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The activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth,
proliferation and survival, is orchestrated by protein kinases via phosphorylation. A critical issue is the study of the
mechanisms of cancer cells for the development of more effective drugs. With the application of the new
proteomic technologies, together with the advancement in the sequencing of the human proteome, patients will
therefore be benefited by the discovery of novel therapeutic and/or diagnostic protein targets. Furthermore, the
advances in proteomic approaches and the Human Proteome Organization (HUPO) have opened a new door
which is helpful in the identification of patients at risk and towards improving current therapies. Modification of the
signaling-networks via mutations or abnormal protein expression underlies the cause or consequence of many
diseases including cancer. Resulting data is used to reveal connections between genes proteins and compounds
and the related molecular pathways for underlining disease states. As a delegate of HUPO, for human proteome on
children assays and studies, we, at Hospital Universitario Nifio Jesus, are seeking to support the human proteome in
this context. Clinical goals have to be clearly established and proteomics experts have to set up the appropriate
proteomic strategy, which coupled to bioinformatics will make it possible to achieve new therapies for patients with
poor prognosis. We envision to combine our up-coming data to the HUPO organization in order to support
international efforts to advance the cure of cancer disease.

Background

Proteomics is a powerful tool in biomarker discovery
and mechanism understanding. Proteomics is the next
generation following genomics. Using proteomics, re-
searchers can efficiently perform large-scale screening to
achieve valuable information [1].

The Human Proteome Organization (HUPO) main
goal is to serve the Public Health Service in an inter-
national manner via collaborators from the best expert-
ise and well-known excellence academics. In this
context, we would like to point out the important con-
tribution from Spanish Proteomic Society (SeProt),
European Proteomic Society (EUPA) and HUPO to ob-
tain the sequence of the human proteome. We aim to
contribute with our future data from Hospital Nifno Jesus
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using body fluids (such as bone marrow, peripheral blood)
from children suffering cancer, and by collaboration with
several international hospitals and research centers of
prestige for this important labor, which will benefit chil-
dren with poor prognoses as at present there is no correct
therapy for all types of pediatric cancers [2-5].

As different phosphosites in a protein trigger either
protein activation or inactivation; phosphosites can be
used for quantification. The high number which can be
identified as altered phosphoproteins in a clinical study,
implies that many can also be reported with key roles in
tumor progression and/or drug resistance. Indeed, when
obtaining phosphoproteomics data in clinical research,
vast knowledge of drug resistance appear, and thus, new
insights are offered for future drug candidates. Several
articles show that proteomic analysis is a powerful tool
for profiling the phosphorylation patterns and may help
to better understand drug resistance [6—11]. We aim to
show some proteomic and bioinformatics tools which
are useful for clinical research and which contribute
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towards accurate diagnoses and improve therapies in
order to benefit the patients.

Findings

Phosphoproteomics for deciphering drug resistance and
new therapies related to phosphorylation pathways in
cancer

Our aim is to outline as basic ideas and tools of proteo-
mics, how evolution is aiming to reach clinical advances.
Amino acids site-specific phosphorylation assignments
on thousands of proteins in a single experiment are pos-
sible. The combination of different proteomic-MS strat-
egies is already being carried out to characterize signaling
pathways that govern oncogenesis and also to unravel tar-
gets of kinase inhibitors, difficult to characterize because of
spatial and temporal cellular events. It is, therefore, helpful
for understanding cell pathways and facilitating drug dis-
covery [1].

Sample preparation

The sample preparation step is the key to successful
phosphoproteomic-analysis. These include: (a) be snap-
frozen; (b) include treatments with phosphatase inhibi-
tors to avoid modifying phosphopeptides during sample
work-up; and (c) avoid salts and detergents, which inter-
fere with subsequent analyses. Using Immobilized metal
ion affinity chromatography (IMAC), titanium dioxide
metal-based chromatography (TiO,), zirconium dioxide
(ZrO,) and sequential elution from IMAC (SIMAC), the
negatively charged phosphopeptides are purified by their
affinity to positively charged metal ions [1, 8].

During IMAC and TiO, operations, simple and com-
plex samples containing phosphopeptides and non-
phosphorylated peptides are dissolved in an acidic
solution to reduce the non-specific binding of acidic
peptides, and to stimulate the electrostatic interactions
between the negatively charged peptides, mainly phos-
phopeptides, and the metal ions. IMAC mainly elutes
multiple-phosphopeptides while TiO, chiefly elutes
mono-phosphopeptides. Both resins have the drawback
of binding acidic non-phosphorylated peptides (nega-
tively charged peptides), as peptides containing acidic
amino acid residues (e.g glutamic acid and aspartic
acid), can also bind to the metal ions. This drawback on
IMAC (Fe®") is circumvented via converting acidic
amino acid residues to methyl esters and esterification
of the acidic residues prior to the MS analysis. In
addition, higher specificity is achieved and yield com-
pared to IMAC (Fe3*) for the selective enrichment of
phosphorylated peptides from model proteins when
using 2,5-dihydroxybenzoic acid (DHB) with TiO,. In
fact, more phosphopeptides are bound to the metal ions
and more phosphopeptides can be isolated by using am-
monium hydroxide as the eluent by use of glycolic acid
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in the loading buffer of TiO,. SIMAC is the combination
of IMAC with TiO, protocols. It includes improvements
in both resins to be coupled in an efficient manner in
order to allow enrichment of mono-and multiple-
phosphorylated peptides in a single experiment. Mono-
phosphorylated peptides mainly elute from IMAC (Fe**)
under acidic conditions whereas multi-phosphorylated
peptides elute at high basic pH.

ZrQ, is another useful phosphopeptide enrichment
prior to MS analysis and its principle is based on metal
affinity chromatography such as IMAC and TiO,. The
relevant clue related to ZrO, is that it permits the isola-
tion of single phosphorylated peptides in a more select-
ive manner than TiO, [12-24]. In addition, purification
of phosphorylated proteins can be carried out via
antibody-purification. This methodology is highly effi-
cient when purifying tyrosine —phosphorylated proteins,
and it can also be coupled to phosphoenrichments such
as IMAC, TiO,, ZrO, and SIMAC for further MS ana-
lysis. This is an important advantage as phosphorylation
on tyrosines is under-represented by MS-assays, thus
the use of specific antibodies to enrich tyrosine phos-
phorylated peptides from complex samples is of advan-
tage [25].

When combining the previously mentioned phos-
phoenrichments with strong cation and anion exchange
(SCX and SAX) or hydrophilic interaction chromatog-
raphy (HILIC), large-scale phosphoproteomic studies of
interest can be carried out successfully. During SAX op-
erations, a negatively charged analyte is attracted to a
positively charged solid support, and during SCX opera-
tions, a positively charged analyte is attracted to a nega-
tively charged solid support. Both techniques were, for
the first time, successfully coupled to IMAC, achieving
greater recovery and identification by MS of important
phosphorylated peptides originating from signalling
pathways and membrane proteins respectively, therefore
making it possible to carry out relevant scientific studies
following those protocols described in the references
previously detailed. In addition, today’s scientists use
these tools to achieve important biological understand-
ing. HILIC is a liquid/liquid extraction method among
mobile and stationary phases (polar). On the surface of
the stationary phase a water rich layer is obtained.
Therefore, distribution of the analytes among these
layers occurs. More polar compounds show stronger
interaction with the stationary aqueous-layer than less
polar compounds, taking place in stronger retention
[26-28].

Improvement in methodologies

Improvement in methodologies to enrich for phosphory-
lated residues from kinases is clearly necessary for clin-
ical cancer research. This is difficult due to: (1) the low
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abundance of those signalling molecules within cells; (2)
the stress/stimulation time-duration, of phosphorylated
kinases; (3) the time adaptation over signalling pathways.
To overpass this issue, several approaches-combinations
can be applied: for example SIMAC coupled to SCX and
LC-MSMS. In every case it is always necessary to optimise,
by expertise proteomics, the right strategy (several prote-
omic combined tools) to achieve the clinical goal previously
established. In addition, using ‘the combination of
Ci15-TiO,-C1g chromatography, efficient phosphopeptide-
loading conditions are increased for clinical samples
containing kinases or low expressed proteins and more
importantly, “it is without compromise on sample loading or
analysis based-times as, it permits the complementary
measurement of the enriched phosphopeptides and their
non-phosphorylated — counterparts in  following assays,
making for quantitative phosphoproteomics” [29]. In the
combination of several phosphoproteomic strategies, sig-
naling aberrant pathways involved in cancer progression
can be understood, thus drug resistance can be reduced
and therapies can be improved.

Discussion

Combining phosphoproteomics and bioinformatics for
deciphering drug resistance and new therapies related to
phosphorylation pathways in cancer

The proteomic community, EUPA and HUPO played
very important roles, and today many hospitals are ap-
plying those proteomic advances to study the evolution
of patients, as by combining proteomics to genomics
data, many diseases which were not cured in the past,
have now been improved [30, 31].

For example, D’Souza RC et al. [32] coupled assays of
changes in protein expression, phosphorylation, protein
interactions and transcriptional regulation, allowing a
brilliant scheme of the dynamic signaling events under-
lying TGF-B-induced changes in cell behavior. Their
study evokes that temporal regulation of different pro-
teins could be a mechanism to arbitrate the effects of
TGEF-p in keratinocytes. They also showed that early
TGE-pB-signaling is a combination of pro- and anti-
proliferative molecules. It is known that TGF-p signaling
actively support cell-motility via the inducing of epithe-
lial to mesenchymal transitions in cancer. Authors car-
ried out time resolved assays of the phosphoproteomic
profile of cultured human keratinocytes undergoing
epithelial-to mesenchymal transitions and cell cycle ar-
rest as a consequence of stimulation with TGF-p. They
were able to quantify significant changes in around
3,000 phosphorylation sites regulated via TGF-p. More-
over, following their phosphoproteomic strategy, authors
discovered that TGF-f induced phosphorylation of
AKT and GSK3a. This study explains that the combin-
ation of system-level assays with knowledge of specific
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phosphorylated sites facilitate a deeper understanding
of the mechanisms of crosstalk pathways.

Another example shows how phospho-quantitative as-
says in skin cancer (via SILAC mouse technology
coupled to MS) can complement genetic assays, via dif-
ferent states using mouse models. Zanivan et al. [33]
carried out phosphoproteomics to get the specific mole-
cules involved in different cancer stages, observing that
the cell growth and cell adhesion are altered pathways to
driver malignant cells. Moreover authors observed that
when coupling phosphoproteomics and prediction of
kinase activity, in this research study, PAK4-PKC/SRC
network was highly deregulated in SCC although it was
not in papilloma. As they said “This detailed molecular
picture, both at the proteome and phosphoproteome level,
will prove useful for the study of mechanisms of tumor
progression”.

The importance of the heat shock protein 90 (Hsp90)
inhibitors as chemotherapeutic agents in diseases such
as cancer is increasing, but their total consequences on
the proteome are yet unknown. Sharma et al. [34] via
quantitative-MS mapped map protein expression
changes associated with the application of the Hsp90 in-
hibitor,  17-(dimethylaminoethylamino)-17-demethoxy-
geldanamycin  (17-DMAG). In this study, they
demonstrated that the activation of a heat shock re-
sponse with induced expression of molecular chaper-
ones, that re-fold misfolded proteins and proteases, can
degrade irreversibly damaged polypeptides. Moreover,
they were able to quantify 6,000 proteins in HeLa cells
via SILAC. In spite of the high number of substrates re-
lated to Hsp90, via bioinformatics, they observed that
the preferred ones were proteins related to DNA damage
response, and protein kinases, especially tyrosine ki-
nases. In addition, they observed that the inhibition of
Hsp90 triggered to 34 % down- and 6 % up-regulation of
the phosphoproteome. These assays illustrate the cellular
response to Hsp90 inhibition at the proteome level and
gives light on the mechanisms via Hsp90 which could
be used to target cancer cells.

Rigbolt et al. [35] observed an interaction of DNMTs
for early differentiation with the polymerase-associated
factor 1- transcriptional elongation complex. It is able to
link to DNMT target genes encoding OCT4 and
NANOG. Therefore, this assay gives a possible molecu-
lar clue for silencing OCT4 and NANOG for differenti-
ation cell step. The authors carried out quantitative
proteomic and phosphoproteomic assays of human em-
bryonic stem cells to observe cellular events for differen-
tiation cells. They were able to identify around 7,000
proteins and 24,000 phosphorylation sites. From them, 50 %
showed different expression-profiles for differentiation-step.
Moreover, they got the phosphoproteome-core of human
embryonic stem cells. The proteins which showed different
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phosphorylation-pattern are linked to several kinases, tran-
scription factors and DNA methyltransferases. Thus, this
study clearly shows a new molecular-connector for silencing
the genes OCT4 and NANOG for differentiation-step.

Phosphorylated peptides/proteins mass spectrometry
data need to be validated

The incapacity to adequately validate MS/MS spectral
assignments for each phosphorylated peptide is of im-
portance in relation to the tendency towards massive
phosphoproteomic data. If adequately carried out, the
assignment of all abundant ions in the spectrum is re-
quired for spectral validation. This implies a large time
commitment. In order to avoid this drawback, many
mass spectrometry laboratories have used other search
strategies and statistical methods to make an estimate of
false positive identification rates. For phosphoproteo-
mics, statistical validation is of great importance in com-
parison to the wider field of proteomics, given that each
phosphorylation is defined, typically, by a single MS/MS
spectrum. Using statistical methods, unfortunately it is
not possible to know if any given phosphorylation site is
correctly identified, as the MS/MS spectrum is not vali-
dated. For biologists with an interest in studying the
function of these phosphorylation sites, these false posi-
tive identifications are particularly treacherous, due to
the fact that the complete investigation of each phos-
phorylation site may take up to two years. As most biol-
ogists do not possess the expertise necessary to assess
the accuracy of the assignment even if the raw MS/MS
spectrum is provided, the situation worsens, and it is fre-
quently wrongly assumed that all phosphorylation as-
signments published are correct. Manual validation of
the phosphorylated peptides/proteins is, on the other
hand, a good challenge, although it implies great expert-
ise with “reading” the spectra [28-35]. In addition, it is
essential to get the specific molecules activated-
deactivated during cancer evolution of patients, as this
implies relevant clues for unraveling good and bad
prognoses related to drug resistance and new target-
therapies. Phosphoproteomics is a powerful method-
ology which allows this issue, so that patients will be
benefited.

Validation of the phospho data

Here we would like to describe the manual validation of
the phospho data (assignments of the phosphate group
on specific amino acids) obtained in an MS experiment
during CID (collision-induced dissociation) operations.
When peptide ions are fragmented via CID, a series of
y- and b- ions are formed. The peptide sequence is ob-
tained by correlating the mass difference between peaks
in the y-ion series or between peaks in the b-ion series
with amino acid residue masses. The CID fragmentation
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mainly occurs on the peptide backbone, and sequence
information is obtained. In relation to phosphotyrosine
residues, partial neutral loss is observed (HPOj3, 80 m/z)
in MS2 mode, and the phosphate group on tyrosine (tyr)
residues is more stable than on serine (ser) and threo-
nine (thr) residues. In addition, the phospho-finger-print
characteristic of phosphotyrosine is the phosphotyrosine
immonium ion (~216 Da). Via MS3 mode, the ion ori-
ginating from neutral loss (NL) of phosphoric acid
(H3POy) can be selected for further fragmentation. The
selected ion is then automatically selected for further
fragmentation after neutral loss fragmentation. There-
fore, it is possible to add extra energy for the fragmentation
of peptide backbone. Nevertheless, the MS3 mode requires
that the phosphorylation on ser and thr residues are labile
and conventional fragmentation via CID commonly results
in the partial NL of H3PO,, (98 m/z) in MS2 mode. This is
due to the gas phase p-elimination of the phosphor-ester
bond and thus, dehydroalanine (ser ~69 Da) and dehydro-
2-aminobutyric acid (thr ~83 Da) are generated [36—48].
More importantly, a library-database containing
around 5,000 manually validated phosphopeptides
product ions and related spectra, from around 330,000
CID fragment spectra analyzed in several LC-MSMS
assays from new research studies was created and
placed in Sequest (http://fields.scripps.edu/sequest/
index.html) [49] and Mascot (http://www.matrixscience
.com) [50-55]. Those CID spectra have been annotated
and classified via Sequest and Mascot settings. Those
databases apply the filter and search criteria described
in their studies. In fact, with relation to the filtering,
the resulting spectra data is manually validated via SIL-
VER web application (http://llama.mshri.on.ca/cgi/SIL-
VER/silver.cgi?id=665224) [56].

Validation by bioinformatics softwares

Laboratories worldwide can now routinely carry out
phosphoproteomic assays as owing to the fast improve-
ment of both MS and efficient phosphopeptide-
enrichments, scientists and clinicians have easy access to
lists of thousands of phosphorylated peptides for further
biological issues. The application of computational, stat-
istical and predictive analytical methods is vital to an-
swer the biologically relevant questions arising from
these phosphor-data [57, 58].

It is also possible to carry out the validation more rap-
idly by bioinformatics software for proteomics assays
useful for clinical research. For example, PhosphoSite-
Plus (http://www.phosphosite.org/homeAction.do) [58]
consists of a database with a comprehensive collection
of different PTMs including phosphorylation, ubiquitiny-
lation, acetylation and methylation, and it was created by
cell signaling technology. From all PTMs, 78 % are phos-
phorylation, 15 % ubiquitinylation, 6 % acetylation. An
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important feature of PhosphoSitePlus is its ability to
generate high-throughput phosphoproteomics data, in-
cluding both low-throughput and high-throughput ex-
perimental data, and rapid sharing of the newly
generated data via its website.

On the other hand, The Human Protein Reference Data-
base [59, 60] is one of the largest databases for the human
proteome (http://www.hprd.org). It includes data from
PTMs, sub-cellular localization of human protein,
protein-protein interactions, enzyme-substrate relation-
ships, tissue-expression disease-associations all which data
is freely downloadable. Also, Phospho. ELM [61-63]
(http://phospho.elm.eu.org) mainly contains the collection
of manually curated phosphosites and information derived
from small-scale experiments. It contains information on
around 300 kinases, 8,000 substrates, and over 42,000
phosphosites [63].

Examples of tools for validation potential analysis of the
phospho data

Many computational approaches [64—73] are useful for
phosphorylation networks studies of clinical cancer re-
search, or for connecting kinases and phosphosites into
a biological signaling network. Bioinformatics tools in
this sense, for example, serve to design new drug-
candidates from proteomic data. Below are some useful
networks for reference.

The STRING-database (http://string-db.org), [64—66]
was created to improve and increase the specificity prop-
erties from motif-based predictions. In this database
there are over 20,000 site-specific interactions available
via their website including nearly 4,000 phosphoproteins
and 74 human kinases from 20 families and thus, inter-
esting drug-resistances and toxicities studies can be car-
ried out via STRING.

Via NetworKIN  (http://www.networkin.info/index.
shtml) [57, 68, 70] network context of kinases and phos-
phoproteins are incorporated via prediction algorithms. It
contains sub-cellular compartmentalization, co-localization
via anchoring proteins, scaffolds, temporal and cell-type
specific co-expression. The algorithm applies neural-
networks and position-specific score-matrices in order to
assign proper phosphosites to kinases and related families.
It consists of intrinsic preference of kinases for consensus
of substrate motifs, thus, for example important true bio-
markers can be validated coming from proteomics assays.

PANTHER (http://www.pantherdb.org) [71] is focused
on inferring the phosphorylation of substrates by corre-
sponding kinases, frequently referred as KSR. Perform-
ance of bioinformatics tools to predict binding substrate
specificities of protein kinases originated from experi-
mental identification of consensus sequence motifs rec-
ognized by the active sites of kinases. It is worth
remembering that some phosphorylated residues by
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different kinases from the CDK and SRC families cannot
be distinguished by their consensus sequences alone.
Several of these general bioinformatics tools can be ap-
plied to capture the evidence and narrow them down to
key players in the signaling network. In fact, the signal-
ing network of TBK1- was deciphered as an emerging
drug target via phosphoproteomics [64—74]. Authors ap-
plied several tools, such as gene ontology (GO) pathway
enrichment analysis, motif analysis using the motif-x al-
gorithm [75-77].

Finally, when obtaining data with mutated kinases, clini-
cians and scientists are interested in knowledge about
which kinase-inhibitors can be applied for cancer treat-
ments. Currently, a high-throughput kinase-inhibitor data-
base is accessible, via K-MAP (http://tanlab.ucdenver.edu/
kMap/kMapv1.0) [78] and can be used to complement and
design future clinical assays to study resistances and
toxicities.

There are a number of bioinformatics tools available
for biomedical research (Ingenuity Pathway Analysis
(www.ingenuity.com) [69], KEGG (http://www.kegg.jp)
[70-72], GeneGo metaCore pathway analysis (www.gene
go.com) [73], iGPS for systematic analysis of protein phos-
phorylation networks from phosphoproteomics data;
http://igps.biocuckoo.org/index.php) [75, 79], and PostMod
for sequence based prediction of kinase-specific phosphor-
ylation sites with indirect relationship (http://pbilkaist.
ac.kr/PostMod) [76] useful and available in specific reviews
useful for clinical research. They are currently in use for
cancer research and support proteomics to advance the hu-
man proteome sequence [77, 78, 80—90].

Conclusion

With the advances in proteomics and in the near future
the completed sequence of the human proteome, we en-
vision we will have a better diagnoses and therapies for
the diseases. Today, proteomics is applied in many inter-
national hospitals in order to obtain the information
about the evolution of patients and obtain specific mole-
cules/sights related to prognoses of various diseases,
with benefit for more patients in the coming future.
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