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A B S T R A C T

Analyzing long-term dynamics of landscape patterns can provide important insights into the changes in landscape
functions, that are necessary for optimizing resource management strategies. This study primarily aimed at
quantifying landscape structural change. The Land use/land cover (LULC) layers of 1972, 1987, 2002, and 2017
were mapped from Landsat images, and projected to 2032 and 2047. Factor analysis was then employed to select
independent core metrics of landscape composition and configuration to characterize the landscape. A post-
classification comparison indicated that, between 1972 and 2017, natural vegetation, grassland, barren land
and waterbody covers declined by 89.9%, 67.9%, 67.8 and 15.9%, respectively. On the other hand, plantation
increased by 692.1% followed by human settlement (138%) and farmland (21.8%). A similar trend is likely to
continue in 2032 and 2047 with a slight decline in the plantation category in 2047. Analysis of landscape metrics
revealed that between 1972 and 2017, the number of patches increased. Specifically, plantation, barren land,
settlement and grassland increased by 171.4%, 69.7%, 65.8% and 28.6%, respectively. In contrast, natural
vegetation, farmland and waterbody declined by 53.1%, 46.3% and 33.9%, respectively. Future predictions
showed a declining trend of the number of patches for all LULC types. An increasing trend in the largest patch
index and patch size for farmland, plantation, and settlement categories was observed across all years, suggesting
intensified human activities in the landscape. Consequently, natural habitat category has declined and become
fragmented. Landscape pattern has changed considerably and become more fragmented over the last 45 years.
Nevertheless, the future projections suggest a decline in fragmentation and potentially increased assemblage of
patches forming simple patterns with fewer number of large size class patches. The results of this study could
perhaps be applied in designing strategies for landscape management planning and resource conservation deci-
sion-making.
1. Introduction

The notion of landscape is concerned with the interaction between
spatial patterns and ecological processes (Mohamed et al., 2019). Land-
scape changes can lead to environmental modifications both at local and
global scales (Rudel, 2009). For centuries, mankind has altered natural
environment to meet their demand for resources (Berihun et al., 2019).
Landscape dynamics is a complex part of land use, and landscape struc-
tural changes can be determined using land use/land cover (LULC) data
(Vadjunec et al., 2018). LULC change detection is an important tool to
identify geographical dynamics and its association with human activities.
. Yohannes).
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However, it is often inadequate to provide detailed landscape structural
properties such as composition and configuration (Dewan et al., 2012;
Liu and Weng, 2013). Landscape structure is an indicator of spatial pat-
terns of the ecosystem and connectedness between different landscape
elements (Zhang et al., 2014). To understand landscape function and
process, landscape structure and any structural changes are a prerequisite
(Matsushita et al., 2006). Various landscape metrics have been developed
to measure spatial patterns of landscape function and processes
(McGarigal et al., 2012). Nagendra et al. (2004), highlighted the issue of
integrating landscape patterns and LULC. Many other researchers have
used this concept in different geographic settings (Dewan et al., 2012; Liu
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and Weng, 2013; Nurwanda et al., 2016). In contrast, a handful of works
integrated landscape metrics and LULC prediction tools such as Markov
chain and Cellular Automata (CA-Markov) to assess changes in future
landscape structure. Araya and Cabral (2010), modeled and analyzed
urban land-use change using CA-Markov and landscape metrics in
Figure 1. Location map, showing Beressa wate
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Portugal. Dezhkam et al. (2017) and Yang et al. (2014) conducted similar
studies in Iran and China, respectively.

Because of increasing human activities, environmental problem has
become widespread in many parts of the world. The deterioration in
environmental quality and widespread environmental degradation
rshed in Amhara regional state, Ethiopia.
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(biological and chemical) by air and water pollution (Basheer, 2017;
Basheer and Ali, 2018; Burakova et al., 2018; Alharbi et al., 2018; Ali
et al., 2005, 2015; Mohd and Khan, 2013; Alia and Alwarthan, 2017),
and soil and vegetation loss can result in negative ecological and health
consequences (Dunlap and Jorgenson, 2012). Ethiopia has been experi-
encing a range of environmental problems including deforestation, soil
erosion, land degradation and fragmentation, and loss of biodiversity
(Daley, 2015). Particularly, the central highland of Ethiopia, where this
study was conducted, has been impacted by anthropogenic activities due
to rapid population growth in the region. This has led to widespread
resource loss, deforestation and expansion in agricultural practices
(Amsalu et al., 2007; Kindu et al., 2013; Meshesha et al., 2016; Gashaw
et al., 2017). Unregulated land use land cover changes coupled with poor
land management practices are seriously undermining the country's
natural resource stock, including the biodiversity and food production
potential (Hamza and Iyela, 2012). Several studies have been undertaken
to understand LULC changes in different parts of the Ethiopian Highlands
(Kindu et al., 2013; Gashaw et al., 2017) including within the Beressa
watershed (Amsalu et al., 2007; Meshesha et al., 2016). Almost all of
these studies have reported extensive LULC change and illustrated
complexity of the conversion process.

In general, studies on LULC change and landscape structure quanti-
fication in Ethiopia have not been well focused considering high vari-
ability in landscape of the country. A number of projects have looked at
landscape structure and LULC change in the urban area of Mekelle city
(Fenta et al., 2017), Jibat forest (Tolessa et al., 2016), South-West
Ethiopia (Daye, 2012) and Holeta-Berga watershed (Gelet et al., 2010).
These studies, however, were limited in scope and have not really
examined future trends in landscape pattern change despite the fact that
changes in landscape pattern can have serious implications in ecological
functioning. It is evident that there is currently a real lack of detailed
information and data regarding landscape structural change in this re-
gion. This study is designed to fill this gap by evaluating past and pro-
jected LULC trends, and quantifying landscape structure.

2. Material and methods

2.1. The study area

The study area is the Beressa watershed (centered on 39º290 - 39º440 E
longitude and 9º340- 9º420 N latitude) which is situated approximately
130 km northeast of Addis Ababa, the capital of Ethiopia (Figure 1). It has
Figure 2. Rainfall and temperature d
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an area of 21367.26 ha and is characterized by mountainous and hilly
topography, with elevations ranging from 2056 to 3744 m above sea
level (m a.s.l). It spans the Basona Werana and Angolelana Tera districts,
in the North Shewa Zone of Amhara Regional State, Ethiopia. This area is
an intensely cultivated part of the Ethiopia northern central highland's
crop belt. The Beressa river, a major perennial waterway, flows in a
north-westerly direction pass the Debre Berhan township to the Jemma
River, a tributary of the Blue Nile basin.

Themeanmonthly temperature of the watershed area ranges from 2.8
to 21.9 �C with a mean of 13.18 �C. Mean annual rainfall ranges from
698.5 to 1083.5 mmwith a mean annual total of 920mm (EMA (Ethiopia
Meteorology Agency), 2017) (Figure 2).

The major soil types of the watershed comprise Cambisols, Vertisols,
Regosols and Luvisols, with very few Leptosols (MoWIE, 2017). Rainfed
agriculture is the main source of livelihood for majority of the popula-
tion. This sector is characterized by smallholder mixed crop-livestock
farming. Commonly cultivated crops include wheat (Triticum aestivum
L.), Barley (Hordeum vulgare L), horse bean (Vicia faba L.), field pea
(Pisum sativum L.), Lentil (Lens culinaris L.), Teff (Eragratis teff), linseed
(Linum usitatissimum L.) and chick peas (Cicer arietinum L.). Cattle and
sheep production are also practiced in the study area.

2.2. Data acquisition, image preprocessing and classification

Landsat images, comprising 1972_MSS, 1987_TM, 2002_TM and
2017_OLI/TIRS, (path 167, row 53) were obtained from USGS
(http://earthexplorer.usgs.gov). They were used to derive multitemporal
data of the study area. The images retrieved represent dry season when
spectral differences between the various land cover types are greatest and
cloud contamination is minimal. Digital elevation model (DEM) from
ASTER GDEM at 30m was also obtained from http://dwtkns.com.srtm.
Infrastructural information such as roads and towns were acquired from
Ethiopia Ministry of Water Irrigation and Electricity (MoWIE, 2017). The
river network map was generated in Arc SWAT 2012.10.3.18 (https://sw
at.tamu.edu/software/arcswat/).

Geometric, radiometric and atmospheric corrections were conducted
and digital number (DN) were converted to Top-of-Atmosphere (ToA)
reflectance values using the DOS1 atmospheric correction tool (Congedo,
2016). The 1972 image was resampled to 30m using the nearest neighbor
resampling method to align with the pixel size of other Landsat sensors
(Kumar et al., 2018). A supervised classification was employed using
maximum likelihood classification (MLC) algorithm. Spectrally
istribution of Beressa watershed.

http://earthexplorer.usgs.gov
http://dwtkns.com.srtm
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https://swat.tamu.edu/software/arcswat/


H. Yohannes et al. Heliyon 6 (2020) e04859
homogeneous areas were defined as training pixels using a
region-growing algorithm (Macchi and Tiepolo, 2014).
Post-classification smoothing was used to remove the salt-and-pepper
effects (Lillesand and Kiefer, 1999). Sieving was then applied to the
classified LULC to recode any isolated pixels. Finally, seven LULC cate-
gories were defined for the study area (Table 1). A cross tabulation was
performed to determine conversion of one LULC category to another. A
temporal comparison of values provides statistics for each period
(Gashaw et al., 2017; Berihun et al., 2019). The following equations were
used:

Percent of changeðΔ%Þ¼Areafinal year � Areainitial year
Areainitial year

x 100 (1)

where, area is the extent of each LULC type; positive values suggest a gain
while negative values represent a loss.

Rate of changeðha = yearÞ¼Areafinal year � Areainitial year
N

(2)

where, N is the time interval between initial and final years.
2.3. Accuracy assessment

Ground control points (GCPs) were collected from a variety of sour-
ces, including field visits, Google Earth and vegetation maps (Rujoiu--
Mare and Mihai, 2016). They were used as reference data to evaluate the
results. A total of 390 samples (a minimum of 50 per class), following
Congalton & Green (2009), were collected using a random sampling
method. A comparison between the classified images and available
ground truth information was conducted using the kappa index of
agreement (KIA) and the quantity and allocation disagreement technique
(Pontius and Millones, 2011). User's accuracy, producer's accuracy,
kappa coefficient, overall accuracy and quantity disagreement and allo-
cation disagreement (Table 2) were computed for each period. A kappa
value > 0.8, indicated strong to perfect agreement with high reliability
Singh et al., 2015
2.4. Land use/land cover change prediction

Spatially dynamic Cellular Automata-Markov chain (CA-Markov)
model was used to predict future LULC for the years 2032 and 2047. The
CA-Markov model (comprising a cellular state, cellular space, cellular
neighborhood and transition rules), is expressed as (Chu et al., 2018):

Sðtþ1Þ ¼ ðf ðSðtÞ; NÞ (3)

where, S is the set of finite and discrete cellular states, t and tþ1 represent
different moment in time, N is cellular neighborhood, and f is cellular
transition rules in local space.

The initial calibration utilized 2002 LULC map and Markov transition
area of 1987 and 2002 to simulate 2017 LULC map. Simulation of future
LULC maps was conducted following a check of initial calibration accu-
racy, essentially comparing simulated map of 2017 with the actual map.
Table 1. Description of different land use/land cover classes of the Beressa watershe

LULC Description

Natural vegetation (NV) Comprises mixed indigenous trees and shrubs in natural forest, woo

Plantation (PL) Trees planted around homesteads and on degraded lands, dominan

Grassland (GL) Grass cover, forbs and pasture land with no pattern

Settlement (ST) Rural and urban settlements including villages, scattered houses, bu

Barren land (BL) Land with little or no vegetation, exposed rocks and gullies

Farmland (FL) Cultivated land, dominantly used for annual crops and fallow land

Waterbody (WB) Includes rivers, streams, and pond water
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Cross tabulation was employed to estimate KIA and quantity-allocation
disagreements (Pontius and Millones, 2011).

Transition probability areas from the years 2002 and 2017, a classi-
fied LULC map of 2017, and a set of transition suitability images were
then used to predict LULC patterns for two years, i.e., 2032 and 2047. The
relative suitability area for each LULC was identified using factors and
constraints defined by Eastman (2012) (Table 3).
2.5. Computation and selection of landscape metrics

To understand composition and configuration of the watershed at the
class level, FRAGSTATS (v. 4.2.1) was used (McGarigal et al., 2012). It
calculates a large set of landscape metrics for an area into elements such
as patch density, shape, core area, diversity, contagion, and interspersion
(Dewan et al., 2012). Many landscape metrics can be used to analyze
spatial patterns of landscape, and many of the indices are highly corre-
lated with each other (Apan et al., 2002). In this study, ecologically
important landscape metrices are selected based on the aim of this study
(Cushman et al., 2008).

Principal Component Analysis (PCA) was used for factor extraction.
Important metrics were selected using an evaluation of the degree of
redundancy based on a correlation matrix (Riitters et al., 1995). Factors
are subjected to varimax rotation to determine loading factors, and
components that have an eigenvalue of >1 are retained (Weide and
Beauducel, 2019). Following data normality test, Spearman's product
moment correlation between selected landscape metrics is used. The
metrics that show an average in-group correlation of>0.8 are considered
redundant (Cat Tuong et al., 2019). Only one of the metrics is retained for
further analysis based on its ecological relevance. Five important land-
scape metrics: area metrics (LPI and MPS), shape metrics (AWMPFD) and
aggregation metrics (AI and NP), are selected to characterize landscape
composition and configuration in the Beressa watershed (Table 4). An
analysis was performed using the R (v.3.6.2) software package (R Core
Team, 2019).

3. Results and discussion

3.1. Land use/land cover changes between 1972 and 2017

LULC changes were categorized into four epochs, 1972–1987,
1987–2002, 2002–2017 and for the entire period, 1972 to 2017. The
spatio-temporal distribution of each LULC category is presented in
Figure 3, and an analysis of the extent of each LULC type is shown in
Figure 4. When comparing the first period with successive periods, it is
evident that the rate of change in waterbody, barren land, grassland and
natural vegetation is lowest in this first period, and expansion of farm-
land is highest. The change however varied due to continuous shrinkage
of natural vegetation, grassland, barren land and waterbody categories in
response to an increase in settlement and plantation categories in the
following two periods (Table 5, Figure 4). Farmland is the dominant
LULC in the study periods and currently more than two thirds of the total
area is under cultivation. This cover type has increased on an average
57.5 ha per year over the study period (Figure 3; Table 5). Analysis
d.

dland and shrub land including Junipers procera, Hagenia abyssinica and Acacia abyssinica.

tly Eucalyptus

ildings, roads, industries and institutions etc.



Table 2. Accuracy assessment of 1972, 1987, 2002 and 2017 classified images.

LULC 1972 1987 2002 2017

PA UA PA UA PA UA PA UA

Barren land 86 84.3 88 84.6 88 88 82 93.2

Farmland 90 88.2 92 92 94 90.4 98 77.8

Grassland 86 86 88 89.8 96 85.7 94 95.9

Natural vegetation 90 93.8 92 93.9 88 95.7 92 100

plantation 86 89.6 90 90 94 90.4 96 92.3

Settlement 90 91.8 92 93.9 90 97.8 94 100

Waterbody 96 94.1 98 96.1 96 100 98 100

Overall Accuracy (%) 89.66 91.43 92.29 93.42

Kappa coefficient 0.88 0.90 0.91 0.92

AD (%) 8.18 7. 96 7.7 6.5

QD (%) 1.73 1.55 0.6 0.4

PA: producer's accuracy, UA: user's accuracy, AD: allocation disagreement, QD: quantity disagreement.

Table 3. Factors and constraints and their weights used for predicting LULC.

LULC Factors Constraints Criteria weight Consistency ratio

Natural vegetation Natural vegetation 0.53 0.01

Distance to road 0.16

Distance to settlement 0.31

Plantation Plantation None 0.18 0.04

Natural vegetation 0.15

Grassland 0.16

Settlement 0.13

Farmland 0.14

Barren land 0.15

Waterbody 0.09

Grassland Grassland area None 0.34 0.01

Distance to settlement 0.23

Distance to road 0.21

Distance to river 0.08

elevation 0.14

Settlement Settlement area 0.4 0.05

Distance to town 0.27

Distance to road 0.11

elevation 0.1

Slope (>5%) 0.12

Barren land Barren land area 0.43 0.04

Farmland 0.14

Plantation 0.13

Grassland 0.1

Natural vegetation 0.13

Settlement 0.06

Water body 0.01

Farmland Cultivated land 0.38 0.02

Distance to river 0.2

Distance to road 0.17

Distance to settlement 0.01

Elevation 0.08

Slope (>10%) 0.16

Waterbody Waterbody area 0.61 0.03

Natural vegetation 0.22

Plantation 0.02

Grassland 0.03

Settlement 0.01

Farmland 0.02

Barren land 0.09

H. Yohannes et al. Heliyon 6 (2020) e04859
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Table 4. Description of landscape metrics used in this study.

Acronym Metrics* Description (unit) Indicators

LPI Large Patch Index Percentage of landscape composed of the largest patch (%) Dominance

MPS Mean Patch size Average size of the patch comprising each class (ha) Fragmentation

AWMPFD Area weighted mean Patch Fractal Dimension Measures aspects of patches on the basis of fractal geometry (none) Shape complexity

NP Number of Patches Total number of patches in the landscape of a particular class (none) Fragmentation

AI Aggregate Index Percentage of a neighboring pixel of the same LULC class (%) Aggregation

* McGarigal et al. (2012).

Figure 3. LULC maps of the Beressa watershed for 1972, 1987, 2002 and 2017.

H. Yohannes et al. Heliyon 6 (2020) e04859
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Figure 4. Area coverage of LULC for 1972, 1987, 2002 and 2017.

Table 5. Changes in LULC between 1972 and 2017.

LULC* Percent change (%) Annual rate of change (ha year�1)

1972–1987 1987–2002 2002–2017 1972–2017 1972–1987 1987–2002 2002–2017 1972–2017

BL -8.2 -44.5 -36.7 -67.8 -15.2 -75.9 -34.7 -41.9

FL 9.4 2.1 9 21.8 74.3 18.2 79.9 57.5

GL -20 6.5 -62.3 -67.9 -46.4 12 -122.9 -52.4

NV -44.5 -55.6 -59.2 -89.9 -60 -41.5 -19.7 -40.4

PL 125.2 132.8 51.1 692.1 31.6 75.6 67.7 58.3

ST 38.8 22.4 40.1 138 16.5 13.3 29.1 19.6

WB -7.6 -14.5 6.4 -15.9 -0.9 -1.7 0.6 -0.7

* refer Table 1 for LULC definition.
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further shows that grassland was the second-largest LULC class until
2002 but were replaced by plantation cover during 2017 (Figure 4).

Significant areal expansion is observed in plantation (692.1%) and
settlement (138%) covers during the study period. At the same time, the
amount of natural vegetation, grassland, barren land, and waterbody
LULC reduced to 89.9%, 67.9%, 67.8%, and 15.9%, respectively
(Table 5).

The fluctuations in LULC change observed during the study period are
undoubtedly associated with rapid population growth. A decline in soil
fertility, resulting from intensive farming, has also forced farmers to
expand their activities and move to steeper terrain and onto more mar-
ginal lands. Difficult to obtain energy sources such as wood (fuel for
cooking and for house construction), land reallocation for cultivation and
settlement (especially for the younger generation and retired military
personnel) appeared to have influenced this phenomenon. This obser-
vation aligns with other studies which have been conducted in the Blue
Nile basin of Ethiopian highlands and elsewhere (Amsalu et al., 2007;
Meshesha et al., 2016; Gashaw et al., 2017; Yesuph and Dagnew, 2019;
Hassan et al., 2016; Munthali et al., 2019; Jayne et al., 2014). The
expansion of plantation (consisting of mainly Eucalyptus species) in the
watershed area resulted in low productivity of cultivated lands due to
depletion of important soil nutrients. The economic importance of
Eucalyptus plantation is increased due to its market demand and
fast-growing nature. Farmers have therefore attempted to diversify the
type of farming being undertaken in order to increase their income
(Minta et al., 2018). An alteration of natural vegetation systems has also
7

been observed in the study area. This is due to expansion of the amount of
land under cultivation and increasing demand for household fuelwood
(including charcoal production), a direct result of population pressure
leading to loss of biodiversity. The results of this study accord with the
observations of Yesuph and Dagnew (2019), who reported that loss of
vegetation is associated with loss of wildlife habitat causing widespread
habitat fragmentation and a reduction in wildlife species. Population
numbers in the region increased exponentially where the watershed is
located (Figure 5). As a result, expansion of plantation, settlement and
farmland are widespread, leading to a significant decline in natural
vegetation, grassland, barren land and waterbody (Table 5).

The LULC class transition flagged notable changes in land use/cover
during the study period (Table 6). A total of 3759 ha of land experi-
enced a transition from one land class to another, (17.6% change
during the first period), 8057 ha (37.7% change during the second
period) and 7729 ha (36.1% change during the third period). Ac-
cording to transition matrix assessment, the highest rate of conversion
was recorded in regards barren land (47.6%), waterbody (47.3%) and
grassland (45%) which converted to farmland. Settlement to grassland
was the lowest area conversion observed (Table 6). Among LULC
classes, farmland was found to be little effected (about 80% remaining
unchanged). An analysis of net gains and losses for each LULC class
shows that grassland experienced significant loss (624.0 ha), followed
by natural vegetation (392.7 ha). On the contrary, substantial gains are
observed in settlement (723.2 ha), farmland (295.3 ha) and plantation
(257.4 ha) land covers (Table 6).



Figure 5. Total population and population growth rate (1994–2017) *source ¼ Ethiopian Central Statistical Authority (CSA).

Table 6. Transition area matrix between 1972 and 2017.

LULC unit BL FL GL NV PL ST WB Total Loss Net change

BL ha 93.4 655.5 89.8 0 359.2 179.6 0 1377.5 1284.1 -119.3

% 6.8 47.6 6.5 0 26.1 13 0 100

FL ha 504.8 10124.9 793.7 0 723.2 853.4 0 13000 2875.1 295.4

% 3.9 77.9 6 0 5.6 6.6 0 100

GL ha 122.9 916.4 167.1 0 592.3 223.5 0 2022.2 1855.1 -624.0

% 6 45.3 8.3 0 29.3 11.1 0 100

NV ha 61 126.2 18.3 8.8 122.1 65.1 0 401.5 392.7 -392.7

% 15.2 31.4 4.6 2.2 30.4 16.2 0 100

PL ha 312.4 600.8 295.3 0 772 450.6 68.8 2499.9 1727.9 257.3

% 12.5 24 11.8 0 30.9 18 2.8 100

ST ha 140.2 761.7 18.3 0 152.3 761.7 0 1834.2 1072.5 723.2

% 7.6 41.6 1 0 8.3 41.5 0 100

WB ha 23.5 109.9 15.7 0 36.1 23.5 23.7 232.4 208.7 -139.9

% 10.1 47.3 6.8 0 15.5 10.1 10.2 100

Total (ha) 1258.2 13295.4 1398.2 8.8 2757.2 2557.4 92.5

Gain (ha) 1164.8 3170.5 1231.1 0 1985.2 1795.7 68.8
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3.2. Prediction of land use/land cover change

3.2.1. Validation of CA-Markov model
Figure 6 shows actual versus simulated LULC for 2017. A comparison

of the maps shows good agreement in terms of quantity-allocation
agreement/disagreements and kappa statistics. Strong agreement be-
tween actual and simulated LULC maps shows the following, chance
agreement (24%), quantity agreement (48%), allocation agreement
(62%), allocation disagreement (10%), quantity disagreement (0.06%),
kappa for no ability (Kno) (89.1%), Klocation (88.2%), Klocationstrata
(88.2%) and Kstandard (83.7%). These metrics indicate good perfor-
mance of the model in simulating future LULC and the variation between
classified and simulated maps was minimal for all LULC categories
(Figure 6). The results indicate that CA-Markov modelling can is a reli-
able predictor of future LULC in the study area. Studies by Gashaw et al.
(2017); Mohamed andWorku (2020) and Palmate et al. (2017) have also
8

reported good agreement between simulated and classified LULC maps
therefore confirming the model's robustness in predicting future LULC
changes, both in Ethiopia and elsewhere.

3.2.2. Future land use/land cover change
During the two projected periods (2017–2032 and 2032–2047),

farmland is expected to increase, followed by both plantation and set-
tlement (Figure 7). The same trend would be expected to continue during
the future, although loss and gain statistics between LULC categories may
vary depending on the degree of human activities. Nevertheless, the rate
of overall change is expected to be less than in the earlier periods.
However, general trend of LULC changes in the Beressa watershed shows
that the changes experienced in the recent past are likely to continue into
the future. The predicted LULC change analysis shows that grassland,
barren land, natural vegetation andwaterbody categories could decrease,
while areas of settlement, farmland, and plantation might increase



Figure 6. Comparison of simulated versus actual LULC maps, 2017

H. Yohannes et al. Heliyon 6 (2020) e04859
(Figure 8; Table 7). A slight decline in the plantation category in 2047 is
also noticed.

The greatest decline is projected for natural vegetation and water-
body (99.47% and 73%), with an annual projected loss of 6.7 and 3.8 ha,
per respectively from 2017 to 2047. The total decline of these classes has
the potential to be much higher than it was in the past. In contrast to this,
the rate of decline for grassland (60.9%) and barren land (54.56%) could
be lower than predicted. Settlement, farmland, and plantation could in-
crease by 37.65%, 5.39% and 4.5% (Table 7). The reduction of valuable
9

natural land covers and expansion in human-dominated land-use activ-
ities strongly suggest that human disturbance will undoubtedly continue
to affect future landscape functionality. A study by Gashaw et al. (2017),
in the Andassa watershed, Blue Nile basin showed that areas under
cultivation, and those impacted by urban developments, would change at
a lower rate in the future compared to the past. The ongoing expansion of
human settlement affects both ecosystem functionality and landscape
stability through a reduction in water and sediment retention and the loss
of local biodiversity and regional climatic regulation. Similarly, an



Figure 7. Simulated LULC maps of the Beressa watershed for 2032 and 2047.

Figure 8. Area of projected LULC (2032 and 2047).
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increase in the amount of area under cultivation can weaken the func-
tionality, stability and biodiversity of ecosystems, as well as negatively
impacting water regimes, soil quality and erosion rates (Prokopov et al.,
2019). The popularity and associated rate of expansion of plantation
areas (particularly those consisting of Eucalyptus species), is high in
Ethiopia. This adversely affects the region's hydrological balance, leading
to a depletion in soil nutrients, loss of soil and biodiversity, all of which
impact functionality of an ecosystem (Minta et al., 2018). The change of
10
important natural land covers alters natural habitats composition and
configuration could therefore threaten ecological stability (Prokopov
et al., 2019).

Table 8 shows potential areal changes from one LULC class to another
for the period 2017 to 2047. The main conversions are expected to occur
from natural vegetation into grassland and plantation, grassland into
farmland and barren land, barren land into farmland, plantation and
settlement, and waterbody areas into farmland, plantation and grassland.



Table 7. Changes in LULC for 2032 and 2047.

LULC Area change (%) Annual change rate (ha yr�1)

2017–2032 2032–2047 2017–2047 2017–2032 2032–2047 2017–2047

BL -36.60 -28.25 -54.51 -21.91 -10.72 -16.32

FL 3.68 1.65 5.39 35.48 16.46 25.97

GL -27.47 -46.21 -60.99 -20.46 -24.97 -22.72

NV -93.76 -91.69 -99.47 -12.72 -0.77 -6.75

PL 6.90 -2.25 4.5 13.82 -4.80 4.51

ST 11.20 23.77 37.65 11.40 26.84 19.12

WB -53.67 -41.83 -73.05 -5.61 -2.03 -3.82

Table 8. Transition area matrix of the projected LULC (2017–2047).

LULC unit BL FL GL NV PL ST WB Total Loss Net change

BL ha 333.8 315.6 21.5 0 87.4 89.8 0 848 514.2 -76.4

% 39.4 37.2 2.5 0 10.3 10.6 0 100

FL ha 322.5 13296.9 79.6 0 726.1 258.9 0 14684 1387.1 91.2

% 2.2 90.6 0.5 0 4.9 1.8 0 100

GL ha 41.8 438.6 410 0 20.1 47.0 0 957.6 547.6 -417.4

% 4.4 45.8 42.8 0 2.1 4.9 0 100

NV ha 5.7 0 21.2 20.4 150.5 5.6 0 203.5 183.0 -183

% 2.8 0 10.4 10 74.0 2.8 0 100

PL ha 51.7 516.4 0.3 0 2360.7 98.2 0 3027.2 666.5 367.3

% 1.7 17.1 0 0 78.0 3.2 0 100

ST ha 14.8 182.8 5.5 0 44.0 1336.9 0 1584 247.1 256.3

% 0.9 11.5 0.3 0 2.8 84.4 0 100

WB ha 1.3 25.0 2.2 0 5.7 3.8 24.7 62.8 38.1 -38.1

% 2.1 39.8 3.5 0 9.2 6.1 39.3 100

Total (ha) 771.6 14775.2 540.2 20.4 3394.6 1840.4 24.7

Gain (ha) 437.8 1478.3 130.2 0 1033.9 503.4 0
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Based on this study, about 83% of existing land may remain unchanged,
particularly farmland (91%), settlement (84%) and plantation (78%).
Conversely, only 10% of current natural vegetation cover would be un-
changed, indicating a large amount of conversion to be occurred in the
future.

An examination of LULC change over the study period highlighted
substantial loss of natural and semi-natural landscape units and expan-
sion of a human-dominated landscape. These changes have the potential
to affect land productivity, habitat quality, ecological processes and
functions, ecological resilience, and ultimately, general human well-
being. Future land use management plans based on simulated LULC maps
may prove important in reducing pressure on natural ecosystems and
assist in minimizing the expansion of human land-use activities, thereby
reducing or eliminating any further degradation of ecosystem function-
ality (Halmy et al., 2015).
3.3. Analysis of landscape composition and configuration

Five class-level metrics (LPI, MPS, AWMPFD, NP and AI) are selected
following a stepwise analysis using both PCA (Table 9) and correlation
analysis (Figure 9). The LPI and MPS (area metrics) are known as
composition metrics, and the AWMPFD (shape metrics), NP and AI (ag-
gregation metrics) represent landscape configurations.

3.3.1. Analysis of landscape structural changes in the Beressa watershed
(1972–2017)

The temporal changes evident in the landscape pattern metrics for
each LULC class are shown in Table 10. The LPI indicates how the patches
resist fragmentation. The results reveal that LPI exhibits an increasing
trend for farmland, plantation and settlement LULC, signifying where
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dispersed patches were merged into larger areas. This signifies decreased
fragmentation of the patches. Conversely, the LPI for natural vegetation
(77.2%) and barren land (74.2%) is reduced, indicating increased human
disturbance that resulted in widespread fragmentation. The LPI for
grassland and waterbody covers exhibited an inconsistent, varied trend
(Table 10), with grassland LPI was totally decrease by 79.4% and an
increase for waterbody category by 77.2% during 1972–2017
(Figure 10).

High demand of firewood charcoal, and construction activities, and
an increased demand for suitable cultivation areas were the main drivers
for fragmentation of natural vegetation. Barren land and grassland
patches were also fragmented due to increased demand of food for the
growing population. A similar situation is identified in other Ethiopian
highland areas (Gashaw et al., 2017; Yesuph and Dagnew, 2019).

The mean patch size (MPS) also showed a similar trend like LPI for
farmland, plantation, settlement, natural vegetation, and waterbody,
however a decreasing trend is observed for grassland and barren land
(Table 10). The MPS for grassland and natural vegetation declined by
60% and 43.2% during 1972–2017 (Figure 10). It is a good indicator for
understanding patch fragmentation. An increase of MPS can resulted
from progressive clustering of patches (Liu et al., 2019) and an increase
in patches size over time. A decreasing trend indicates the fragmentation
of the patches.

Farmland recorded the largest LPI and MPS values, with the single
largest farmland patch being 68.02% and the largest MPS being 92.94 h,
both recorded in 2017 (Table 10). High LPI and MPS values are in-
dicators of landscape homogeneity and the result clearly suggests the
dominance of farmland in the watershed, this being the main socioeco-
nomic, livelihood system of the local communities. This result is in line
with Tolessa et al. (2016), who reported that the cultivated category



Table 9. Component pattern of rotated factor loadings.

Metrics Principal components Communalities

1 2 3

AWGYRATE 0.99* -0.015 0.093 0.993

LPI 0.99 -0.018 0.068 0.989

AWMPS 0.988 -0.037 0.055 0.988

MESH 0.982 -0.048 0.048 0.979

DIVISION -0.982 0.048 -0.048 0.98

PLAND 0.972 0.1 0.13 0.976

AWMPSI 0.924 0.119 0.087 0.945

AWMPFD 0.892 0.21 0.09 0.882

MPS 0.798 -0.19 0.063 0.901

ED 0.77 0.531 0.156 0.962

TE 0.769 0.531 0.156 0.962

IJI 0.519 -0.276 -0.293 0.652

PD -0.169 0.955 0.025 0.942

NP -0.169 0.955 0.025 0.942

LSI 0.269 0.941 0.075 0.985

MNENN -0.235 -0.634 0.197 0.609

COHESION 0.332 0.075 0.902 0.932

AI 0.337 -0.191 0.859 0.91

SPLIT -0.027 -0.16 -0.846 0.742

CONTIG -0.38 -0.138 0.675 0.781

eigenvalue 10.89 4.53 2.73

%variance 56.89 26.6 13.02

%cumulative 56.87 83.5 96.51

* Bold faced values are significant at p < 0.05.
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forms large, contiguous patches in the Jibat forest of western highland
Ethiopia. Muleta and Biru (2019) also concurred with this observation,
reporting similar findings, and suggesting that expansion of cultivated
land and settlement is primarily resulted from increased demand of food
and shelters. On the other hand, waterbody and plantation categories
display the smallest LPI (0.06%) and MPS (0.96 ha) (Table 10) in the
study area.

The magnitude of change in plantation LPI (795.7%) and MPS
(263.5%) was remarkably high during 1972–2017. Settlement category
was next with a change rate in LPI of 231.3% and MPS was 134.4%.
These high change rates indicate rapid expansion of plantation and set-
tlement patches due to increased population pressure. Degraded areas of
cultivated lands were converted to plantation patches, while high de-
mand and market value of firewood resulted in the expansion of Euca-
lyptus plantations into fertile and productive lands. This indicates that
Eucalyptus plantations are also expanding in the area at the expense of
crop production due to increased cash flow from these products, resis-
tance of the tree species to pests and diseases, and the associated low
maintenance and labour costs. Others have also reported similar findings
in the Koga andMega watersheds of Ethiopia (Chanie et al., 2013; Negasa
et al., 2016).

One of the main reasons for settlement patch augmentation was land
reallocation for young couples and retired military personnel (Yesuph
and Dagnew, 2019). Socio-economic development and industrial growth
have resulted in a progressive expansion of urban and industrial areas
(e.g. industrialization in and around Debre Berhan town). This has
resulted in an increase in development in the lower sections of the
watershed, usually at the expense of existing agricultural areas. The
urban ecosystem tends to be more complex, including social-biophysical
feedback with intense human influences. Urban systems alter air and soil
quality and lead to significant loss of biodiversity (with small patches less
likely to support a wide variety of habitats and species) due to increased
human habitation, construction of artificial structures and loss of natural
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habitat (Parris, 2018; Walt et al., 2015). On the contrary, the lowest LPI
change was observed in farmland (increased by 47.5%) and in waterbody
for MPS (decreased by 1%) during the study period (Figure 10). The low
change rate in farmland attributed to relatively slow expansion as
compared to others such as farmland which was covered more than half
of the watershed before 1972.

The loss of area and habitat fragmentation increased for natural
vegetation, grassland, and barren land covers as indicated with a rapid
decline of LPI and MPS during 1972–2017 (Figure 10). With the land-
scape increasingly fragmented, average size of the patches has decreased
(Wu, 2009). Class-level loss and fragmentation have occurred as the
watershed is experiencing a continued loss of natural vegetation, grass-
land and barren land. Amsalu et al. (2007) observed the same issue in the
study area, noting continuous clearing of natural vegetation since 1950s.
Many other studies conducted in Ethiopia have noted that ongoing
deforestation is a major cause of land degradation (Duguma et al., 2019).

In terms of NP, plantation is the patchiest category (Table 10). The NP
increased continually for barren land with a total change rate of 69.7%,
settlement by 65.8%, and grassland by 28.6%. An increase in the grass-
land and barren land patches indicated that they are under severe
anthropogenic pressure. This finding corroborates with other studies in
Ethiopia and elsewhere (Amsalu et al., 2007; Meshesha et al., 2016;
Tolessa et al., 2016; Walt et al., 2015). The expansion of settlement leads
to the changes in composition and functioning of adjacent lands through
disturbance impacts (Walt et al., 2015). As a result, grassland cover
adjacent to urban areas in the lower part of the watershed become highly
susceptible to fragmentation.

The NP for natural vegetation, waterbody, plantation and farmland
has varied since 1972. For example, the NP for natural vegetation and
waterbody increased from 1972 to 1987, but decreased from 1987 to
2017 (Table 10), with a decline rate of 53.1% and 33.9%, respectively
during 1972–2017 (Figure 10). This decreasing trend implies that there
was a substantial loss of these classes due to increased human



Figure 9. Spearman's rank correlation heat map between landscape metrics. Dark blue color indicates strong positive relationships, dark red indicates strong negative
relationship.
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interference and high demand for fuelwood. A rapid growth in plantation
patches (171.4%) was recorded, although NP did decrease from 886 to
836 between 2002 and 2017. The NP for farmland showed a consistent
increase between 1972 and 2002, and then a decrease from 2002 to
2017. The increasing trend noted was due to frequent land redistribution
in the area, while decreasing trend indicated that farmland patches
merged together to form larger patches (as evidenced by the MPS and LPI
trend). Tolessa et al. (2016) noted that cultivated land NP increased due
to the fact that farmers owned many parcels in Jibat forest, Ethiopia.

The AI of the patches were above the medium value (60.6%). During
1972–2017, all LULC covers experienced this decreased except for
farmland and waterbody covers (Table 10). A decrease in AI, together
with an escalation of NP for the settlement and plantation categories is
attributed to spontaneous growth of the patches (Hao et al., 2012; Parris,
2018). As NP increased, a decline in AI, MPS and LPI for natural vege-
tation and grassland patches was noted, suggesting fragmentation of
lands.

The analysis of AWMPFD indicates that, generally, most of the
patches shape are less complex (Table 10). This could be the result of the
landscape having uniform patch boundaries due to human activities
(Saura and Carballal, 2004). The simplest patch shape observed in
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settlement and plantation was 1.09, while relatively more irregular patch
shapes were observed in the farmland category (1.37). Overall, the shape
complexity increased for farmland, grassland, plantation and settlement
covers, while it decreased for the barren land, natural vegetation and
waterbody categories. The change of shape irregularity was highest for
grassland (11.5%) and lowest for waterbody (0.9%) during 1972–2017.

3.3.2. Landscape structural changes for simulated land use/land cover
The landscape metrics assessment for projected LULC revealed that

LPI and MPS would increase for plantation (404.3% and 92.7% respec-
tively), settlement (120% and 298.8%) barren land (230.3% and 59.1%)
and farmland (2.4% and 25%). However, they could decrease for natural
vegetation (97.3% and 63.9%) and waterbody (27.3% and 73.7%) covers
during 2017–2047 (Figure 10). The LPI andMPS of grassland cover could
fluctuate during 2017–2047, with an increase of LPI and a corresponding
decrease in MPS from 2017 to 2032. They did, however, showed a
reversed tendency from 2032 to 2047 (Table 10). In total, LPI and MPS
for grassland could decrease by 35% and 30.8% during 2017–2047. The
greatest changes in LPI and MPS are expected to be for plantation and
settlement categories, and the least change could be for farmland cover.
Despite having the least change, the LPI and MPS for farmland will



Table 10. Observed and predicted landscape pattern metrics for each LULC.

Land use class Year Landscape metrics

LPI MPS AWMPFD NP AI

Barren land 1972 1.28 6.77 1.17 346 84.61

1987 1.18 1.35 1.15 384 82.2

2002 0.39 4.08 1.14 454 77.61

2017 0.33 1.54 1.13 587 70.81

2032 0.43 2.26 1.08 210 89.39

2047 0.44 2.20 1.08 108 89.92

Farmland 1972 46.13 41.42 1.32 296 91.55

1987 64.39 51.28 1.33 297 61.56

2002 66.04 52.23 1.37 309 90.34

2017 68.02 92.94 1.37 159 91.62

2032 68.66 106.06 1.29 150 96.11

2047 69.63 116.22 1.27 142 97.09

Grassland 1972 3.78 9.28 1.13 304 86.61

1987 3.01 6.50 1.19 313 84.2

2002 3.73 5.03 1.2 365 82.32

2017 0.78 3.71 1.26 391 81.42

2032 0.83 3.50 1.09 172 82.61

2047 0.51 2.57 1.08 149 83.67

Natural vegetation 1972 1.62 5.93 1.15 245 81.72

1987 1.26 4.47 1.13 258 80.55

2002 0.95 3.37 1.14 148 80.28

2017 0.37 3.37 1.12 115 79.42

2032 0.12 2.60 1.11 113 81.38

2047 0.01 1.22 1.05 105 82.29

Plantation 1972 0.23 0.96 1.09 308 77.43

1987 0.35 1.86 1.11 379 74.68

2002 0.78 2.89 1.15 886 70.31

2017 2.06 3.49 1.18 836 69.34

2032 3.91 15.52 1.1 332 80.34

2047 3.97 17.59 1.1 373 82.71

Settlement 1972 0.32 1.21 1.09 322 89.32

1987 0.42 1.92 1.12 332 82.02

2002 0.78 2.11 1.13 443 80.06

2017 1.06 2.83 1.13 534 77.08

2032 1.48 9.79 1.04 382 81.48

2047 2.33 11.28 1.06 367 84.74

Waterbody 1972 0.07 9.45 1.16 56 64.01

1987 0.07 6.83 1.16 57 61.56

2002 0.06 3.53 1.19 43 60.6

2017 0.11 9.36 1.15 37 81.1

2032 0.09 3.04 1.07 29 87.01

2047 0.08 2.46 1.07 25 88.74
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become very large (69.63% and 116.22 ha) relative to the other cate-
gories (Table 10).

The NPmay decline for all LULC patches with the exception of a slight
increase in plantation cover from 2032 to 2047. The decline of NP could
be highest for barren land (81.6%) and lowest for natural vegetation
(8.7%) during 2017–2047. The NP may decline due to the possible
merging of similar patches. A decline of NP and corresponding increase
in MPS and LPI indicates a convergence of patches, typical for farmland,
plantation, settlement, and barren land. This is evidenced by an increase
in patches aggregation. The settlement patch could assemble together to
form villages and towns as shown by Tolessa et al. (2016). As de Groot
(2006) explained, different human activities result in the conversion of
multi-functional landscapes into more homogenous human-dominated
landscapes.

Over the projected period, the landscape becomes more contiguous as
AI would increase for all classes with the highest aggregation could be for
14
farmland (97.09%) and lowest aggregation of might be for plantation
(80.34%) (Table 10). The patches of plantation become progressively
aggregated and the change rate can be highest (19.3%) whereas grass-
land patches may be aggregated gradually (2.8%) (Figure 10). This may
be a consequence of a decrease in NP and a concomitant increase in MPS.

In the future, the shape of all land class patches is expected to be
simpler. Human-modified landscape patches may experience overall
simpler shapes (Saura and Carballal, 2004; Uuemaa et al., 2011. Relative
shape complexity is expected to decrease consistently for farmland,
grassland, and natural vegetation. The AWMPFD for plantation, barren
land andwaterbody is likely to decrease between 2017 and 2032 but may
be unchanged from 2032 to 2047. Analysis of settlement category (with
the least patch shape complexity), indicated a decrease between 2017
and 2047 and a slight increase from 2032 to 2047 (Table 10). The
greatest decline of AWMPFD is expected for grassland category (14.3%),
and the least change is expected to be for barren land (4.4%) (Figure 10).



Figure 10. Changes in landscape metrics during 1972–2017 (a–b); and 2017–2047 (c–d).
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In general, ongoing landscape structural change can have negative
implications for ecological functions, processes which could result in
reduced ecosystem services (Pazurova et al., 2018). For example, the
landscape of the Beressa watershed can progressively be exposed to high
runoff, sedimentation, soil degradation and resource depletion, and
subsequent reduction in crop yield (Worku et al., 2017; Amsalu et al.,
2007). Negative consequences resulting from this landscape structural
changes may accelerate in the future, if appropriate strategies are not
developed.

4. Conclusion

The objective of this paper was to evaluate current and projected
landscape structural changes in a region of Ethiopia. LULC transition
matrix and landscape metrics of LPI, MPS, AWMPFD, NP and AI were
used to identify these changes. Results revealed that landscape of the
Beressa watershed has experienced profound structural change since
1972. The landscape has become human-dominated as a result of rapid
LULC change. The natural and semi-natural land covers, namely natural
vegetation, grassland, waterbody, and barren land, have reduced.
Farmland is currently the predominant LULC with spatially less isolated
patches. Farmland also has the largest LPI and MPS and highest AI and
shows consistent growth in both past and future periods. Plantation
and settlement patches have also expanded and exhibited a pattern of
simpler patch shapes which are expected to be aggregated over time. A
15
consistent increase in farmland, plantation, and settlement categories is
indicative of increasing food demand from a fast-growing population.
Farmland and plantations have also increasingly expanded into areas of
steeper slopes and more marginal soil profiles. At the same time, nat-
ural vegetation and waterbody categories have declined and become
more fragmented. Grassland and barren land have also declined and
become more fragmented as the number of patches has increased. It is
expected that these declining trends will continue into the future as the
patches become more compact. Observed landscape structural change,
a result of large-scale ongoing modifications to LULC, has several
environmental and socio-economic implications, including a decline in
land productivity, loss of biodiversity loss, all of which are detrimental
to long-term environmental sustainability. As ecological processes are
dependent on landscape structure, further research in the area of
landscape structure and landscape processes, functions, and services, is
warranted.
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