Figure 1L]).
We further used these genes for further analysis of THCA in this study.

3.2. DPP4/CTNNB1/MET Expressions Are Associated with THCA Progression, Metastasis, and
Worse Prognosis of THCA Cohorts

Our differential expression analysis revealed that the (m)RNA expression levels of
DPP4/CTNNB1/MET were higher in THCA tumor tissues compared with adjacent normal
tissues (Figure 2A). We further analyzed the role of DPP4, CTNNB1, and MET expressions
in promoting THCA progression and tumor metastasis. Interestingly, our analysis revealed
that the mRNA expressions levels of DPP4/CTNNBI/MET were more elevated in stage IV
of THCA cancer (Figure 2B), and were significantly elevated in metastasis tumor compared
with the primary tumor (Figure 2C). In addition, we found expression correlation among
the DPP4/CTNNB1/MET signature in THCA cohorts (Figure 2D). Furthermore, we con-
structed a Kaplan-Meier (KM) plot of patients’ survival and found that higher expression
levels of the DPP4/CTNNB1/MET genes were associated with shorter survival duration
of the cohorts (Figure 2E). Although the KM plot revealed no significant (p > 0.05) differ-
ence in the overall survival between cohorts with high and cohorts with low expression
levels of DPP4, our analysis revealed that the disease-free survival of the cohorts was
significantly (p < 0.048) higher in the low-DPP4-expression group when compared with the
high-expression group. Collectively, our findings strongly suggested that the expression
levels of DPP4/CTNNB1/MET signature are associated with THCA progression, metas-
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tasis, and worse prognosis of THCA cohorts, hence serving as important biomarker for
diagnosis, prognosis, and therapeutic exploration in THCA.
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Figure 1. Differentially expressed genes (DEGs) in thyroid cancer (THCA). (A-D) Volcano plots showing
DEGs extracted from the GSE3467, GSE3678, GSE6004, and GSE33630 microarray datasets, between
cancer tissues compared with normal adjacent tissues, with upregulated genes (red), downregulated
genes (blue), and non-significant genes (black). (E-H) Two-dimensional (2D) visualization of UMAP
dimensionality reduction in THCA tumor tissues (green) compared with normal tissues (purple). (L])
Venn diagram of 123 overlapping DEGs between normal colon tissues and tumor tissues.

3.3. DPP4/CTNNB1/MET Genes Are Frequently Altered and Their Mutations Are Linked to
Genetic Expressions in THCA

Mutations of DPP4/CTNNB1/MET oncogenes in THCA were analyzed using the
cBioPortal tool, and altered frequencies were based on percentages of individual genes due
to amplification. Analytical results showed respective amplification of DPP4, CTNNBI1, and
MET occur in 3%, 6%, and 6% of THCA cohorts respectively. These included deep deletions
(blue), mRNAs (red), proteins (red), mutations (green), and structural variants (purple)
(Figure 3A-D). For further analysis, we compared associations between alterations in DPP4
and MET oncogenic expressions with mutations of the top genes expressed in THCA at the
target level, and according to our findings, BRAF mutations promoted increased expression
levels of DPP4 and MET compared with the WT. Patients with high expression levels of
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DPP4 and MET signatures exhibited worse clinical outcomes compared with patients with
low expression levels (Figure 3E,F).
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Figure 2. Overexpression of DPP4/CTNNB1/MET mRNAs, associated with thyroid cancer (THCA)
progression. Differential expression levels of DPP4/CTNNB1/MET between (A) THCA tumor and
adjacent normal tissue, (B) tumor stages, and (C) between primary and metastatic tumor of TCGA
cohort. (D) Correlations of DPP4 with MET, CTNNB1 with DPP4, and MET with CTNNB1 oncogenic
expressions in THCA. (E) KPM plots of survival ratio between THCA cohorts with high and those
with low expression levels of DPP4/CTNNB1/MET.
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Figure 3. Genetic mutations based on percentages due to amplification of (A) DPP4 (3%),
(B) CTNNBI1 (6%), and (C) MET (6%), including deep deletions (blue), mRNAs (red), proteins
(red), mutations (green), and structural variants (purple). (D) Individual genetic alteration profile of
DPP4/CTNNB1/MET in THCA. (E,F) BRAF mutations promoted overexpression of DPP4 and MET
compared with the wild type, with p < 0.05 considered statistically significant.

3.4. DPP4/CTNNB1/MET Genes Potentially Promote Tumor Growth by Interacting with Different
Oncogenic Targets/Pathways

We applied the STRING database and GeneMANIA online web tools developed to
analyze interaction networks among four selected oncogenes. Herein, we considered ex-
perimental data (pink), gene neighborhoods (green), gene fusion (red), gene co-occurrences
(blue), and gene co-expressions (black) when analyzing interactions. As expected, interaction
networks were identified between DPP4 and CTNNB1, MET and DPP4, CTNNB1 and MET,
HFG and MET, DPP4 and CTNND1, and GSK3B and CTNND1 within the network clustering.
An average local clustering coefficient of 0.787 was obtained, with an expected number of
edges of 21 and interaction p value of 0.006 (Figure 4A,B). For further analysis, we conducted
a gene enrichment analysis and predicted GO processes using network analytical software,
which showed co-expressions of CTNNB1, GSK3B, AXIN1, and MET to be enriched in the BP
databases. Herein, we applied the Igraph R package visualization tool for analysis (Figure 4C).
For more analysis, we used FunRich software to validate GO including BPs and KEGG en-
richment analyses. The top five enriched BPs included chromosomal segregation, signaling
transduction, cell communication, regulation of the cell cycle, and protein metabolism, while
pathways involved in interactions included E-cadherin signaling in the nascent cadherin
junction, stabilization and expression of adherens junctions, E-cadherin signaling events,
posttranscriptional regulation of adherens junction stability, and N-cadherin signaling events
(Figure 4D,E), with p < 0.05 considered significant.
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Figure 4. DPP4/CTNNBI1/MET gene interactions co-expressed in the same clustering network.
(A,B) Interaction networks showing co-expression between DPP4 and CTNNB1, MET and DPP4,
CTNNBI1 and MET, HFG and MET, DPP4 and CTNND1, and GSK3B and CTNND1 within the network
clustering. An average local clustering coefficient of 0.787 was obtained, with an expected number

of edges of 21 and an interaction p value of 0.006. (C) Gene enrichment analysis gene ontology
(GO) showed enrichment in co-expressions of CTNNB1, GSK3B, AXIN1, and MET in biological
processes. (D,E) Validation of GO, involving enrichment of the top five pathways involved, with

p < 0.05 considered significant.

3.5. High Expression Levels of DPP4/CTNNB1/MET Are Associated with Immunosuppressive
Phenotypes of THCA Tissues

We queried the association between the mRNA expression levels of DPP4/CTNNB1/MET
and tumor infiltrations of immunosuppressive cells using the TCGA cohorts. Interestingly, we
found that the mRNA expression levels of DPP4/CTNNB1/MET are inversely associated with
tumor purity (Figure 5A). In addition, the high expression levels of the DPP4/CTNNB1/MET
correlate positively (all p < 0.001, cor > 0.3) with the infiltration levels of tumor-associated
macrophages (M2 TAM Figure 5B), regulatory T cell (Treg, Figure 5C), and cancer-associated
fibroblast (CAF, Figure 5D) in thyroid cancer cohorts (Figure 5). In contrast, a strong negative
association (all p < 0.001, cor < 0) was observed between the mRNA expression levels of
DPP4/CTNNB1/MET and the immune infiltration level of CD8* T cell (Figure 5E), an anti-
tumor T cell subtype. Collectively, these findings strongly suggested that high expression
levels of DPP4/CTNNB1/MET are associated with immunosuppressive phenotypes via a
mechanism involving T cell exclusion in THCA tissues.
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Figure 5. High expression levels of DPP4/CTNNB1/MET are associated with immunosuppressive
phenotypes of THCA tissues. Scatterplots of DPP4/CTNNB1/MET expression correlations with
t(A) tumor purity, and infiltration levels of (B) tumor-associated macrophages (M2 TAM), (C) reg-
ulatory T cell (Treg), (D) cancer-associated fibroblast (CAF), and (E) CD8" T cell. The strength of
correlations between the genes and immune cells is reflected by the purity-adjusted partial Spear-
man’s rho value, where a value of r > 1 means a perfect positive correlation and a value of r < —1
means a perfect negative correlation, with p < 0.05 considered statistically significant.

3.6. Molecular Docking Reveals Higher Inhibitory Effects of Sitagliptin on the DPP4 Oncogene

Our in silico molecular docking analysis revealed that sitagliptin exhibited higher
binding energy of —8.6 kcal/mol with the DPP4 oncogene. Further analysis of the docking
results showed that sitagliptin bound to the binding pocket of the DPP4 gene by hydrogen
bonds with shorter binding distances at TRY631 (2.07 A) and ARG125 (2.71 A), and was
further stabilized by a salt bridge, van der Waals forces, carbon-hydrogen bonds, Pi-Pi
stacked, Pi-Pi T-shaped, amide Pi-stacked, and Pi-alkyl around the sitagliptin backbone
(Figure 6).

3.7. Molecular Docking Revealed Potential Inhibitory Effects of Sitagliptin on the
CTNNBI1 Oncogene

Our docking analysis revealed that sitagliptin exhibited high binding energy of
—7.3 kcal/mol with the CTNNB1 oncogene, compared with its Food and Drug Adminis-
tration (FDA)-approved inhibitor, PNU-74654, which showed a lower binding affinity of
—6.7 kcal/mol. Further analysis of the docking results showed that sitagliptin bound to the
binding pocket of the CTNNBI oncogene by 4 conventional hydrogen bonds and shorter
binding distances with CYS466 (2.03 A), LYS508 (2.51 A), SER20 (1.87 A), and ARG469
(1.03 A). The interactions were further stabilized by van der Waals forces with ALA463,
PRO463, PHE21, ASP459, and LEU18, halogen (fluorine) with GLU17, PRO505, GLU462,



Biology 2022, 11, 324

110f18

and GLU24, and Pi-alkyl with VAL564 and ILE17 around the sitagliptin backbone. The
results were further compared with the PNU-74654/ CTNNB1 complex, which is bound to
the binding pocket of the CTNNBI oncogene by only two conventional hydrogen bonds and
longer binding distances compared with the sitagliptin/ CTNNB1 complex. The interactions
were further stabilized by van der Waals forces with SER32, TYR306, and SER335, amide
Pi-stacked with GLU375, and Pi-cation with GLU28, LYS345, and ARG342 around the
PNU-74654 backbone. This suggests that sitagliptin has a high potential to target 3-catenin
(CTNNB1), compared with its standard inhibitor, PNU-74654 (Figure 7).

A Sitaglibtin — DPP4 Complex (3D) B Sitaglibtin — DPP4 Complex (2D)
(AG = - 8.6 Kcal/mol) ) ) TRP C\'/é\SLG
= \M C:659 : VAL
- ‘ ‘,-' 3

(AG =~ 8.6 Kcal/mol)

Type of interactions and number of bonds Distance of intercating Amino acids
Conventional Hydrogen bond (2) TRY631(2.07A), ARG125 (2.71 A) T
Salt Bridge Glu205, GLU206 C:357
'Van der Waals forces TRP629, VAL656, VAL711, HIS740, ASN710 Interactions
Carbon hydrogen bond SER630 [ van der Waals [T Pi-istacked
Pi-Pi Stacked TYR547 B s B i

O [ conventional Hydrogen Bond ] Amide-Pi Stacked
Pi-Pi T shaped TYRG666 [ carbon Hydrogen Bond [ Pi-alkyl
‘Amide Pi-Stacked TYRG662
Pi-Alkyl PHE357

Figure 6. Ligand-receptor interaction results of sitagliptin with DPP4. (A) Three-dimensional (3D)
representation of sitagliptin in complex with DPP4 with the highest binding energy of —8.6 kcal/mol.
(B) Two-dimensional (2D) representation of sitagliptin in complex with DPP4, showing interactions
with two conventional H-bonds, with interactions further stabilized by different amino acids around
the sitagliptin backbone. The accompanying table shows summary results of the analysis.

3.8. Molecular Docking Revealed Potential Inhibitory Effects of Sitagliptin on the MET Oncogene

Our docking analysis revealed that sitagliptin exhibited a high binding energy of
—7.6 kcal/mol with the MET oncogene, the same as its FDA-approved inhibitor, crizotinib,
which showed a binding affinity of —7.6 kcal/mol. Further analysis of the docking results
showed that sitagliptin bound to the binding pocket of the MET oncogene by 4 conven-
tional hydrogen bonds with shorter binding distances with TRY631 (2.07 A) and ARG125
(2.71 A). Interactions were further stabilized by a salt bridge (GLU205 and GLU206), van
der Waals forces (TRP629, VAL656, VAL711, HIS740, and ASN710), carbon-hydrogen bond
(SER630), Pi-Pi stacked (TYR547), Pi-Pi T-shaped (TYR666), amide Pi-stacked (TYR662),
and Pi-alkyl (PHE357) around the sitagliptin backbone. However, results displayed of
the crizotinib/MET complex did not exhibit conventional hydrogen bonds in the binding
pocket of the MET oncogene. This suggests that sitagliptin has high potential to target
MET, compared with its standard inhibitor, crizotinib (Figure 8).



Biology 2022, 11, 324 12 0f 18

A Sitagliptin — CTNNB1 Complex (3D) B Sitagliptin — CTNNB1 Complex (2D)

(AG = - 7.3 Kcal/mol)

PR
A:463

4654 — CTNNB1 Complex (2D)

(AG = - 6.7 Kcal/mol)

Sitagliptin —- CTNNB1 Complex
(AG = - 7.3 Kcal/mol)

Type of interactions and ber of bonds Distance of intercating Amino acids
CYS466(2.03A), LYS508 (2.51A) & SER20
Conventional Hydrogen bond (3) 1.87A) & ARG469 (1.03A) )
ALA463, PRO463, PHE21, ASP459 &
'Van der Waals forces LEU18
Halogen (Flourine) GLU17, PRO505, GLU462 & GLU24
Pi-Alkyl IVAL564 & ILE17

PNU-74654— CTNNB1 Complex
(AG = - 6.7 Kcal/mol)

Type of interactions and number of bonds Distance of intercating Amino acids

Interactions Conventional Hydrogen bond (3) TRP338(2.09A) & ASN380 (2.22A)
[ van der waals [T Pi-Anion yan der Waals forces SER32, TYR306 and SER335

- Conventional Hydrogen Bond D Alkyl X i

[T Halogen (Fluorine) [ Pi-Alkyl Amide Pi-Stacked GLU375

[ Pi-cation Pi-Cation GLU28, LYS345 & ARG342

Figure 7. In silico molecular docking analysis of ligand-protein interactions. (A) Three-dimensional
(8D) representation of sitagliptin in complex with CTNNB1 with a binding energy of —7.3 kecal /mol.
(B) Two-dimensional (2D) representation of sitagliptin in complex with CTNNBI, showing interactions
with four conventional H-bonds and shorter binding distances, with interactions further stabilized
by different amino acids around the sitagliptin backbone. (C) Two-dimensional (2D) representation
of PNU-74654 in complex with CTNNBI, displaying lower binding energy of —6.7 kcal/mol, and
interactions with (2) conventional hydrogen bonds with longer binding distances compared with
that of sitagliptin, in the binding pockets of CTNNB1. The accompanying table shows a summary
of the results.
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Figure 8. In silico molecular docking analysis of ligand—protein interactions. (A) Three-dimensional
(3D) representation of sitagliptin in complex with MET with a binding energy of —7.6 kcal/mol.
(B) Two-dimensional (2D) representation of sitagliptin in complex with MET, showing interactions
with conventional H-bonds and different amino acids. (C) Two-dimensional (2D) representation of
crizotinib in complex with MET, exhibiting the same binding energy as sitagliptin, but no interaction
with conventional hydrogen bonds. The accompanying table shows a summary of the results.

4. Discussion

PTCa is the most prevalent type of THCA, which accounts for approximately 80%
of all THCAs, consequently promoting cancer invasion, metastasis, and mortality in pa-
tients [69,70]. PTCa has recently been managed with a thyroidectomy; however, due to dis-
tant metastasis, THCA tends to be extremely aggressive, and resistant to treatment leading
to poor prognoses [71-73]. Treatment modalities for THCA include the use of doxorubicin,
but this has proven not to be very effective due to the development of resistance [1,74-76].
As a result, there is an urgent need to understand the molecular mechanisms associated
with THCA metastasis, which will help in developing more effective treatments [15,77].
Identification of reliable biomarkers which can be used as diagnostic measures is urgently
needed in PTCa. Most cancer therapeutic drugs have been shown to be cytotoxic and
nonspecific to cancer cells, as they also affect normal cells and consequently cause harm to
the body.
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In the present study, we evaluated the anticancer effects of the antidiabetic drug
sitagliptin, which was recently shown to possess anticancer activities, and is well tolerated
and effective. Sitagliptin is an FDA-approved DPP4 oncogene [78]. To further analyze
sitagliptin, we explored computer-based simulations to identify and predict target genes,
which are commonly overexpressed and associated with THCA invasion, progression,
metastasis, poor prognosis, and resistance to therapeutics. We utilized microarray datasets
from the NCBI-GEO, and identified DEGs in THCA compared to normal tissues. Among
the top upregulated genes, were the DPP4, CTNNBI, and MET oncogenes. To validate
their expressions, we used the UALCAN online bioinformatics tool with default settings,
which showed that mRNA levels of DPP4/CTNNB1/MET were higher in THCA tumor
tissues compared with adjacent normal tissues. Moreover, after exploring the TNMplot
software, for further analysis, we identified that overexpression of DPP4/CTNNB1/MET
gene signatures promoted THCA metastasis, and were associated with poor disease-free
survival and poor prognoses.

The complex and dynamic interactions of immune cells, stoma, and cancer cells
within the tumor microenvironment (TME) play a pivotal role in tumor invasion, cancer
progression, and host immune response [62,79]. Consequently, our analysis of tumor
immune infiltrating cells within the TME of THCA tumor revealed that the high expression
levels of the DPP4/CTNNB1/MET signature correlate positively with the infiltration levels
of tumor-associated macrophages, regulatory T cell, and cancer-associated fibroblast. These
immunosuppressive cells are known to exert an inhibitory role on cytotoxic lymphocytes’
function leading to T cell exclusion and tumor invasive phenotype [59,80]. In contrast, we
found a strong negative association was observed between the mRNA expression levels
of DPP4/CTNNB1/MET and immune infiltration level of CD8" T cell, suggesting that
high expression levels of DPP4/CTNNB1/MET are associated with immunosuppressive
phenotypes via a mechanism involving T cell exclusion in THCA tissues

Molecular docking has become an increasingly important tool commonly used to
understand drug bimolecular interactions with the target proteins for rational drug design
and development [62,81,82]. It is useful in estimating binding affinities of the ligand to
the proteins and in providing preliminary mechanistic insight into the behavior of a small
molecule drug in the binding cavity of target proteins [83,84], as well as elucidating the
potential drug-regulated biochemical processes [79,85]. Consequently, we conducted a
molecular docking analysis of interactions of DPP4/CTNNB1/MET gene signatures with
sitagliptin. As expected, sitagliptin exhibited a higher binding energy of —8.6 kcal/mol
with the DPP4 oncogene. Furthermore, our docking analysis revealed that sitagliptin
exhibited a higher binding energy of —7.3 kcal/mol with the CTNNBI oncogene compared
with its FDA-approved inhibitor, PNU-74654, which showed a lower binding affinity of
—6.7 kcal/mol. Our analysis showed that sitagliptin bound to the binding pocket of the
CTNNB1 oncogene by 4 conventional hydrogen bonds and had shorter binding distances
with CYS466 (2.03 A), LYS508 (2.51 A), SER20 (1.87 A), and ARG469 (1.03 A) compared
with PNU-74654, which bound to the binding pocket of the CTNNB1 oncogene by only
2 conventional hydrogen bonds, and had longer binding distances compared with sitagliptin.
In addition, analytical results of sitagliptin in complex with MET exhibited the same bind-
ing energy of —7.6 kcal/mol as the MET FDA-approved inhibitor, crizotinib. Sitagliptin
bound to the binding pocket of the MET oncogene by 4 conventional hydrogen bonds and
shorter binding distances with TRY631 (2.07 A) and ARG125 (2.71 A). However, results
displayed from the crizotinib/MET complex did not exhibit conventional hydrogen bonds
in the binding pocket of the MET oncogene.

In summary, these docking results suggest that sitagliptin has high potential to tar-
get DPP4/CTNNB1/MET signaling pathways in THCA compared with their standard
inhibitors. Since recent studies have shown the efficacy and tolerance of sitagliptin as
cancer therapeutic, it would be interesting to further investigate its activities as a tar-
get for DPP4/CTNNB1/MET signaling pathways in THCA, both in vitro and in vitro in
tumor-bearing mice.
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5. Conclusions

In summary, we revealed that DPP4, CTNNB1, and MET oncogenic signatures are
overexpressed in THCA, and are associated with cancer progression, metastasis, resis-
tance, poor disease-free survival, and unfavorable clinical outcomes. Moreover, an in
silico molecular docking study exhibited putative binding affinities of sitagliptin with the
abovementioned oncogenes, which were higher than the standard inhibitors of these genes.
This suggests that sitagliptin could be a potential THCA therapeutic, since it has been
shown to be more tolerable and effective in different cancers.
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