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Recent advances in deep learning have been driven by ever-increasing model sizes, with

networks growing to millions or even billions of parameters. Such enormous models call

for fast and energy-efficient hardware accelerators. We study the potential of Analog AI

accelerators based on Non-Volatile Memory, in particular Phase Change Memory (PCM),

for software-equivalent accurate inference of natural language processing applications.

We demonstrate a path to software-equivalent accuracy for the GLUE benchmark

on BERT (Bidirectional Encoder Representations from Transformers), by combining

noise-aware training to combat inherent PCM drift and noise sources, together with

reduced-precision digital attention-block computation down to INT6.

Keywords: analog accelerators, BERT, PCM, RRAM, in-memory computing, DNN, Transformer

1. INTRODUCTION

State-of-the-art Deep Neural Networks (DNNs) have now demonstrated unparalleled accuracy
performance across a wide variety of fields, including image classification, speech recognition,
machine translation, and text generation (LeCun et al., 2015). While current models are generally
trained and run on general-purpose digital processors such as CPUs and GPUs, the rapid growth in
both size and scope of these networks has fostered novel hardware architectures aiming to optimize
speed and energy-efficiency, specifically targeting either neural network training or inference (Sze
et al., 2017).

Among these, architectures based on Non-Volatile Memory (NVM) are increasingly gaining
interest. Such technologies encode weight information in the conductance states of two-terminal
devices — including Resistive RAM (RRAM) (Wong et al., 2012), using modulation of conductive
filaments between electrodes, or Magnetic RAM (MRAM) (Matsukura et al., 2015), using
ferromagnetic switching between parallel or antiparallel spin polarization. In particular, Phase-
Change Memory (PCM) (Burr et al., 2016) is based on thermally-driven reversible transitions
between amorphous and crystalline states of a chalcogenide layer, leading to low and high
conductances, respectively (Figure 1A).

Analog accelerators leverage the massive parallelism of NVM-based crossbar arrays to perform
computation at the location of data (Burr et al., 2017; Ambrogio et al., 2018; Figure 1B). This
architecture can significantly mitigate the Von-Neumann bottleneck caused by communication
between the processor and memory, and is particularly efficient for fully-connected neural network
layers (Burr et al., 2015).
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A recent development in DNN-based natural language
processing (NLP) is the migration away from recurrence
toward Transformer-based models such as BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al.,
2018). BERT offers state-of-the-art performance over a wide
range of Natural Language Processing (NLP) tasks. While the
large fully-connected layers in these models are computationally
expensive for both conventional hardware and custom digital
accelerators, they are ideally suited for analog NVM-based
hardware acceleration. However, NVM devices exhibit many
conductance instabilities [conductance drift (Ambrogio et al.,
2019), programming and read noise (Tsai et al., 2019), etc.],
which can degrade accuracy, particularly as the time between
programming and inference increases.

In this paper, after a brief overview of Transformer-based
models including BERT, we use a device-aware simulation
framework to develop and assess techniques that can increase the
inference accuracy of BERT implemented using PCM devices.
We show that these techniques allow these inherently fast and
energy-efficient systems to also approach software-equivalent
accuracy [as compared to the original BERT implementation
(Devlin et al., 2018)], despite the significant noise and
imperfections of current PCM devices. Since the high energy-
efficiency of analog crossbar-arrays on the fully-connected layers
will then expose the energy-inefficiency in digital computation
of the attention blocks, we explore the impact of quantized
attention-block computation. We show that the use of reduced
precision down to INT6 can provide further energy optimization
for Transformer-based models, applicable both to analog NVM-
based as well as to other accelerator systems.

1.1. Transformer Architecture
The Transformer architecture (Vaswani et al., 2017) was a pivotal
change-point in deep learning and is expected to remain a critical
core as newmodels [BERT (Devlin et al., 2018), DistilBERT (Sanh
et al., 2019), Albert (Lan et al., 2020), etc.] continue to build upon

FIGURE 1 | RRAM, MRAM or PCM devices (A) can be organized in crossbar

arrays, or NVM tiles, where weights are encoded using pairs of devices (B).

Analog accelerators composed of multiple NVM tiles and special function units

(SFU) for digital computation enable end-to-end network inference (C).

the underlying Transformer architecture. Here we describe how
the Transformer architecture differs from recurrent DNNs, and
how the basic building blocks of Transformers map to analog
accelerators.

1.1.1. Why Transformer?
Recurrent neural networks (RNNs) have commonly been used
for NLP tasks to account for the sequential nature of words and
sentences (Figure 2A). The bottleneck of RNNs is their limited
“memory” over very long sequences. Transformers (Vaswani
et al., 2017) provide one solution by replacing recurrence with a
self-attention mechanism. For any given word w in the sequence,
an attention probability between 0 and 1 is computed between w
and every other word in the sequence (Figure 2B), allowing the
model to quantify the relative importance that each word has in
predicting w.

1.1.2. BERT-Base Model Architecture
Building on the initial success of Transformers, BERT was
developed to generate meaningful encodings of input sequences
useful across a broad range of downstream tasks, such as
classification, text generation, and machine translation, requiring
only a few epochs of subsequent fine-tuning to prepare for the
specific task. BERT consists of 12 layers of a large Transformer
encoder (Figure 3A). In Figure 3B, detailing the main building
blocks of each encoder layer, dark grey boxes represent trained
weight-matrices (fully-connected layers) that can readily be
mapped to analog crossbar arrays. The attention computations
(Figure 3C) along with all activation functions (representing a
small fraction of the total operations) are computed in digital
processing units.

2. MATERIALS AND METHODS

2.1. Optimizing Analog Accuracy for BERT
In this section, we first describe the comprehensive analog tile
model used in this paper to capture realistic PCM crossbar
array behavior. We then describe our simulation procedure
and datasets for evaluation before discussing inference accuracy
results. The simulator is implemented using a modified pytorch
framework (Paszke et al., 2019) (including Caffe2).

FIGURE 2 | (A) Recurrent Neural Networks (RNNs) use recurrence to maintain

“memory” of the sequence. Hidden states of previous words contribute to the

next state. (B) In contrast, Transformers compute an attention matrix, where

higher (darker) probabilities indicate which words are interrelated.
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FIGURE 3 | (A) Bidirectional Encoder Representations from Transformers (BERT) with 12 encoder layers. The input to BERT is a sequence of tokens, where each

token is either a word or a word-piece. This sequence is processed through each layer, followed by a pooler to reduce output size and a fully-connected classifier layer.

For example, to classify “I want a cat <eos>" (where <eos> is the end-of-sentence token) as either grammatical (0) or not (1), the classifier needs only two outputs.

Each encoder layer (B) is comprised of two main building blocks: (1) the self-attention block, where the model computes an attention matrix between the input and

itself, and (2) a feed-forward network with two large fully-connected layers. Dark grey represents trained weight layers in analog, while (C) shows the attention

processing in digital. The input sequence to the self-attention block passes through a trained weight layer split into three parts to compute Q (query), K (key), and V

(value) matrices. To compute attention (C), Q, K, and V are each split into multiple attention heads (for BERT, 12), both to reduce matrix sizes and to allow each to

learn slightly different representations of the sequence. [c(i)] A similarity matrix is computed between Q and K, followed by a softmax operation along rows to produce

values between 0 and 1. [c(ii)] These probabilities are then multiplied by V and move to the next analog tile followed by the feed-forward network. [c(iii)] A higher

probability (darker shade) in one of the 12 probability (P) matrices might indicate, for example, that the word “cat” is important for prediction of the word “want”.

2.1.1. Analog Tile Model
Weights, in this study, are encoded using a differential
conductance pair G+ and G− without any redundancy scheme.
Zero weights are encoded with G+

= G−
= 0, therefore

considering both devices at the RESET (lowest) conductance of
the analog device. While, in practice, the minimum conductance
cannot be zero, therefore the accuracy of the zero conductance
could be limited, the large (100x–1,000x) PCMdevice on-off ratio
ensures a fairly good approximation of a zero weight with very
low RESET conductance and RESET noise.

Multiplication in the analog tile is performed by tuning
the input voltage pulse-width, to prevent distortions due to
conductance non-linearities as a function of read voltage
(Chang et al., 2019). In order to accurately simulate the analog
components in the analog accelerator system, we include various
sources of non-ideality in the analog multiply-accumulate
(MAC) operation, including quantization errors within the
digital peripheral circuitry and conductance noise within the
analog NVM devices. In this section, we describe the PCM-
based device noise model and optimized design parameters
we used to achieve near software-equivalent accuracy inference
on BERT.

2.1.2. Programming Noise, Conductance Drift and 1/f

Read Noise
The inference accuracy attainable in an analog accelerator
system depends strongly on the analog device conductance
properties, since these can be noisy and change over time. In
order to estimate the accuracy characteristics of future analog

accelerators, we model these effects by adding programming
noise, read noise, and conductance drift to the DNN weights
(Figure 4A). We aggregate model error over many simulation
instances to arrive at the expected inference accuracy for a
given time point. The noise model used here is based on the
experimental characterization from Joshi et al. (2020), with PCM
devices fabricated in a 90 nm technology. The associated open-
source simulator (Rasch et al., 2021) includes the following PCM
statistical model for inference:

• Programming noise represents the error incurred when
encoding the weight in the PCM device. Instead of
programming the correct target, the final achieved
conductance generally shows some error, which is modeled
based on the standard deviation of the iteratively programmed
conductance values measured from hardware (Joshi et al.,
2020):

gprog = gT + N(0, σprog) (µS)

σprog = γmax(1 : 1731g2T + 1.965gT + 0.2635, 0) (µS)

where gprog and gT are the programmed and target
conductances of a PCM device and N(0, σ ) is a normal
distribution with standard deviation σ . The parameter γ is
generally equal to 1, except when we explore the performances
of devices with reduced noise, where γ = 0.5.

• PCM devices show a common trend for increasing time:
after programming, due to the relaxation of the amorphous
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FIGURE 4 | (A) Conductance values (G) exhibit variability due to programming

and read noise and decay toward zero over time due to drift noise. (B) To

mediate these noise sources, we train the floating-point model with noise in

order to prepare the model for noisy inference. (C) During inference, the

weights are programmed, then some time passes before inference is

performed.

state, conductance decays, following an empirical power-law
function expressed as in Ielmini et al. (2007):

gdrift(t) = gprog

(

t

tc

)−ν

(µS)

where gprog is the programmed conductance measured at time
tc and gdrift(t) is the conductance at time t, while ν represents
the drift exponent, or slope on a log-G vs. log-t plot. In
our simulations, ν is sampled from a normal distribution
N(µν , σν). Both µν and σν , dimensionless, depend on the
target conductance gT and are modeled by fitting experimental
data from Joshi et al. (2020), with the following expressions:

µν = min(max(−0.0155log(gT)+ 0.0244, 0.049), 0.1)

σν = min(max(−0.0125log(gT)− 0.0059, 0.008), 0.045)

• PCM non-idealities also include instabilities after the
programming stage, such as read noise. Even in the absence
of programming error or conductance drift, consecutive
PCM reads lead to slightly different conductance evaluations
(Ambrogio et al., 2019). Among themultiple causes generating
read noise, 1/f noise and random telegraph noise show the
strongest contributions, with increased noise on lower-
frequency components. Such behavior leads to analog levels’
intrinsic precision degradation for longer times. The overall

contribution can be modeled using a normal distribution with
time-dependent sigma (Joshi et al., 2020):

g(t) = gdrift(t)+ N(0, σnG(t)) (µS)

The standard deviation of the read noise σnG at time t is
obtained by integrating the power spectral density over the
measurement bandwidth:

σnG(t) = γ gdrift(t)Qs

√

log

(

t + tread

2tread

)

(µS)

where tread = 250 ns is the duration of the read pulse. The
parameterQs, dimensionless, measured from the PCM devices
as a function of gT is given by:

Qs = min

(

0.0088

g0.65T

, 0.2

)

The noise model used in this work was calibrated using
a large number of PCM devices to characterize the statistics
of (1) the weight programming error (due to deviations
between programmed and desired conductance values), (2) the
accumulated 1/f read noise of their PCM devices, and the
(3) conductance drift and (4) drift variability as a function
of the programmed conductance value. Details of the device
measurement and modeling methodologies are described in the
supplementary information of reference (Joshi et al., 2020).

2.1.3. Analog MAC Design and Additional

Non-Idealities
While weights are encoded using full precision, we include all
noise sources, therefore reflecting the true analog nature of
devices, we assume that each analog tile receives digital inputs at
full precision, scales and quantizes to an integer representation,
then converts to analog duration using digital to analog
converters (DACs). The output of the analog tile is discretized
using analog to digital converters (ADCs). Both DAC and ADC
discretize the values in a fixed range symmetrically around zero.
We assume 8 bit precision for DAC and 10 bit for ADC. The
input scaling factor for the DAC is initialized using example data,
learned during training to optimally match the input ranges, and
kept static during inference. Target weight ranges are clipped to
−1.0, . . . , 1.0, where 1.0 corresponds to maximum target device
conductance, gmax, although programming noise can induce
overshoot. The output ADC range is related to the ADC gain and
a parameter that depends on the ADC design. Here we set it to
−10, . . . , 10, which means that 10 “fully on” input lines (each at
1.0) in conjunction with 10 weights at maximum (also 1.0) would
saturate the ADC output. Even though the tiles have 512 rows,
not all weights are at their maximum. In typical DNN models,
most weights and activations have low values or are near zero.
In addition, the random-walk nature of aggregation along the
bitlines causes the signal to grow as the square-root of the number
of rows, not linearly. The dynamic range of 10 for the ADC is a
design parameter.

Each digital output from the ADC is individually scaled and
offset, to map the conductances back to the high-precision digital
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FIGURE 5 | (A) Without any noise-aware techniques, inference on the Microsoft Research Paraphrase Corpus (MRPC) task decays very quickly over time. (B) Drift

compensation improves the decay over time significantly, but the inference results are still lower than the BERT-base ideal model with no NVM noise. (C)

Hardware-aware (HWA) training with noise added during training helps close the gap, reaching software-equivalent accuracy for this task even at 1 month of drift.

domain (bfloat16 precision). These digital scaling factors are also
learned during training and are critical to achieving software-
equivalent accuracy during inference.

The analogMAC output is subject to short-term conductance-
dependent noise that scales with the input current using the
PCM read noise statistical model. We assume that the analog
MAC output is subject to further additive Gaussian noise
corresponding to 0.5 LSB (least significant bit) of the ADC, and
use an approximated IR drop model. The analog tile size is set
to 512×512 which, together with reduced read voltage (e.g., 0.2
V) ensures negligible IR drop impact; if layers are larger, they
are distributed across multiple tiles and outputs are summed
(in digital). Activation functions are computed in floating point
32-bit (FP32) format using standard functions.

2.2. Simulation Procedure–Training and
Inference
Training for inference (i.e., hardware-aware training, or HWA)
is done in software to make the subsequent hardware inference
more robust, even in the presence of PCM non-idealities
(Figure 4B). We apply noise during hardware-aware training,
specifically during the forward propagation. While this helps
the subsequent inference even in the presence of drift, this
noise during training does not itself incorporate any explicit
drift models. The subsequent backward propagation and weight
update components or various scaling factors (described in
previous sections) of software training are based on stochastic
gradient descent (SGD) and are both carried out at full precision
without additional noise.

Then, during inference, all hardware non-idealities—MAC
cycle-to-cycle non-idealities, PCM programming noise, read
noise, 1/f noise, drift, and drift variability—are considered, and
drift compensation is applied as described below.

We train 5 models with different random seeds and select
the best one for inference evaluation. Accuracy can sometimes
exceed state of the art results for smaller datasets where run-to-
run variation can be wider, while larger datasets show smaller
accuracy variation. We re-evaluate each model 25 times for

each inference time point1 to reduce sampling error during
inference. We also report the standard error in the tables of
results (Figures 6, 8). We evaluate accuracy at 5 time points
after weight programming (Figure 4C): 1 second, 1 hour, 1 day,
1 week, and 1 month. Without any correction techniques, the
inference accuracy drops markedly over time (Figure 5A).

2.2.1. Drift Compensation
As described in Ambrogio et al. (2019) and Joshi et al. (2020)
and illustrated in Figure 5B, signal loss by PCM conductance
drift can be effectively compensated using a global correction-
factor calculated from the mean drift over time. To calculate
the drift compensation factor in the simulator, we first read
out the weight matrix of each analog tile by performing the
non-ideal MAC operations of the forward pass using one-hot
input vectors, summing the values in an absolute manner to
obtain an initial reference value. Then after applying conductance
drift and accumulated 1/f noise to the weights up to a certain
inference time-point, the weights are again read out through the
same (non-ideal) MAC operations to produce a delayed reference
value. Drift compensation is applied by adjusting the digital
output scale-factor (applied after ADC) by the ratio of the delayed
and initial reference values, and applied across the entire test set
for all simulations of themodel at that inference time-point. Once
the average drift is compensated, the remaining noise effects act
as a random walk process, as programmed conductances evolve
away from their intended states. RRAM, FERAM, or any other
device will also exhibit time-dependent conductance change, and
these devices can also benefit from the methodology proposed in
this work by substituting the corresponding device noise models.

2.2.2. Hardware-Aware (HWA) Training
Drift compensation helps with the accuracy decrease over time
by boosting the signal, but cannot remove the underlying noise
sources. In addition to training the static scale factors for DAC
input and ADC output, we apply a variety of techniques to
prepare our trained model for noise during inference (Gokmen

1For one particular task, Quora Question Pairs (QQP), we use only 5 repeats due

to large test dataset size.
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FIGURE 6 | Inference results for all 8 GLUE tasks and the average score. Dataset training size shown in parentheses below each task name, and tasks appear in

order of their size, with smallest on the left. Since each task has a different standard accuracy range, shown is the 1accuracy between the results from the BERT-base

model and our noise-aware trained model for two conditions: (i) full noise model applied, and (ii) 50% programming and read noise and full drift noise applied (noise

reduced). For the full noise model, we consider several different time points, ranging from 1 month down to 1 day (with 1 hour and 1 second shown for context). The

required time span would depend on the application. The table reports mean values across trials and standard errors of the mean.

et al., 2019; Joshi et al., 2020). A noise model that includes
digital periphery noise and additional noise on DNNweights that
mimics a scaled version of our programming noise is applied
during training, to prepare the network for inference with noisy
weights. The standard deviation scale of this additional weight
noise is a hyper-parameter of the HWA training. The effects can
be seen in Figure 5C, reaching software-equivalent accuracy for
a single language task only once these HWA training techniques
are applied.

2.3. Datasets and Training
We evaluate our HWA-trained BERT on the General Language
Understanding Evaluation (GLUE) Benchmark (Wang et al.,
2019), consisting of 9 primary language tasks (see leaderboard
at Wang et al., 2020). This benchmark is more robust than
examining a single task, as it shows the network’s ability to
generalize. For example, one task tests the network’s ability to
identify a given sentence as grammatical or not. Another task
assesses, given two sentences A and B, whether A is a paraphrase
of B.We exclude one task,Winograd Natural Language Inference
(WNLI), just as BERT (Devlin et al., 2018) did, due to the unusual
construction of the data set and small test set of only 146 samples.
This leaves 8 tasks:

• Microsoft Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005)

• Recognizing Textual Entailment (RTE) (Bar-Haim et al., 2006;
Dagan et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009)

• Semantic Textual Similarity Benchmark (STS-B) (Agirre et al.,
2007)

• The Corpus of Linguistic Acceptability (CoLA) (Warstadt
et al., 2018)

• The Stanford Sentiment Treebank (SST-2) (Socher et al., 2013)
• Question Natural Language Inference (QNLI) (Rajpurkar

et al., 2016)
• Quora Question Pairs (QQP)
• Multi-Genre Natural Language Inference (MNLI) (Williams

et al., 2018)

We evaluate each task separately by fine-tuning a pretrained
BERT-base model (Wolf et al., 2020) using our HWA training
techniques. We do not train BERT models from scratch
using HWA training, but instead perform fine-tuning from
the pretrained BERT model checkpoint with these techniques.
Fine-tuning is a technique used in natural language processing,
similar to transfer learning, where the main model is trained
with a large amount of generic language data and later
fine-tuned for a specific task (e.g., sentiment classification)
using a much smaller set of data with limited epochs of
training. This greatly reduces the runtime for the HWA
training when compared to training from scratch. We use a
maximum sequence length of 128 for efficiency, since the vast
majority of data samples are much shorter that the maximum
BERT sequence length of 512. We report the aggregated
score of all 8 tasks, since this is a common metric reported
for GLUE (Wang et al., 2019).
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FIGURE 7 | (A) While the energy-inefficiency in high-precision digital

computation of the attention blocks may currently be a minor issue, the high

energy-efficiency of analog crossbar-arrays on fully-connected layers will

eventually expose this as a problem. (B) Particularly in Transformer-based

models, quantizing the attention block to lower precision greatly reduces the

area and energy usage of the multipliers, optimizing the new bottleneck:

activation processing in attention. For example, decreasing from bfloat16

(“BFL16FMA”) to INT6 (“IMA6”) results in an estimated energy reduction

of 91%.

Each task needs to be fine-tuned differently, so we scanned a
variety of learning parameters for each task: batch size, learning
rate, weight clipping, and dropout. Here we report the accuracy
on the validation data set because the test set is only available
online, which might result in a slight overestimation in the
accuracy scores for the datasets with small validation set. We
observe accuracy variation that correlates with the size of the
datasets—models trained with smaller datasets exhibit larger
variation in test accuracy. Therefore, we train 5 models per task
per condition and choose the bestmodel for inference simulation.

3. RESULTS

3.1. Results on BERT
Figure 5C shows an example of an HWA-trained BERT-base
model reaching software-equivalent accuracy and the inference
accuracy evolution over time for theMRPC task. Accuracy results
on all 8 GLUE tasks, reported at times ranging from 1 second to
1 month after weight programming, are summarized in Figure 6.
We show that several tasks reach software-equivalent accuracy at
1 month and the biggest accuracy drop is ∼4% for MNLI. The
aggregate score over all 8 tasks is only 1.29% below the baseline
at 1 month. Since there is hope for additional improvement with
progress in PCM device technology (Giannopoulos et al., 2018),
we show results for the full drift model but with only 50% of the
programming and read noise applied during inference, achieved
by setting the γ factor in the σprog and σnG(t) equal to 0.5. In
this way, we reduce the impacts of both programming and read
noise contributions. Noise-reduced PCMdevices can be expected
to improve many of the tasks by >1% even for inference after
1 month, and increase the aggregate GLUE score to just 0.6%
below baseline.

3.2. Attention Quantization
Attention-based models such as BERT pose unique challenges
beyond previously studied models, because of the extensive
activation computation in the self-attention block. Amdahl’s
law implies that when a system bottleneck is greatly improved,

performance is invariably limited by something else, no matter
how insignificant it was to begin with (Figure 7A). Self-attention
computations in a Transformer model scale quadratically with
sequence length S, and constitute <1% of the number of
operations for small S, but ∼5% at S = 128. If this computation
is done in digital processing units at full precision, the cost
in both energy and area for such processing units can become
the system bottleneck for Transformers, particularly as sequence
length grows, despite constituting a relatively low fraction of
the workload.

Reduction of the precision in the digital computation of this
self-attention block can also help reduce overall computation
costs, beyond consideration of the analog performance and
precision of just the fully-connected layers. The attention matrix
in this case is not mapped into analog crossbar arrays, but
processed in digital multiply-and-add units.

3.2.1. Attention Computation
In the self-attention block, there are two batch matrix-multiplies,
one forQ∗K and one for softmax(Q∗K)∗V (Figure 3C(i,ii)). In
this paper, we propose to compute batch matrix-multiplication
with various integer precisions in order to reduce energy and
area costs for these attention computation units, while keeping
softmax operations at full precision. When compared to bfloat16
multiply-and-add (BFLFMA), integer multiply-and-add (IMA)
units are much more energy and area efficient. Figure 7B,
simulated in a 14 nm FinFET technology, shows a 11.3× energy
benefit and a 4.7× area benefit from BFLFMA to INT6 (including
a wide-enough adder for multiply-accumulate operations across
the 64 terms in an attention-head). Next, we explore the impact
of these attention quantization options on inference accuracy
in BERT.

3.3. Results on BERT With Quantized
Attention
Figure 8 summarizes GLUE task inference results with our
analog tile models for the fully-connected layers with four
different precision settings—FP32, integer 10 bit (INT10), integer
8 bit (INT8), and integer 6 bit (INT6)—for the batch matrix-
multiplications in self-attention. The scaling factor used for
quantization is initialized from a small set of training data
and then learned during the training process. BERT inference
performance is comparable among all four quantization schemes.
For smaller datasets, INT10, INT8 and INT6 quantized attention
models sometimes outperform the FP32 versions because of the
additional regularization and noise in the attention layers during
training. For the four larger datasets (SST-2, QNLI, QQP, and
MNLI), no significant differences in inference accuracy at 1
month were observed down to INT6 quantized attention.

4. DISCUSSION

While we have clearly demonstrated the potential for iso-
accuracy with Transformer-based neural networks on fast and
energy-efficient analog hardware, there are numerous areas for
future work.
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FIGURE 8 | Quantization inference results for all 8 GLUE tasks and the average score. Shown is a comparison to our FP32 noise-aware model from Figure 6 at 1

month of drift for various levels of precision: INT10, INT8, and INT6, all of which perform at least as well as our full precision model for most tasks. On some tasks,

including the aggregate score, the reduced precision seems to serve as additional regularization and performs better than our FP32 model. The table reports mean

values across trials and standard errors of the mean.

4.1. Software-Equivalent accuracy
We have shown that full software-equivalent accuracy will
require continued improvement in both PCM devices and in
hardware-aware training techniques. However, we have been
reasonably conservative in our accuracy report, presenting
results at 1 month of inference. We note that some workloads
may only require results at 1 day or 1 week of drift,
for example when models are weekly updated. We project
that current PCM devices can comfortably support software-
equivalent accuracy on many GLUE tasks on such timescales.
For tasks where models are less frequently updated, another
approach would be to incur slightly more frequent in-
place reprogramming of the same model – this would be a
tradeoff between model availability, the time needed for model
programming, device endurance, temperature variation and
other factors.

4.2. Model Size
While we have focused on BERT, which has 110 M parameters,
new Transformer-based networks are emerging that attempt to
reduce model size while maintaining accuracy. DistilBERT (Sanh
et al., 2019) uses knowledge distillation to reduce the number of
parameters in half, and ALBERT (Lan et al., 2020) uses cross-
layer parameter reuse, reducing the number of unique parameters
to a fraction of the original. However, we note that these smaller
models may present a challenge to analog hardware, since fewer
unique weights can make models less robust to noise. Hardware-
software co-optimization that can strike a good balance between
model size and robustness to PCM-based noise could lead to
future Transformer-based networks that are highly optimized for
accuracy, energy-efficiency, and speed on Analog-AI hardware.

5. CONCLUSION

We show that despite their various noise sources, PCM-based
analog accelerators are a sensible choice for deep learning
workloads, even for large natural language processing models
like BERT. Our simulation results using a comprehensive noise
model demonstrate that BERT can be expected to be close to
software-equivalent accuracy even with existing PCM devices.
Other Transformer-based models with the same building blocks
can be similarly evaluated with our approach. We have shown
that expected improvements in programming noise variability
provide a consistent trend toward software-equivalent accuracy.
Finally, in preparation for high energy efficiency on the fully-
connected layers, we provide a potential solution to the next
biggest energy cost: the activation processing from the attention
block. We show that 11.3× energy improvements should be
feasible by quantization to INT6, with no significant loss
in accuracy.
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