
INTRODUCTION

Obsessive-compulsive disorder (OCD) is a relatively com-
mon and chronically disabling disorder with an average life-
time prevalence of 2–3%.1 A neuroanatomical model of OCD 
proposes that clinical symptoms of obsessive thoughts, com-
pulsive acts, and neurocognitive deficits are related to dys-
function in several parallel-running sub-networks that collec-
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tively comprise the cortico-striato-thalamo-cortical (CSTC) 
loop.2,3 Executive dysfunction in OCD encompasses visuo-
constructive organization [measured using the Rey-Osterri-
eth Complex Figure Test (RCFT)] as well as cognitive flexibil-
ity and response control, which could be subdivided into sub-
domains of selective attention and response inhibition [measured 
using the Stroop Color-Word Test (SCWT)], decision making 
with set-shifting and strategic planning [measured using the 
Wisconsin Card Sorting Test (WCST)], and set-shifting with 
visuomotor sequencing [measured using the Trail Making 
Test part B (TMT-B)].4-7 Executive dysfunction might be an 
important determinant for pharmacotherapeutic treatment 
responses in OCD, and could be sustained independently of 
symptom relief after pharmacotherapy.8,9 Therefore, a finer 
delineation of the neural foundations for impaired executive 
performance in OCD is critical for improved prognoses.10 
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The anterior cingulate cortex (ACC), a prefrontal cortical 
component of the CSTC loop,11-13 has been indicated as a po-
tential neural correlate of executive functioning in healthy 
subjects (HC) as well as subjects with OCD.6,14 The ACC un-
dergoes a higher-than-average degree of cortical surface area 
expansion during neurodevelopment and maturation,15 with 
parallel development of a fine-grained resting-state functional 
connectivity network (rs-FCN) along the histologically hetero-
geneous rostro-caudal and dorso-ventral axes of the ACC sub-
regions.16-18 This creates a set of matured integrative hubs,17 in-
cluding the caudal ACC (motoric executive control),19 the dorsal 
ACC (selective attention, response inhibition and set-mainte-
nance),20,21 the supragenual ACC (conflict detection/resolution 
and error processing),22,23 the rostral ACC (mentalizing/decod-
ing of external cues),24 and the subgenual ACC (emotional rec-
ognition/regulation as a prerequisite of cognitive control).25,26 
Indeed, the rs-FCN describes patterns of functional coherence 
between distributed brain regions during task-free status, re-
flecting a human information processing mechanism, such as 
executive functioning during task performance.20,27

Several rs-FCN studies assessing OCD have focused on 
finding the core pathophysiology of OC symptomatology, as 
reflected in pattern changes within the orbitofrontal cortex 
(OFC)-based rs-FCN and the default mode network (DMN). 
The OFC shows increased amplitude of low-frequency fluctu-
ation (ALFF; a measure of spontaneous regional neuronal ac-
tivity),11 elevated degree centrality,28 and increased rs-FCN 
with the ventral29,30 and dorsal16 caudate. Conversely, the pos-
terior cingulate cortex (PCC)-based midline core subsystem of 
the DMN in OCD demonstrates decreased rs-FCN strength 
with the ventral/dorsal ACC, dorsolateral prefrontal cortex 
(DLPFC), and putamen.31,32 Additionally, the inter-modular 
rs-FCN between the salience network (SN)33 and DMN is also 
reduced in OCD.28,34 Moreover, the fronto-parietal top-down 
control network reveals excessive local clustering between the 
ACC, precuneus, and temporo-parietal junction.35 However, to 
our knowledge, there have been few studies elucidating the net-
work-based neural underpinnings of executive dysfunction sub-
domains in OCD as indicated in the ACC-centered rs-FCN. 

The goal of present study was to illustrate the differential 
impact of ACC-based inter-modular communication be-
tween the DMN,36 SN,33 executive control network (ECN)37 
or dorsal attention network (DAN)38 based on executive func-
tioning performance when comparing OCD with HC. Spe-
cifically, between-group comparisons of ACC-based rs-FCN 
between OCD and HC groups using five ACC sub-regions 
were examined based on the following brain-cognition rela-
tionships: caudal ACC (hub region of somatomotor network)-
based rs-FCN vs. set-shifting with visuomotor sequencing 
(TMT-B),39 dorsal ACC (hub region of SN)-based rs-FCN vs. 

visuospatial organization (RCFT organization score),40-42 su-
pragenual ACC (hub region of ECN)-based rs-FCN vs. set-
shifting with strategic planning (WCST perseverative error),43-45 
and rostral ACC (hub region of DMN)-based rs-FCN vs. re-
sponse inhibition (SCWT incongruent trial reaction time).5,46,47 

METHODS

Participants 
Twenty-four patients (17 males and 7 females) who ful-

filled DSM-IV criteria for OCD, and who were diagnosed 
based on DSM-IV criteria (4th edition, text revision; DSM-
IV-TR), were recruited between March 2007 and May 2009 
from the OCD clinic at Seoul National University Hospital. 
Eighteen patients were drug-naive, and the remaining six had 
been drug-free for at least four weeks at the time of study in-
clusion. Thirty-four sex- and age-matched HCs were also re-
cruited. The non-patient version of the Structured Clinical 
Interview for DSM-IV (SCID-NP) was used to assess psychi-
atric disorders in HCs. Exclusion criteria included a lifetime 
history of major psychiatric disorders other than OCD, sig-
nificant head injury, seizure disorder, or intellectual disability. 
A total of 22 OCDs and 22 HCs were previously included in a 
task-negative rs-FCN study.32 The Institutional Review Board 
at Seoul National University Hospital approved the current 
study, and written informed consent was obtained from all 
subjects after the procedures had been fully explained.

The severity of subjects’ obsessive-compulsive symptom-
atology was measured using the 10-item clinician-rated Yale-
Brown Obsessive Compulsive Scale (Y-BOCS).48 The Beck 
Depression Inventory (BDI)49 and the Beck Anxiety Invento-
ry (BAI)50 were also administered to measure the severity of 
accompanying depressive mood and anxiety, respectively. The 
Korean version of the Wechsler Adult Intelligence Scale (K-
WAIS)51 was administered to measure subjects’ intelligence 
quotient (IQ). Demographic and clinical data from the OCD 
and HC groups were compared using independent t-tests for 
continuous variables and chi-squared tests for categorical 
variables using the Matlab Statistics Toolbox (ver. R2014a; 
MathWorks Inc., Natick, MA, USA).

Neuropsychological assessments
Four representative neuropsychological tests reflecting the 

most impaired subdomains of executive functioning in 
OCD6,7 were administered to probe for differential patterns of 
the brain-cognition relationship in OCD compared to HC. 

RCFT organization summary score: visuoconstructive 
organization

The RCFT52,53 has been widely used to evaluate visuospatial 
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constructional ability and non-verbal memory.54 Comprehen-
sive RCFT performances scoring, using the Boston Qualitative 
Scoring System (BQSS),55 produced an Organization Summa-
ry Score, an arithmetic sum of the copy condition Fragmenta-
tion score (information integration) and Planning score (over-
all planning ability based on the order, placement and overall 
integrity of the depicted elements).54 

SCWT color-word interference score: selective attention 
and response inhibition

The Stroop effect is defined as the extent of delay in naming 
the color of an incongruent color word relative to naming the 
color of a congruent color word or of a neutral non-color word.56 
Since the SCWT color-word page provides conflicting visual 
stimuli to measure selective attention and response inhibition, 
we used the reaction time required to complete the reading of 
the SCWT color-word page as an interference score.57 

WCST perseverative errors: concept formation, 
set-shifting and strategic planning

The WCST58 evaluates cognitive capacity related to abstract 
reasoning, concept formation, and conceptual flexibility.59 For 
the present study, the perseverative error score determined by 
the subject sorting the cards according to a previously success-
ful principle or persisting with an initially erroneous guess 
during subsequent sorts60 was selected as an appropriate mea-
sure of executive functioning.61 

TMT-B reaction time: set-shifting, visuomotor 
sequencing and working memory

The TMT-B62 from the Halstead-Reitan Neuropsychological 
Test Battery requires task-switching ability and working mem-
ory in the characteristic context of visuomotoric tracking.39,63 
Subjects were asked to connect numbered and lettered circles 
printed consecutively on a worksheet by alternating the two 
sequences as fast as possible.

fMRI image acquisition & preprocessing
All resting-state functional brain images were acquired us-

ing a 1.5 T MAGNETOM Avanto scanner (Siemens, Erlangen, 
Germany). The resting-state fMRI scanning procedure con-
sisted of 120 volumes covering the whole brain, acquired in 25 
contiguous axial slices approximately parallel to the anterior-
posterior commissure plane with interleaved multi-slice echo-
planar imaging during 4.68 min (TR=2.34 s, TE=52 ms, field 
of view=22 cm, flip angle=90°, voxel size=3.44×3.44×5 mm, 
slice thickness=5 mm, no inter-slice gap). During these rest-
ing-state experiments, subjects lay in the dark with their eyes 
closed and were instructed to relax as much as possible and 
think about nothing in particular. Additionally, T1-weighted 

high-resolution structural images, obtained using a magneti-
zation-prepared rapid acquisition gradient echo sequence (TR= 
1.16 s, TE=4.76 ms, field of view=23 cm, flip angle=15°, voxel 
size=0.45×0.45×0.90 mm, slice thickness=0.9 mm, no inter-
slice gap), were acquired in 176 contiguous axial slices to co-
register and normalize the echo-planar images to the Mon-
treal Neurologic Institute (MNI) template. 

Functional data were preprocessed using SPM8 software 
(http://www.fil.ion.ucl.ac.uk/spm). The initial four volumes of 
the functional images were removed to eliminate any non-
equilibrium effects of magnetization. Preprocessing steps 
consisted of slice-timing correction for interleaved acquisi-
tion, head motion correction, spatial normalization into stan-
dard stereotactic MNI space with re-sampling to 3-mm cubic 
voxels, and spatial smoothing using a Gaussian kernel of 6-mm 
full width at half-maximum. For the resting-state functional 
connectivity analysis, additional preprocessing steps consisting 
of de-trending, temporal band-pass filtering (0.01 Hz<f<0.08 
Hz), and regressing out of the first temporal derivatives (in-
cluding the head motion parameters, global signals, and sig-
nals stemming from cerebral white matter and cerebrospinal 
fluid) were serially conducted using the resting-state fMRI 
Data Analysis Toolkit (REST version 1.8, http://resting-fmri.
sourceforge.net).64

Functional connectivity map generation
We examined the rs-FCN of five selected seed regions of 

interest (ROIs) systematically placed throughout the right 
ACC in two arrays designated as superior (S) and inferior 
(I).17,65 The five ACC seeds selected for this study represent 
samples of five subdomains of executive functioning associat-
ed with the ACC: the caudal ACC seed S1 (motoric executive 
control;19 MNI coordinates: x=5, y=-10, z=47), the dorsal 
ACC seed S3 (selective attention, response inhibition, and set-
maintenance;20,21 x=5, y=14, z=42), the supragenual ACC seed 
S5 (conflict detection/resolution and error processing;22,23 
x=5, y=34, z=28), the perigenual ACC seed S7 (mentalizing/
decoding of external cues;24 x=5, y=47, z=11), and the sub-
genual ACC seed I9 (emotional recognition/regulation as a 
prerequisite of cognitive control;25,26 x=5, y=25, z=-10). Using 
the “functional connectivity” function of REST, we examined 
rs-FC maps of the five predefined ACC seed ROIs for each 
subject. Each spherical seed had a radius of 3 mm in a 3×3×3 
mm voxel-sized space. For each participant, we calculated the 
mean time series of each seed ROI by averaging across all 
voxels within the seed, to calculate the map of Pearson corre-
lation coefficients for mean time series between seed ROI-
versus-voxel of gray matter across the cerebral hemisphere. 
Finally, the correlation coefficient maps were converted into z 
maps using Fisher’s z transformations to improve normality.64 
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Statistical analyses
To reveal within-group functional connectivity patterns 

(Figure 1), we entered each single-subject intrinsic network 
component into a voxel-wise one-sample t-test in SPM8 and 
created statistical z maps of the intrinsic networks based on 
each of the five ACC seeds (p<0.001 and cluster threshold 
(k)≥10 for multiple comparisons, which corresponds to the 
corrected threshold of p<0.05 as determined by 3dClustSim 
in AFNI [https://afni.nimh.nih.gov/]). Subsequent two-sam-
ple t-tests in SPM8 with a binary inclusive mask encompass-
ing the within-group level rs-FCN for two groups were con-
ducted for five kinds of ACC-based rs-FCNs (p<0.001 and 
k≥10) (Figure 2). 

Furthermore, between-group comparison for the differen-
tial pattern of correlations between four pairs of ACC-based 
rs-FCN strength and degree of executive functioning (Figure 
3) including the caudal ACC S1-based rs-FCN vs. TMT-B 
reaction time,39,66 the dorsal ACC S3-based rs-FCN vs. RCFT 
organization summary score,46 the supragenual ACC S5-based 
rs-FCN vs. WCST perseverative errors,45,67 and the perigenu-
al ACC S7-based rs-FCN vs. SCWT color-word interference 
score,5,47,68 were tested using the general linear model (GLM) 
in SPM8 [while covarying for age and sex; using an inclusive 
binary mask of the group-level rs-FCN map; results signifi-
cant at p<0.0125 (=0.05/4) and k (cluster size) ≥10].69 For 
identification of probabilistic cytoarchitecture as well as Brod-

Figure 1. Resting state functional con-
nectivity of the five seed regions of anterior 
cingulate for subjects with obsessive-com-
pulsive disorder and for healthy controls 
[p<0.001 and k (cluster size) ≥10]. 
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mann area (BA) per local global maxima, SPM Anatomy tool-
box version 2.070 and Talairach Client version 2.4.3 (http://
www.talairach.org/manual.html) were used. 

RESULTS

Demographic, clinical, and neuropsychological 
characteristics

Subject demographic and clinical characteristics ts are pre-
sented in Table 1. We found no significant differences be-
tween the groups regarding age, sex, education, IQ, and RCFT 
organization summary scores. In contrast, significant differ-
ences were observed between the OCD group and the HCs 
with respect to the WCST perseverative errors, SCWT color-
word interference scores, and TMT-B reaction times (p<0.05, 
two-tailed). 

ACC seed S1-based rs-FCN & TMT-B reaction times 
in OCD

Caudal seed S1 in subjects with OCD (Figure 1) correlated 
with a network of right ventral MCC and left ventral ACC (BA 
24), the right primary somatosensory (BA 3) and motor (BA 4) 
cortices, the bilateral supplementary motor areas (SMA; BA 6) 
and insula (BA 13), the right claustrum and precuneus (BA 7), 
the right supramarginal gyrus (BA 40), and the DLPFC (BA 9). 

Of note, the ACC S1-based rs-FCN in the right ventral MCC 
(BA 24) was weaker in OCD compared to HC (Figure 2). 
However, no significant interaction between diagnosis (OCD 
vs. HC)×ACC S1-based rs-FCN strength for TMT-B reaction 
times was detected. 

ACC seed S3-based rs-FCN & RCFT organization 
summary scores in OCD

Seed S3, which resides in the dorsal ACC, demonstrated sig-
nificant rs-FCN in the bilateral insula (BA 13) and DLPFC (BA 
9), left supramarginal gyrus (BA 40), right ventral MCC (BA 
24) and SMA, bilateral premotor cortex, right pulvinar nucleus 
of the thalamus and bilateral claustrum, left pars orbitalis (BA 
47) and superior temporal gyri (BA 22/38/41), left dorsal PCC 
(BA 31) and right frontopolar cortex (BA 10), as well as the left 
putamen and amygdala in OCD (Figure 1). Specifically, the 
ACC S3-based rs-FCN in the left DLPFC (BA 8; middle frontal 
gyrus) was attenuated in OCD compared to HC (Figure 2).

Moreover, a significant interaction between diagnosis× 
ACC S3-based rs-FCN strength in the right DLPFC (BA 9) for 
RCFT organization summary scores was revealed (p<0.001, 
k≥10) (Figure 3, Table 2); a portion of the ACC seed S3-
based rs-FCN in the right DLPFC correlated inversely with 
RCFT organization summary scores in HC [r (partial correla-
tion coefficient while covarying for age and sex)=-0.466, 

Figure 2. Between-group differences in five sub-regions of anterior cingulate cortex (ACC)-based resting state functional connectivity network (rs-
FCN); displayed at p<0.001 and k (cluster size ≥10), including the seed S1-based (connections between the red circles), S3-based (between the 
yellow circles), S5-based (between the green circles), S7-based (between the light blue circles), and the I9-based (the purple circle) rs-FCN. Lines 
connecting different circles demonstrate the weaker (grey line) or stronger (red line) strength of ACC-based rs-FCN in subjects with obsessive-
compulsive disorder relative to healthy controls. BA: Brodmann area, dACC: dorsal anterior cingulate cortex, DLPFC: dorsolateral prefrontal cor-
tex, HC: healthy control, IFG: inferior frontal gyrus, Lt: left, MCC: middle cingulate cortex, OCD: obsessive-compulsive disorder, PO: pars opercu-
laris, Rt: right, vACC: ventral anterior cingulate cortex.
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p=0.007] but not in OCD [r=0.479, p=0.024>0.013 (=0.05/4)].

ACC seed S5-based rs-FCN & WCST perseverative 
errors in OCD

The supragenual ACC seed region S5 showed significant rs-
FC with bilateral DLPFC (BA 9/46) and supramarginal gyri 
(BA 40), left insula (BA 13), bilateral claustrum and right 
thalamus, right frontopolar cortex (BA 10), left ventral PCC 
and precuneus (BA 23/7), bilateral premotor cortex (BA 6), 
and right associative visual cortex (BA 19) in OCD (Figure 1). 
Compared to HC, subjects with OCD showed stronger ACC 
S5-based rs-FCN in the left DLPFC (BA 46) and right pars 
opercularis (BA 44) (Figure 2). Conversely, no significant in-
teraction between diagnosis×ACC S5-based rs-FCN strength 
for WCST perseverative errors was found. 

ACC seed S7-based rs-FCN & SCWT color-word 
interference scores in OCD 

Perigenual ACC seed S7 in OCD revealed rs-FCN with the 

left medial prefrontal and orbitofrontal cortices (BA 10/11), 
left retrosplenial (BA 30) and right dorsal (BA 31) PCC, bilat-
eral angular (BA 39) and middle/inferior temporal gyri (BA 
20/21/22), pars orbitalis (BA 47), bilateral caudate body and 
right thalamus, right DLPFC (BA 9), bilateral premotor cortex 
(BA 6) and frontal eye field (FEF; BA 8; superior lateral or me-
dial frontal cortices) in OCD (Figure 1). It is noteworthy that 
the ACC S7-based rs-FCN in the left caudate body and dorsal 
ACC (BA 32) and in the right ventral ACC (BA 24) were 
weaker in subjects with OCD compared to HC (Figure 2). 

Moreover, a significant interaction between diagnosis×ACC 
S7-based rs-FCN strength in the left FEF for SCWT color-
word interference scores (Figure 3, Table 2) was also demon-
strated (p<0.001, k>10); reductions in ACC seed S7-based rs-
FCN in the left FEF correlated inversely with the SCWT 
color-word interference score in HC (r=-0.595, p=0.0004) but 
not in OCD [r=0.425, p=0.049>0.013 (=0.05/4)].

Figure 3. Area of significant interaction between the diagnosis and the strength of anterior cingulate cortex (ACC)-based resting state functional 
connectivity network (rs-FCN) in the correlation between executive functioning versus ACC-based rs-FCN (p<0.001, k≥10; general linear model-
ing using SPM8 while covarying for age and sex). Specifically, increment of ACC seed S3 (dorsal)-based rs-FCN in the right dorsolateral pre-
frontal cortex (DLPFC) correlated inversely with Rey-Osterrieth Complex Figure Test (RCFT) organization score in healthy controls [HC; r (partial 
correlation coefficient while covarying for age and sex)=-0.466, p=0.007] but not in obsessive-compulsive disorder [OCD; r=0.479, 
p=0.024>0.013 (=0.05/4)]. In addition, reductions of ACC seed S7 (perigenual)-based rs-FCN in left prefrontal eye field (FEF) correlated inverse-
ly with the Stroop Color-Word Test (SCWT) interference score in HC (r=-0.595, p=0.0004) but not in OCD (r=0.425, p=0.049>0.013). ACC: ante-
rior cingulate cortex, BA: Broadmann area, DLPFC: dorsolateral prefrontal cortex, FEF: frontal eye field, HC: healthy control, Lt: left, OCD: ob-
sessive-compulsive disorder, rRCFT: Rey-Osterrieth Complex Figure Test, s-FCN: resting state functional connectivity network, Rt: right, SCWT: 
stroop color-word test.
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ACC seed I9-based rs-FCN 
Seed I9, located in the subgenual ACC, was associated with 

an extensive pattern of correlated activity in the bilateral fron-
topolar cortices and OFC (BA 10/11), right subgenual ACC 
(BA 25) and pars orbitalis (BA 47) in subjects with OCD (Fig-
ure 1); the pattern of ACC I9-based rs-FCN was not signifi-
cantly different from the HC group (Figure 2). 

DISCUSSION

To the best of our knowledge, there has been a distinct lack 
of prior research investigating the network-based neural un-

derpinnings of executive dysfunction in OCD as reflected in 
the ACC-centered rs-FCNs. In the current study, five seeds in 
the right ACC, a central component of the CSTC loop, revealed 
distinct patterns of rs-FCNs in subjects with OCD, in agree-
ment with prior research with HC.17 Conversely, the OCD 
group revealed differences in rs-FCN strength between the 
ACC sub-regions and the left DLPFC, right pars opercularis, 
right ventral ACC, and the left caudate nucleus. When se-
lected dysfunction of brain rs-FCN occurs as a result of disor-
der-related pathological process, among others, the hierarchi-
cal structure of the functional brain network (including the focus 
of primal regional functional connectivity modulating successful 

Table 1. Demographic and clinical characteristics of subjects with obsessive-compulsive disorder and healthy controls*
Characteristics OCD (N=24) Healthy control (N=34) T/χ2 p-value

Demographic characteristics
Age (year) 24.9±6.7 24.0±4.1 0.594 0.557
Sex (M/F) 17/7 24/10 <0.001 0.984
Education (year) 14.5±3.6 14.2±1.4 0.395 0.696
Estimated IQ 109.4±13.3 111.2±10.5 -0.572 0.570
Age of onset (year) 18.4±6.7 - - -
Illness duration (year) 6.6±5.1 - - -

Clinical characteristics
Y-BOCS score

Obsessive score 11.1±4.5 - - -
Compulsive score 8.2±4.9 - - -
Total score 19.3±7.0 - - -

BAI score 17.6±14.5 - - -
BDI score 15.5±10.7 - - -

Neuropsychological test performance:  
  executive functioning

RCFT organization 6.6±1.2 6.3±1.5 0.918 0.363
SCWT interference RT 107.5±21.3 93.1±17.1 2.748 0.009
WCST perseverative error 8.8±3.9 6.7±3.0 2.225 0.032
TMT-B RT 72.3±31.0 57.9±17.6 2.052 0.048

*data are given as mean±standard deviation. BAI: Beck Anxiety Inventory, BDI: Beck Depression Inventory, OCD: obsessive-compulsive dis-
order, RCFT: Rey-Osterrieth Complex Figure Test, RT: reaction time, SCWT: Stroop Color-Word Test, TMT: Trail Making Test, Y-BOCS: 
Yale-Brown Obsessive Compulsive Scale, WCST: Wisconsin Card Sorting Test

Table 2. Area of significant interaction between the diagnosis×strength of anterior cingulate cortex-based resting state functional connectiv-
ity network for the executive functioning 

Cluster size Z score p value
Peak coordinates (MNI)

Laterality BA Brain region
x y z

Interaction between ACC S3-based rs-FCN versus diagnosis: RCFT organization summary scores 
15 3.57 <0.001 33 51 12 R 9 Dorsolateral prefrontal cortex

Interaction between ACC S7-based rs-FCN versus diagnosis: SCWT color-word interference scores
12 3.98 <0.001 -15 42 39 L 8 Frontal eye field (Medial frontal cortex)

ACC: anterior cingulate cortex, BA: Brodmann area, L: left hemisphere, R: right hemisphere, RCFT: Rey-Osterrieth Complex Figure Test, rs-
FCN: resting state functional connectivity network, S: superior, SCWT: Stroop Color-Word Test, MNI: Montreal Neurological Institute
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or maladaptive cognitive performance) could be changed.71 

Between-group difference in ACC-based rs-FCN: 
changed ECN features in OCD

This study showed changes in characteristic intra-/inter-
modular ECN connectivity in OCD (Figure 2). Increased rs-
FCN strength between the right supragenual ACC (S5) and the 
left DLPFC (BA 46), reminiscent of the neural response during 
working memory task performance with increased task load,37 
demonstrated an elevation of intra-modular ECN network 
connectivity in OCD.72 Additionally, decreased rs-FCN be-
tween the right dorsal ACC (S3) and left DLPFC (BA 8), as 
well as increased rs-FCN between the right supragenual ACC 
(S5) and right inferior frontal gyrus (BA 44), uncovered not 
only decreased inter-modular rs-FCN between the SN and 
ECN, but also increased inter-modular rs-FCN between the 
ECN and ventral attention network (VAN) in OCD, respec-
tively.33,73 The aforementioned inter-modular ECN connectivity 
with the SN and VAN could be related to maladaptive cognitive 
performance in OCD, including intractable preoccupations, 
distractions related to one’s obsessions, and frequent failures 
with flexible adaptation toward increased cognitive load dur-
ing working memory or executive planning.37,74-76 

The rs-FCN between the right perigenual ACC (S7)-left 
FEF: SCWT interference scores 

This study illustrated a significant interaction between 
diagnosis×ACC S7-based rs-FCN strength in the left FEF for 
SCWT color-word interference scores (Figure 3). In other 
words, an inverse correlation between the intensity of rostral 
ACC-based rs-FCN in the left FEF with SCWT color-word 
interference scores in HC (r=-0.595, p=0.0004) lost its effec-
tiveness in OCD (r=0.425, p=0.049>0.013). This implies a 
differential impact of inter-modular connectivity between 
the DMN and DAN for higher-ordered cognitive strategies 
related to visuo-spatial constructional ability according to 
OCD or HC group membership. Only when the primal ex-
ecutive functioning of selective attention and response inhi-
bition is sufficient (which is the case for HC, and not for 
OCD),77 attentional status optimization per se, in relation to 
the stronger inter-modular network connectivity between 
the DAN and DMN could minimize the Stroop interference 
effect. This would be able to facilitate SCWT color-word 
page reading performance.78,79 

The rs-FCN between the right dorsal ACC (S3)-right 
DLPFC: RCFT organization scores

Although the degree of visuoconstructive organizational 
strategy use during RCFT figure copying did not show statis-
tically significant difference between the two groups of OCD 

and HC,80 this study disclosed a characteristic role of inter-
modular rs-FCN between the ECN and SN.33 This was 
mainly composed of the dorsal ACC and DLPFC (Figure 3) 
for strategic decoding of RCFT stimuli against the cognitive con-
flict of “whether to memorize in visual details or to reconstruct 
the whole framework” in HC (r=-0.466, p=0.007).81,82 This might 
result in the “zooming-in” of attentional focus for HC.83,84 
However, few MRI studies to date have unveiled the neural 
correlates of organizational strategies as measured using the 
RCFT;85 thus, the present results require cautious interpreta-
tion, warranting further studies.

Limitations
A few limitations should be acknowledged. We did not con-

sider OCD symptom subtypes86,87 in our rs-FCN analyses. 
However, if we accept the notion of OCD as one disease entity 
with a common pathophysiology encompassing several symp-
tom subtypes,29 our investigation of rs-FCNs might successful-
ly reflect a common pathophysiology. Additionally, since our 
goal was to elucidate finer network-based neural underpin-
nings of executive dysfunction in OCD from the perspective 
of ACC sub-regions, we were not able to conduct a broader 
exploration of functional brain networks that would enable a 
priori screening of multi-hub regions related to neurocognitive 
performance in OCD.

Conclusions
The present findings, obtained using a well-developed meth-

odology, revealed the importance of the ACC as a central exec-
utor in CSTC loops among subjects with OCD.65 Using the rs-
FCN approach, the patterns of which resemble the topographic 
activation patterns of the same regions during task perfor-
mance,20 we provided evidence of a significant diagnosis× 
strength of ACC-based rs-FCN interaction in the correlation 
between executive functioning and ACC-based rs-FCN. The 
strategic decoding of visuospatial stimuli such as RCFT was 
dependent on the inter-modular network connectivity be-
tween dorsal ACC versus right DLPFC, with minimization of 
color-word interference effect during SCWT mainly loaded 
on the optimal strength of inter-modular network connectiv-
ity between the left FEF versus perigenual ACC. These finely 
delineated, network-based neural foundations for diverse 
facets of executive dysfunction in OCD could become a po-
tential target for future treatment. The aim of such interven-
tions should be improvements in global domains of func-
tioning that is broader than simple clinical symptom relief.
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