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ABSTRACT An experiment was conducted to investi-
gate the effect of organic and inorganic Fe sources on Fe
absorption and expression of related transporters in the
small intestine of broilers. Iron-deficient intact broilers
(7-day-old) were fed an Fe-unsupplemented corn-soy-
bean meal basal diet or the basal diet supplemented
with 60 mg Fe/kg as Fe sulfate (FeSO4�7H2O), Fe-
Met with weak chelation strength (Fe-MetW), Fe-pro-
teinate with moderate chelation strength (Fe-Prot M)
or Fe-proteinate with extremely strong chelation
strength (Fe-Prot ES) for 14 d. The plasma Fe con-
tents were enhanced (P < 0.02) by Fe addition, and
greater (P < 0.0002) in Fe-Prot M and Fe-Prot ES
groups than in Fe-Met W and FeSO4 groups. Supple-
mental Fe decreased (P < 0.03) the divalent metal trans-
porter 1 (DMT1) mRNA levels in the duodenum and
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jejunum, and ferroportin 1 (FPN1) mRNA levels in the
duodenum on d 21, but no differences (P > 0.20) were
detected among different Fe sources. Regardless of Fe
source, the mRNA levels of DMT1 and FPN1 were
higher (P < 0.02) in the duodenum than in the jejunum
and ileum, and in the jejunum than in the ileum (P <
0.05). However, Fe addition did not affect (P > 0.10) the
mRNA levels of amino acid transporters and protein lev-
els of DMT1 and FPN1 in the small intestine of broilers.
These results indicate that organic Fe sources with
stronger chelation strength showed higher Fe absorption
in broilers in vivo; the mRNA expression of Fe and
amino acid transporters varied along with the extension
of the small intestine; the absorption of Fe as organic Fe
chelates was not mediated by the amino acid transport-
ers in intact chicks in this study.
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INTRODUCTION

Iron is an essential trace element, with Fe-containing
proteins exerting a variety of vital functions in physio-
logical and biochemical process of body (Evstatiev and
Gasche, 2012). It was reported that Fe deficiency is one
of the most common nutrition deficiencies worldwide
and rapidly growing animals are vulnerable to Fe defi-
ciency (Duque et al., 2014). Therefore, Fe is often added
to animal diets in the form of supplements to meet
animal growth and production. Traditionally, Fe as the
inorganic iron sulfate is often added to diets of broilers
(Zhang et al., 2016a). However, due to many disadvan-
tages of the inorganic Fe supplement (e.g., low bioavail-
ability, high hydroscopicity and oxidation, and high
excretion; Ma et al., 2014), nowadays increasing atten-
tion has been paid to the development and use of organic
Fe sources (Ma et al., 2014; Sun et al., 2015). According
to the Association of American Feed Control Officials
(AAFCO, 2018), organic chelated sources of Fe are
available in the following 2 forms: Fe amino acid chelate
and Fe proteinate. Fe amino acid chelate is the product
resulting from the reaction of a Fe ion from a soluble Fe
salt with amino acids with a mole ratio of one mole of Fe
to 1 to 3 (preferably 2) moles of amino acids to form
coordinate covalent bonds. Fe Proteinate is the product
resulting from the chelation of a soluble Fe salt with
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amino acids and/or partially hydrolyzed protein. It was
reported that chelated sources of Fe had 125 to 185% rel-
ative availabilities in comparison to ferrous sulfate
(Henry and Miller, 1995). Previous studies from our lab-
oratory have demonstrated that the relative bioavail-
abilities of organic Fe sources for broilers are closely
correlated with their chelation strengths (quotient of
formation [Qf] values) between Fe and their ligands, and
the bioavailability values vary greatly among Fe sources
(Ma et al., 2014; Zhang et al., 2016a). Ma et al. (2013)
found that Fe from Fe glycine chelate was easily
absorbed than that from Fe sulfate in Caco-2 Cells.
Recent studies from our laboratory have further indi-
cated that organic Fe sources with greater Qf values
showed higher Fe absorption in situ ligated duodenum,
jejunum, and ileum loops of broilers (Li et al., 2017;
Zhang et al., 2017; Lu et al., 2018). However, these
results need to be verified by in vivo studies of broilers.

Divalent metal transporter 1 (DMT1) is expressed in
the apical transmembrane, and as one of key transport-
ers of Fe, it actively transports Fe to intestinal entero-
cytes (Andrews, 1999). Once Fe is absorbed into the
enterocyte, it can bind to ferroportin 1 (FPN1), which
exists in the basal membrane of avian intestinal epithe-
lial cells and is the only transmembrane transporter that
transfers Fe from the cells to the blood circulation sys-
tem (Tako et al., 2010). The results from a previous
study in our laboratory indicated that both DMT1 and
FPN1 were involved in the Fe absorption of ligated duo-
denal loops of broilers (Zhang et al., 2017). Besides, we
found that L-type amino acid transporter 1 (LAT1)
and B0-type amino acid transporter 1 (B0AT1) might
participate in the absorption of Fe as Fe amino acid che-
lates in situ ligated jejunum and ileum loops of broilers
(Lu et al., 2018). Nevertheless, to our knowledge, no in
vivo study has been reported on the effect of Fe source
on the Fe absorption and gene expression of the above-
mentioned Fe and amino acid transporters in the small
intestine of broilers.

We hypothesized that the organic Fe sources with
greater Qf values would have higher Fe absorption, and
the greater absorption of Fe would be related to
increased Fe and amino acid transporters in the small
intestine of broilers. Therefore, the aim of this study was
to determine the effect of organic and inorganic Fe sour-
ces on Fe absorption and gene expression of Fe and
amino acid transporters in the small intestine using
broilers in vivo to test the above hypothesis.
MATERIALS AND METHODS

Experimental Design and Treatments

A completely randomized design was used in the pres-
ent study. A total of 5 dietary treatments were designed,
including an Fe-unsupplemented corn-soybean meal
basal diet (control, containing 69.86 mg Fe/kg by analy-
sis) or the basal diet supplemented with 60 mg Fe/kg
from one of the following four Fe sources, including Fe
sulfate ( FeSO4๒7H2O , reagent grade, 19.5% Fe by
analysis; Beijing Chemical Co., Beijing, China), Fe-Met
with weak chelation strength (Fe-Met W, feed grade,
14.7% Fe and Qf = 1.37 by analysis; DeBon Agri-TECH
Group, Shanghai, China), Fe proteinate with moderate
chelation strength (Fe-Prot M, feed grade, 14.2 % Fe
and Qf = 43.6 by analysis; Alltech Inc., Nicholasville,
KY), and Fe proteinate with extremely strong chelation
strength (Fe-Prot ES, feed grade, 10.2% Fe and
Qf = 8,590 by analysis; Hebei Amino Acid Co., Baoding,
China), respectively. The dietary added Fe level was
based on the Fe requirement (a total dietary Fe level of
about 136 mg/kg) of broilers from 1 to 21 d of age deter-
mined in our previous study (Ma et al., 2016).
Animals and Diets

All experimental procedures were approved by the
Animal Management Committee (in charge of animal
welfare issue) of the Institute of Animal Science, Chinese
Academy of Agricultural Sciences (IAS-CAAS, Bei-
jing, China) and performed in accordance with the
ARRIVE guidelines for reporting animal research. Ethi-
cal approval on animal survival was given by the animal
ethics committee of IAS-CAAS.
A total of 600 1-day-old Arbor Acres commercial male

broilers were fed a Fe-deficient dextrose-casein diet (con-
taining 3.26 mg Fe/kg of diet by analysis on an as-fed
basis, Table 1) from d 1 to 7 to deplete the body Fe
stores. At 8 d of age, after an overnight fast, a total of
480 broilers were weighed, selected and randomly allot-
ted to 1 of 5 treatments with 8 replicate cages of 12 birds
per cage. The broilers were maintained on a 24-h con-
stant light schedule and handled in accordance with the
Arbor Acres Broiler Management Guide (Avia-
gen, 2009), and allowed ad libitum access to tap water
containing no detectable Fe. Mortality was recorded
daily, and body weight and feed intake per cage were
measured on d 21 to calculate the ADG, ADFI, gain:
feed ratio, and mortality during d 8 to 21.
The dextrose-casein diet and corn-soybean meal basal

diet were formulated to meet or exceed the nutrient
requirements for broilers (NRC, 1994) except for Fe
(Table 1). A single batch of basal diet was mixed and
then divided into 5 aliquots according to the experimen-
tal treatments. The Fe sources were added to the basal
diet according to the above experimental treatments.
Variable small amounts of L-Lys monohydrochloride or
DL-Met were added to the respective experimental diets
according to the amounts of Lys and Met from supple-
mental organic Fe sources so as to balance Lys and Met
in each experimental diet. The analyzed Fe concentra-
tions in diets are listed in Table 2.
Sample Collections and Preparations

At both 14 and 21 d of age, 32 broilers (4 chickens
from each replicate cage) from each treatment were
selected based on the average body weight of the cage,
and anesthetized by injections of sodium pentobarbital



Table 1. Ingredients and nutrient composition of the basal diets
for broilers (as-fed basis).

ItemA, % unless
noted

Dextrose-casein
diet (d 1 to 7)

Corn−soybean
meal diet (d 8 to 21)

Ingredient
corn - 54.57
Soybean meal - 37.26
Dextrose1 61.78 -
Casein1 20.00 -
Cellulose1 3.00 -
Soybean oil 4.00 4.00
NaCl1 0.88 0.30
CaHPO4¢H2O - 2.01
CaCO3

1 2.66 1.10
KH2PO4

1 1.61 -
NaHCO3

1 1.01 -
MgSO4¢7H2O

1 0.35 -
KHCO3

1 1.03 -
Gly1 2.01 -
DL-Met1 0.35 0.24
L-Arg1 1.01 -
Micronutrients2,3 0.31 0.32
Cornstarch + Fe4 - 0.20
Nutrient
composition

ME, MJ/kg 12.82 12.46
CP5 22.03 21.42
Lys 1.40 1.06
Met 0.86 0.58
Met + cys 0.94 0.92
Ca5 1.06 1.01
Total P 0.70 0.67
Nonphytate P 0.51 0.45
Fe5, mg/kg 3.26 69.86

1Reagent grade.
2Provided per kilogram of diet (d 1 to 7): vitamin A (as retinyl acetate),

5,200 IU; cholecalciferol, 600 IU; vitamin E (as dl-a-tocopheryl acetate),
20 IU; vitamin K3, 2 mg; vitamin B1, 20 mg; vitamin B2, 10 mg; vitamin
B6, 6 mg; vitamin B12, 0.04 mg; calcium pantothenate, 30 mg; niacin, 50
mg; folic acid, 4 mg; biotin, 0.60 mg; ascorbic acid, 250 mg; choline chlo-
ride, 2,000 mg; Cu (CuSO4¢5H2O), 8 mg, Zn (ZnSO4¢7H2O), 40 mg; Mn
(MnSO4¢H2O), 80 mg; I (KI), 0.35 mg; Se (Na2SeO3), 0.15 mg; H3BO3, 9
mg; NaMoO4¢2H2O, 9 mg.

3Provided per kilogram of diet (d 8 to 21): vitamin A (as retinyl ace-
tate), 15,000 IU; cholecalciferol, 4,500 IU; vitamin E (as dl-a-tocopheryl
acetate), 24 IU; vitamin K3, 3 mg; vitamin B1, 3 mg; vitamin B2, 9.6 mg;
vitamin B6, 3 mg; vitamin B12, 0.018 mg; calcium pantothenate, 15 mg;
niacin, 39 mg; folic acid, 1.5 mg; biotin, 0.15 mg; choline chloride,700 mg;
Cu (CuSO4¢5H2O), 8 mg, Zn (ZnSO4¢7H2O), 60 mg; Mn (MnSO4¢H2O),
110 mg; I (KI), 0.35 mg; Se (Na2SeO3), 0.15 mg.

4Fe supplements added in place of equivalent weights of cornstarch.
5Determined by triplicate assays.

Table 2. Analyzed Fe concentrations in diets for broilers from 8
to 21 d of age.1

Fe source2
Added Fe,
mg/kg

Analyzed Fe
contents, mg/kg

Control 0 69.86
FeSO4๒7H2O 60 127.89
Fe-Met W 60 133.42
Fe-Pro M 60 128.15
Fe-Pro ES 60 135.58

1Values of analyzed Fe contents are based on duplicate determinations.
2Fe-Met W = Fe-Met with a weak chelation strength (Qf = 1.37); Fe-

Prot M = Fe proteinate with moderate chelation strength (Qf = 43.6); Fe-
Prot ES = Fe proteinate with extremely strong chelation strength (Qf =
8.59£ 103).
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(20 mg/kg body weight) via a wing vein (the birds were
still alive and not euthanized). Then the blood was col-
lected aseptically from the hepatic portal vein, and the
plasma was separated and stored at -20°C for analysis of
Fe content. Only at 21 d of age, after blood collection,
the birds were killed by cervical dislocation, and the duo-
denum, jejunum, and ileum were separated and flushed
with ice-cold saline solution, and slit lengthwise, and the
intestinal mucosa was scraped from the underlying sub-
mucosa with an ice-cold microscope slide, immediately
frozen in liquid nitrogen and then stored at �80°C until
further analyses. The samples from 4 birds in each repli-
cate cage were pooled into 1 sample in equal ratios
before analysis.
Measurements of Fe, Ca, and CP
Concentrations

The concentrations of Fe in the feed ingredients, diets,
tap water, and plasma were measured by inductively
coupled plasma emission spectroscope (model IRIS
Intrepid II, Thermal Jarrell Ash, Waltham, MA) after
wet digestions with HNO3 and HCIO4 as described by
Li et al. (2017). Validation of the Fe analysis was con-
ducted using bovine liver powder (GBW (E) 080193,
National Institute of Standards and Technology, Bei-
jing, China) as a standard reference. Concentrations of
Ca and CP in feed ingredient and diet samples were
determined as described by AOAC (1990).
Determinations of mRNA Expression Levels
by Real-Time Quantitative PCR

The primer information of DMT1, FPN1, related to
b0,+-type amino acid transporter (rBAT), excitatory
amino acid transporter 3 (EAAT3), LAT1, B0AT1, y+

L-type amino acid transporter 1 (y+LAT1), y+ L-type
amino acid transporter 2 (y+LAT2), b-actin (house-
keeping gene) and glyceraldehyde 3-phosphate dehydro-
genase (GAPDH, housekeeping gene) genes
(housekeeping genes were chosen with Primer Express
Software [Applied Biosystems Inc., Foster, CA]) was the
same as shown in our previous studies (Lu et al., 2018;
Liao et al., 2019). The RNA isolation, reverse transcrip-
tion, and real-time qPCR were performed as described
previously (Lu et al., 2018).
Western Blotting

The intestinal mucosa samples were homogenized in
ice-cold RIPA lysis buffer (Beyotime Institute of Bio-
technology, Haimen, China) containing protease inhibi-
tors (Roche, Penz-berg, Germany). Then they were
centrifuged for 4 min (12000£ g, 4°C) and the superna-
tants were collected for Western-blot analysis
(Zhang et al., 2017). The primary antibodies and dilu-
tion rates were as follows: DMT1, bs-3577R, 1:500
(Bioss, Beijing, China); FPN1, bs-4906R, 1:500 (Bioss);
and GAPDH, ab22555, 1:5,000 (Abcam, Cambridge,
MA). The GAPDH protein was used to normalize the
expression levels of the target protein (Qin et al., 2017).
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Statistical Analyses

All data were analyzed by one-way ANOVA using the
general linear model procedures of SAS (version 9.2;
SAS Inst. Inc., Cary, NC). Each replicate cage served as
the experimental unit. Differences among means were
tested by the LSD method, and statistical significance
was detected at P ≤ 0.05.
RESULTS

Growth Performance and Mortality

Fe source did not affect (P > 0.31) the ADG, ADFI, gain:
feed ratio, and mortality during d 8 to 21 (data not shown).
Iron Contents in Plasma From the Hepatic
Portal Vein

Iron source did not affect (P > 0.97) plasma Fe con-
tents from the hepatic portal vein of broilers at 14 d of
age, but influenced (P < 0.001) them at 21 d of age
(Table 3). The plasma Fe contents were higher (P <
0.02) in Fe-supplemented groups (0.98−1.38 mg/mL)
than in the control group (0.80 mg/mL), and in Fe-Prot
M (1.38 mg/mL) and Fe-Prot ES (1.30 mg/mL) groups
than in Fe-Met W (0.98 mg/mL) and FeSO4๒7H2O
(1.00 mg/mL) groups on d 21 (P < 0.0002).
mRNA Levels of Fe and Amino Acid
Transporters

The mRNA levels of DMT1 and FPN1 were greater
(P < 0.02) in the duodenum than in the jejunum and
ileum, and in the jejunum than in the ileum (P < 0.05)
(Table 4). Compared with the control group, the addi-
tion of Fe decreased (P < 0.02) the DMT1 mRNA levels
in the duodenum and jejunum and FPN1 mRNA levels
in the duodenum, and no differences (P > 0.20) were
observed among different Fe sources.

The rBAT and y+LAT2 mRNA levels of broilers were
greater (P < 0.03) in the duodenum and jejunum than in
Table 3. Effect of dietary Fe source on Fe contents in plasma
from the hepatic portal vein of 14 and 21-day-old chicks.1

Fe Source2
Fe contents in plasma2, mg/mL

d 14 d 21

Control 0.81 0.80c

FeSO4๒7H2O 0.80 1.00b

Fe-Met W 0.74 0.98b

Fe-Pro M 0.80 1.38a

Fe-Pro ES 0.73 1.30a

Pooled SE 0.073 0.065
P-value 0.978 <0.001

a,b,cMeans within the same column lacking a common superscript differ
(P < 0.03).

1Data represent the means of 8 replicate cages (4 birds per cage; n= 8).
2Fe-Met W=Fe-Met with a weak chelation strength (Qf = 1.37), Fe-

pro M=Fe proteinate with a moderate chelation strength (Qf = 43.6), Fe-
pro ES = Fe proteinate with an extremely strong chelation strength
(Qf = 8.59£ 103).
the ileum (Tables 5 and 7). And the B0AT1, LAT1 or
y+LAT1 mRNA expression also tended to decrease
along the intestinal tract (Tables 5−7). However, the
EAAT3 mRNA levels of broilers were lower (P < 0.05)
in the duodenum than in the jejunum and ileum
(Table 6). However, Fe source did not affect (P > 0.10)
all of the abovementioned parameters in all of small
intestinal segments of broilers.
DMT1 and FPN1 Protein Levels

Iron source did not affect (P > 0.25) protein expres-
sion levels of both DMT1 and FPN1 in the duodenum,
jejunum, and ileum of broilers (Table 8).
DISCUSSION

In the present study, the birds were depleted of Fe
from d 0-7 post-hatch to increase their sensitivity to Fe
addition. Similar approach was used in our previous
studies on Fe absorption in broilers (Zhang et al., 2016b,
2017; Lu et al., 2018). The first part of our hypothesis
that the organic Fe sources with greater Qf values would
have higher Fe absorption has been supported by the
results of the present study. However, the second part of
our hypothesis that the greater absorption of Fe would
be related to increased Fe and amino acid transporters
in the small intestine of broilers has not been supported
by the present results. Iron absorbed from intestinal-
mucosal cells is transported to the portal blood of liver,
and thus Fe content in plasma from the hepatic portal
vein can accurately reflect the Fe transport and absorp-
tion from the intestinal lumen. There was no effect on
plasma Fe on d 14 amongst treatments compared with
on d 21 in the present study. This might be because the
Fe accumulation in the body on 14 was less than that on
d 21, and the time of d 14 was not long enough to reflect
the differences in plasma Fe among treatments of differ-
ent Fe sources. The results on the plasma Fe contents
from the hepatic portal vein on d 21 indicated that the
absorption of Fe from the Fe-Prot M and Fe-Prot ES
was higher than that of Fe from Fe-Met W and FeSO4,
indicating that organic Fe sources with greater Qf values
had higher Fe absorption in the small intestine of
broilers. This might be due to that the organic Fe with
greater Qf values could better resist to the chelating
effect of interference factors such as dietary Ca, render-
ing higher Fe absorption. These findings are in agree-
ment with our previous results obtained from in situ
ligated small intestinal loops of broilers (Zhang et al.,
2017; Lu et al., 2018). These results are also similar to
our previous findings on Mn or Zn contents in plasma
from the hepatic portal vein of broilers, which indicated
that organic Mn or Zn absorption increased with
increasing chelation strengths (Ji et al., 2006; Bai et al.,
2012; Yu et al., 2017; Liao et al., 2019).
The DMT1 and FPN1 are important transporters in

Fe absorption. The DMT1 is located in the apical mem-
brane of intestinal mucosal cells, and free Fe2+



Table 4. Effect of dietary Fe source on DMT1 and FPN1mRNA levels in small intestinal segments of broilers at 21 d of age.1

Fe source
DMT1, RQ2,3 FPN1, RQ2,3

Duodenum3 Jejunum3 Ileum3 Pooled SE P value Duodenum3 Jejunum3 Ileum3 Pooled SE P value

Control 2.54Aa 0.60Ba 0.054C 0.362 <0.001 1.36Aa 0.65B 0.047C 0.129 <0.001
FeSO4๒7H2O 1.19Ab 0.25Bb 0.052C 0.133 <0.001 0.98Ab 0.32B 0.044C 0.062 <0.001
Fe-Met W 0.72Ab 0.31Bb 0.052C 0.013 <0.001 0.89Ab 0.41B 0.044C 0.063 <0.001
Fe-Pro M 0.84Ab 0.23Bb 0.055C 0.106 <0.001 0.79Ab 0.48B 0.042C 0.105 <0.001
Fe-Pro ES 0.79Ab 0.33Bb 0.051C 0.083 <0.001 0.75Ab 0.38B 0.041C 0.066 <0.001
Pooled SE 0.262 0.23 0.006 0.104 0.107 0.005
P-value <0.001 0.015 0.979 <0.001 0.253 0.929

a,bMeans within the same column lacking a common superscript differ (P < 0.02).
A,B,CMeans within the same row lacking a common superscript differ (P < 0.03).
1Fe-Met W=Fe-Met with a weak chelation strength (Qf = 1.37), Fe-pro M=Fe proteinate with a moderate chelation strength (Qf = 43.6), Fe-pro

ES = Fe proteinate with a extremely strong chelation strength (Qf = 8.59£ 103); DMT1=divalent metal transporter 1; FPN1= ferroportin 1; RQ= rela-
tive quantity.

2The mRNA levels were calculated as the ratio of target gene mRNA to the geometric mean of GAPDH and b-action mRNA, and RQ= 2�DDCT

(CT= threshold cycle).
3Data represent the means of 8 replicate cages (4 birds per cage; n= 8).

Table 5. Effect of dietary Fe source on B0AT1 and rBAT mRNA levels in small intestinal segments of broilers at 21 d of age.1

Fe Source
B0AT1, RQ2,3 rBAT, RQ2,3

Duodenum3 Jejunum3 Ileum3 Pooled SE P-value Duodenum3 Jejunum3 Ileum3 Pooled SE P value

Control 1.31A 1.29A 0.69B 0.14 0.012 1.09A 0.82B 0.36C 0.082 <0.001
FeSO4๒7H2O 0.85 0.81 0.57 0.10 0.113 0.99A 0.73B 0.40C 0.056 <0.001
Fe-Met W 0.99 0.93 0.58 0.13 0.075 0.94A 0.77A 0.34B 0.063 <0.001
Fe-Pro M 1.12 1.01 0.85 0.13 0.382 0.93A 0.72B 0.44C 0.064 <0.001
Fe-Pro ES 0.99 0.91 0.73 0.12 0.252 1.04A 0.71B 0.34C 0.073 <0.001
Pooled SE 0.14 0.13 0.084 0.065 0.09 0.03
P-value 0.235 0.123 0.154 0.372 0.923 0.112

A,B,CMeans within the same row lacking a common superscript differ (P < 0.05).
1Fe-Met W=Fe-Met with a weak chelation strength (Qf = 1.37), Fe-pro M =Fe proteinate with a moderate chelation strength (Qf = 43.6), Fe-pro

ES = Fe proteinate with a extremely strong chelation strength (Qf = 8.59£ 103); B0AT1=b0,+-type amino acid transporter 1; rBAT= related to b0,
+-type amino acid transporter; RQ= relative quantity.

2The mRNA levels were calculated as the ratio of target gene mRNA to the geometric mean of GAPDH and b-action mRNA, and RQ= 2�DDCT

(CT= threshold cycle).
3Data represent the means of 8 replicate cages (4 birds per cage; n= 8).

Table 6. Effect of dietary Fe source on EAAT3 and LAT1mRNA levels in small intestinal segments of broilers at 21 d of age1.

EAAT3, RQ2,3 LAT1, RQ2,3

Fe Source Duodenum3 Jejunum3 Ileum3 Pooled SE P value Duodenum3 Jejunum3 Ileum3 Pooled SE Pvalue

Control 1.18 1.77 1.56 0.21 0.162 0.89A 0.72A 0.26B 0.11 0.001
FeSO4๒7H2O 0.87B 1.43A 1.58A 0.14 0.003 0.85A 0.71A 0.23B 0.097 <0.001
Fe-Met W 0.94B 1.53A 1.59A 0.13 0.004 1.05A 0.62B 0.23C 0.12 <0.001
Fe-Pro M 0.97C 1.37B 1.82A 0.12 <0.001 1.17A 0.52B 0.28B 0.086 <0.001
Fe-Pro ES 1.11 1.35 1.56 0.18 0.243 1.08A 0.51B 0.22B 0.14 0.001
Pooled SE 0.12 0.2 0.16 0.14 0.13 0.03
P-value 0.341 0.562 0.803 0.483 0.692 0.561

A,B,CMeans within the same row lacking a common superscript differ (P < 0.05).
1Fe-Met W=Fe-Met with a weak chelation strength (Qf = 1.37), Fe-pro M =Fe proteinate with a moderate chelation strength (Qf = 43.6), Fe-pro

ES = Fe proteinate with a extremely strong chelation strength (Qf = 8.59£ 103); EAAT3=Excitatory amino acid transporter 3; LAT1=L-type amino
transporter 1; RQ= relative quantity.

2The mRNA levels were calculated as the ratio of target gene mRNA to the geometric mean of GAPDH and b-action mRNA, and RQ= 2�DDCT

(CT= threshold cycle).
3Data represent the means of 8 replicate cages (4 birds per cage; n= 8).
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discharged from the stomach can only be absorbed into
the epithelial cells of the small intestine through DMT1
(Tako et al., 2010). The FPN1 exists in the basement
membrane of mammalian intestinal epithelial cells,
which is the sole Fe exporter that transfers Fe from
enterocytes to bloodstream (Donovan et al., 2005).
Some studies in bull calves and pigs have demonstrated
that the addition of Fe resulted in a decrease of DMT1
and FPN1 expressions in the duodenum (Hansen et al.,
2009, 2010). Jia et al. (2015) reported that supplemental
Fe as FeSO4 or Fe-Gly chelate decreased the mRNA
expression of DMT1 in the ligated duodenal loops of
broilers. Our previous studies also confirmed that
regardless of Fe source, the addition of Fe decreased the
mRNA expression of DMT1 in situ ligated duodenal,
jejunal, and ileal loops of broilers (Zhang et al., 2016b;
Lu et al., 2018). Similarly, in the present study, broilers
fed diets supplemented with Fe had lower duodenal



Table 7. Effect of dietary Fe source on y+LAT1 and y+LAT2mRNA levels in small intestinal segments of broilers at 21 d of age.1

Fe Source
y+LAT1, RQ2,3 y+LAT2, RQ2,3

Duodenum3 Jejunum3 Ileum3 Pooled SE P value Duodenum3 Jejunum3 Ileum3 Pooled SE P value

Control 1.07A 0.73B 0.34C 0.10 <0.001 1.17A 0.65B 0.19C 0.13 <0.001
FeSO4๒7H2O 1.19A 0.72B 0.40C 0.14 0.002 1.05A 0.71A 0.20B 0.14 0.001
Fe-Met W 1.03A 0.73AB 0.41B 0.13 0.015 0.95A 0.54B 0.14C 0.095 <0.001
Fe-Pro M 1.12A 0.75B 0.49B 0.12 0.007 1.04A 0.67B 0.21C 0.11 <0.001
Fe-Pro ES 1.05A 0.79A 0.38B 0.12 0.002 1.08A 0.54B 0.16C 0.10 <0.001
Pooled SE 0.15 0.14 0.052 0.14 0.14 0.02
P-value 0.953 0.992 0.403 0.843 0.882 0.134

A,B,CMeans within the same row lacking a common superscript differ (P < 0.05).
1Fe-Met W=Fe-Met with a weak chelation strength (Qf = 1.37), Fe-pro M =Fe proteinate with a moderate chelation strength (Qf = 43.6), Fe-pro

ES = Fe proteinate with a extremely strong chelation strength (Qf = 8.59£ 103); y+LAT1= y+ L-type amino acid transporter 1; y+LAT2= y+ L-type
amino transporter 2; RQ= relative quantity.

2The mRNA levels were calculated as the ratio of target gene mRNA to the geometric mean of b-action and glyceraldehyde-3-phosphate dehydrogenase
mRNA, and RQ= 2�DDCT (CT= threshold cycle).

3Data represent the means of 8 replicate cages (4 birds per cage; n= 8).

Table 8. Effect of dietary Fe source on DMT1 and FPN1 protein levels in small intestinal segments of broilers at 21 d of age.1

Fe Source
DMT1, RQ2,3

FPN1, RQ2,3

Duodenum Jejunum Ileum Duodenum Jejunum Ileum

Control 1.00 1.00 1.00 1.00 1.00 1.00
FeSO4¢7H2O 1.20 1.10 1.09 1.00 1.02 0.91
Fe-Met W 1.30 1.05 0.92 0.86 0.95 0.87
Fe-Pro M 1.28 0.97 1.04 0.83 1.06 0.97
Fe-Pro ES 1.16 0.97 0.97 0.89 0.90 0.99
Pooled SEM 0.13 0.05 0.08 0.08 0.11 0.08
P-value 0.513 0.262 0.621 0.453 0.893 0.712

1Fe-Met W=Fe-Met with a weak chelation strength (Qf = 1.37), Fe-pro M = Fe proteinate with a moderate chelation strength (Qf = 43.6), Fe-pro
ES = Fe proteinate with a extremely strong chelation strength (Qf = 8.59£ 103). DMT1= divalent metal transporter 1; FPN1= ferroportin 1.

2The protein levels were calculated as the RQ of the target gene protein to the glyceraldehyde-3-phosphate dehydrogenase protein, and the average
expression level of protein in the control treatment was used as a calibrator.

3Data represent the means of 8 replicate cages (4 birds per cage; n= 8).
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DMT1 and FPN1 mRNA levels than those fed the con-
trol diet, indicating that Fe supplementation downregu-
lates Fe transporters and this gives more evidence that
Fe transporter expression is related to supplemental Fe
level in diets.

In addition, in the present study, there were no differ-
ences in theDMT1 and FPN1mRNA levels among differ-
ent Fe sources, which is consistent with our previous
results (Zhang et al., 2017; Lu et al., 2018). However,
Zhuo et al. (2014) found that the rats perfused with Fe-
Gly chelate had lower DMT1 and FPN1 mRNA levels in
the duodenum than those perfused with FeSO4 at 2 or 4 h
after gavage. The above disparities might be caused by
different experimental animals, methods of Fe adminis-
tration or Fe sources used in these studies. The present
study demonstrated that portal vein Fe was increased as
Fe was added to the diet, but this increase was not medi-
ated by changes in Fe transporters in the intestinal tract.
Thus, Fe-Prot M and Fe-Prot ES sources are more bio-
available compared with Fe-Met W and FeSO4 when fed
to broilers.

Proteins are degraded in the stomach and small intes-
tine into small oligopeptides and amino acids. And then,
amino acids are transported into the enterocyte via dif-
ferent amino acid transporters that vary in substrate
specificity (Kanai and Hediger, 2004; Palacin and
Kanai, 2004; Verrey et al., 2004). In the current study,
the rBAT, LAT1, y+LAT1 and y+LAT2 mRNA levels
were greater in the duodenum than in the ileum, whereas
the EAAT3 mRNA levels were lower in the duodenum
than in the ileum. However, Liao et al. (2019) found
that the mRNA expression of rBAT and LAT1 increased
gradually from proximal to distal small intestine. The
above disparities might be caused by different experi-
mental diets used in the 2 studies. Gilbert et al. (2007)
confirmed that the mRNA expression of EAAT3 was the
greatest in the ileum, the lowest in the duodenum, and
intermediate in the jejunum of broilers, which is similar
to our findings, implying increased capacity for gluta-
mate absorption in the distal small intestine.
It is hypothesized that organic mineral complex or

chelate might be absorbed in their intact form (Ash-
mead, 2001). A previous study in rats demonstrated
that the Zn−L-His complex could be absorbed via its
intact form in the perfused rat intestine (Wapnir et al.,
1983). Some earlier studies stated that amino acids facil-
itated the absorption of copper, but the mechanism is
not well understood (Kies and Fox, 1989; Aoyagi and
Baker, 1994). Gao et al. (2014) revealed that the absorp-
tion of copper in amino acid complex appeared to be
mediated by amino acid transporters in caco-2 cells. A
previous study from our laboratory demonstrated that
LAT1, and B0AT1 might participate in the absorption
of Fe as Fe amino acid chelates in situ ligated jejunum
or ileum loops of broilers (Lu et al., 2018). However, in
the present study, there were no differences in the
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mRNA expression levels of amino acid transporters
among different Fe sources, indicating that these amino
acid transporters are not involved in the absorption of
Fe from the organic Fe sources. The different methods of
Fe administration (intestinal perfusion v. dietary supple-
mentation) in the 2 studies might partially explain the
inconsistency. Therefore, in the present study, it could
not be elucidated why the organic Fe sources with stron-
ger chelation strengths had a higher Fe absorption in
the small intestine. Further efforts are needed to address
the mechanisms of the absorption of Fe as these organic
Fe sources in the small intestine of broilers.

In conclusion, the results from the present study indi-
cate that our hypothesis is partially correct. The organic
Fe sources with stronger chelation strengths exhibited
higher Fe absorption in the small intestine of intact
broilers. The mRNA expression of Fe and amino acid
transporters varied from proximal to distal small intes-
tine. Fe and amino acid transporters were not different
among broilers fed different sources of Fe and this indi-
cates that the greater Fe content in in portal plasma of
broilers fed Fe-Prot M and Fe-Prot ES was not due to
increased Fe and amino acid transporters and that fur-
ther research is necessary to determine why Fe content
in portal plasma was greater in broilers fed Fe-Prot M
and Fe-Prot ES.
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