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Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high
heritability of 60–90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture
of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively
to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the
classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo)
mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the
emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To
explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of
mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability
in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct
interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution
of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive
prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de
novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.

Introduction

Autism spectrum disorder (ASD) is a pervasive neurode-
velopmental condition estimated to affect ~1–1.5% of the
global population [1, 2]. The behavioural phenotype of

the disorder is characterised by early-onset dysfunction in
social-communicative reciprocity and behavioural inflex-
ibility [3], resulting in clinically significant impairment
across a range of interpersonal, academic, and occupational
contexts. Although age-related gains in adaptive function-
ing may attenuate symptomology in a subset of cases over
time [4], the core deficits associated with childhood ASD
minimally remit across the lifespan [5].

A strong contribution of heritable factors in the aetiology
of ASD is supported by disproportionately increased risk of
onset among first-degree relatives of probands [6, 7] and
monozygotic twin concordance exceeding 60–90% [8, 9].
The genetic architecture of the disorder consists of a com-
plex array of both rare (e.g., copy-number and single
nucleotide variants, chromosomal abnormalities) [10] and
common single nucleotide polymorphisms [2] acting addi-
tively to augment individual ASD risk (Fig. 1). The relative
contribution of these mutations to the aetiology of the dis-
order is estimated at 2.5–15% and 12–52% [11, 12],
respectively, with more recent evidence supporting the role
of tandem repeat variations as additional, and incredibly
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salient, components of the ASD genotype (see section
Elevated genomic sensitivity to exposure-induced muta-
genesis). In several cases of syndromic ASD, a single
genetic mutation seems sufficient to induce symptom onset
[13], indicating that the disorder phenotype coincides dis-
ruption in important loss-of-function intolerant genes.

The contribution of heredity in ASD persists despite
strong selective pressures against the deleterious genetic
events associated with disorder onset. Interestingly, the
reproductive challenges faced by individuals with ASD are
not physical, but instead mostly social [14, 15]. Fecundity is
consequently reduced among affected individuals [16],
limiting the potential transmission of putative risk variants
to offspring in subsequent generations. Despite this, the
prevalence of ASD has demonstrated stability or increases
over time, with non-heritable aetiological factors insuffi-
ciently compensating for loss of high-risk genetic variants
from the reproductive gene pool [17, 18].

Preservation of the genetic liability of ASD despite
reduced transmission of risk variants has been theorised to
occur, in part, due to spontaneous de novo mutations
[12, 19] (see Table 1). Depending on the study, which
includes the complexity of the ASD phenotype, it is esti-
mated that between 5 and 15% of ASD probands carry de
novo mutations presumed to be involved in the disease [12],
with a greater burden of de novo risk observed in simplex
families without prior history of neurodevelopmental con-
cerns [20]. Spontaneous genetic events are therefore more
likely to represent important contributory factors to sporadic
cases of ASD. Notably, although the rate of genomic de
novo mutations is approximately equal between affected
and unaffected familial trios, transmission of pathogenic

mutations in important loss-of-function intolerant genes and
gene pathways is observably higher among ASD probands
[21–23], thereby consituting a critical feature of disorder
aetiology.

Environmental exposures that are classically attributed as
salient risk factors for ASD and other neurodevelopmental
disorders could represent a catalyst for deleterious de novo
variation, with several disorder-associated agents having
significant mutagenic and genotoxic potential [24]. How-
ever, although the neurotoxicity and teratogenicity conferred
by these toxicants is well established [25], their potential
role in the genesis of de novo mutations of relevance to ASD
has received little attention. Toxicogenomic analyses sug-
gest disorder-associated exposures may perturb known ASD
susceptibility genes through mutagenetic chemical-gene
interactions [26], however a paucity of evidence limits the
current conceptualisation of this relationship to very few
exposures (see Table 2). Moreover, in the last decade only
one article has addressed the likely contribution of such
agents to the de novo burden of ASD [24], pre-dating
advances in next generation sequencing which have since
contributed to a more comprehensive understanding of the
significance of de novo variants to ASD. This review
combines epidemiological data with evidence derived from
assays of mutagenicity (i.e., in vivo and in vitro) to assess
the plausibility of environmental exposures as sources of de
novo ASD-associated genetic events. Elucidating the role of
these agents in eliciting mutations will assist to delineate the
basis of aetiological risk associated with non-familial forms
of ASD. It may also encourage primary health interventions
aimed at reducing the negative impact of environmental
exposures on ASD risk.

Fig. 1 Diagrammatic
representation of the interplay
between genetic and
environmental risk factors in
the aetiology of ASD. Both
heritable and non-heritable
factors can independently and
reciprocally influence the
development of ASD
symptomatology. Up to 5–15%
of ASD probands possess risk-
associated de novo mutations,
indicating the significance of
non-familial genetic variability
in determining disorder risk. The
mutagenic/genotoxic potential
of non-heritable factors
associated with ASD suggests
that these toxicants may play a
role in the elicitation of
spontaneous mutations. Figure
created with BioRender.com.
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Mutagenicity and genotoxicity of early-
exposure to established ASD toxicants

Although there is no support for a causal role for any single
environmental risk factor in the onset of ASD, several pre-
conceptual and prenatal environmental agents have been
associated with increased risk of ASD and ASD-like symp-
toms. The most widely cited sources of environmental risk
include exposure to toxins and heavy metals in utero [27],
birth and maternal residency proximal to sources of ambient
air pollution [28], prescription [29, 30] and illicit [31, 32]
drug use during pregnancy, and parental health factors
including age [33], maternal obesity and diabetes [34, 35],
and pre- and peri-gestational vitamin status [36–38].

Very few direct assessments of the potential role of
exposures in eliciting de novo mutations in ASD exist.
However, significant observations have surfaced from
cohort studies as to how parental age may contribute to
spontaneous mutations associated with the disorder.
Advanced paternal [39–41] and, more recently, maternal
age [12, 33] at the time of conception have been demon-
strated to confer an elevated risk of ASD development. To
this end, age-associated accumulation of gametal DNA
damage and failure of intrinsic repair mechanisms to excise
acquired errors act as potent inducers of ASD-associated de
novo risk. It is hypothesised that lifelong spermatogenesis
affords recurrent opportunities for DNA damage and mis-
repair in the generation of mature sperm [42], whereas
prolonged meiotic arrest enhances the likelihood of
damage-induced lesions accruing in the genetic structures of
primary oocytes [43]. It is important to note that de novo
risk persists beyond insemination, with rapid mitotic events
during early embryogenesis elevating the risk of DNA
damage and mutational events. Further, there is mounting
evidence of differential mutational rates and mechanisms in
postzygotic somatic mosaicism [44, 45], which is a current
area of much-needed additional research.

Table 2 provides an extensive audit of current envir-
onmental factors identified via epidemiological studies as
salient influencers of ASD risk. Although less thoroughly
researched than the association with parental age, many
exhibit evidence of mutagenicity and genotoxicity in
human and relevant mammalian models. Broadly, these
exposures can be observed to contribute to genomic
alterations through one of three potential modes of action:
(1) direct interaction with genetic material, both at the
nucleic and chromosomal level; (2) interference with
endogenous DNA repair; and (3) indirect DNA damage
elicited through exposure-induced oxidative stress (see
Fig. 2). Each of these processes has the capability to elicit
genotypic abnormalities in biological systems and are,
therefore, important to consider in relation to the de novo
mutational burden of ASD.Ta
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Direct interaction with genetic material

Several environmental agents exert their mutagenic and/or
genotoxic potential by altering the DNA structure. Such
mutations are primarily the consequence of toxicant-
induced double-stranded breaks (DSBs): lesions to the
DNA duplex which result in loss of stability and integrity in

both strands of the nucleic acid helix. DSB repair is readily
enacted by endogenous systems of non-homologous end-
joining (NHEJ; i.e., ligation of two strands of damaged
DNA) and homologous recombination (HR; i.e., template-
dependent repair) [46], however aberrations may occur if
the capacity for repair is exceeded by the degree of damage,
or if repair-directed ligation results in erroneous

Fig. 2 Diagrammatic
representation of the impact of
environmental factors on
genomes within parental
germlines and offspring.
ASD-associated toxicants (e.g.,
herbicides, heavy metals) can
induce de novo mutations in
parental germline cells which
may be transmitted to offspring
in the subsequent generation.
For example, agent-induced
double stranded breaks (DSBs)
and impaired BRCA1-directed
homologous recombination
(HR) DNA damage response
(DDR) can elicit de novo
mutations and hamper their
repair. Offspring may also
acquire agent-induced mutations
at later stages of development,
resulting in somatic mosaicism.
Gene(s) impacted by these
processes can lead to aberrant
neural development and
functioning, contributing to the
onset of ASD. Figure created
with BioRender.com.
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rearrangement of DNA fragments [47]. The structural
abnormalities that arise from un- or mis-repaired DSBs act
greatly contribute to genomic instability, conferring risk for
an array of genomic anomalies including nucleotide inser-
tions and deletions (collectively referred to as indels) [48],
gross chromosomal rearrangements [49], and fragmentation
of chromosomes or chromatids [50], all of which can be
sustained through multiple cycles of mitotic division. If
such damage were to occur pre-gestationally in maternal or
paternal gametes, or post-conceptually in early stages of
embryogenesis, it is plausible that this could lead to pre-
sentation of novel genomic variation in offspring that is
absent in either parental genome [51].

ASD-associated toxicants including chlorpyrifos, ben-
zene, diesel particulate matter, and vinyl chloride induce
various cellular phenotypes of genomic instability indica-
tive of DSB DNA damage. Chlorpyrifos is an organopho-
sphate congener widely applied in residential pest control,
the use of which has been shown to possibly increase the
incidence of ASD among prenatally exposed children [52].
Critically, chlorpyrifos have been shown to elicit DSBs and
genetic rearrangements in the well-established ASD sus-
ceptibility gene KMT2A [53], a transcriptional coactivator
gene repeatedly reported to harbour loss-of-function de
novo variants among individuals with ASD [12, 54–57].
Conversely, benzene is an organic chemical compound
widely applied in the industrial manufacture of plastics, and
is present in petrochemicals including gasoline. Occupa-
tional exposure to benzene and benzene metabolites has
been repeatedly associated with DSBs in intracellular nuclei
[58], and confers abnormal morphology [59] and segrega-
tion of sex chromosomes in mature sperm [60]. Chromo-
somal instability elicited via DSBs increases the incidence
of missegregation through disrupted genomic and protein
integrity during mitotic division [61], potentiating the
uneven distribution of genetic material in daughter cells. X/
Y chromosome aneuploidy is frequently observed in clin-
ical ASD cohorts [62], hence atypical inheritance of sex-
linked genes (e.g., FMR1, NLGN3/4) orchestrated through
toxicant-induced DSBs and DNA missegregation in par-
ental gametes is a feasible mechanism of ASD risk.

Although potentially less deleterious than entire chromo-
somal losses or gains, micronuclei are important structural
anomalies indicative of genomic instability and DSB mis-
repair in cells exposed to harmful genotoxins [63]. The
incidence of micronuclei and related extra-nuclear structures
positively correlate with occupational exposure to diesel
particulate matter among mechanics [64] and vinyl chloride
in thermoplastic manufacturing facilities [65], both of which
are considered salient toxicants in the aetiology of ASD
[66, 67]. These extra-nuclear bodies can originate through the
enveloping of acentric chromosome and chromatid fragments
formed as consequence of asymmetrical DSB repair [47, 63].

Compartmentalised fragments of damaged DNA within these
structures are vulnerable to acquisition of mutations through
repeated cycles of defective replication and impaired
recruitment of damage response pathways [68], and can
reincorporate into the primary nucleus following breakdown
of the nuclear membrane during mitosis. Daughters of
micronucleated parent cells are therefore likely to harbour an
array of genomic rearrangements including indels, chromo-
somal translocations, and copy-number variation in gene-
coding sequences [61], all of which represent core features of
the molecular architecture of ASD.

Interference of endogenous DNA repair responses

Toxicants capable of eliciting damage to the DNA structure
are ubiquitous in the environment, however the harmful
consequences of these are largely mitigated through rapid-
activation of DNA damage response (DDR) pathways.
DDRs are responsible for the detection and amelioration of
aberrations in the genomic structure, and if necessary, can
initiate apoptotic events to prevent transmission of lesioned
genetic materials through DNA replication and mitotic
division [69]. Several DDR pathways are perturbed through
exposure to ASD-associated genotoxins, limiting the repair
system’s ability to rectify acquired mutations and, by proxy,
their affiliated biological consequences. Specifically, these
include: the aforementioned NHEJ and HR pathways,
which are responsible for extruding acquired DSBs; mis-
match repair (MMR), which is necessary to amend errors in
base-to-base alignment in replicated DNA; and base- (BER)
and nucleotide excision repair (NER), which are enacted to
correct single-base and bulky DNA lesions, respectively
[46]. In many cases, mutations arise through exposure-
induced delay or impaired recruitment of the machinery
required to initiate DDR, hampering the overall DNA
repair efficiency. The consequence of ineffective or inhib-
ited repair responses by these systems are likely to coincide
a vast array of genetic anomalies, ranging from single base-
pairs to entire gene-encoding sequences, conferring sig-
nificant and arguably the most pronounced risk to the
acquisition of deleterious disorder-associated mutations.

The most common mode of DDR interference exerted by
ASD-associated exposures is suppression of genes whose
products are necessary to detect, excise, or amend lesions in
the nucleotide structure. Several genes encoding proteins
responsible for the identification of genomic anomalies are
markedly downregulated in the NER (e.g., XPC) [69], BER
(e.g., APEX1) [70], MMR (e.g., MSH3, MSH6) [69], and
NHEJ (e.g., KU70/80) [71] pathways following exposure to
ASD toxicants, suggesting these exposures may impair the
ability of DDR mechanisms to effectively respond to
damage in the DNA structure or sequence. Activation of the
DDR pathways hinges on the capacity of the cell to detect
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aberrations in the genetic code, hence interference in the
expression of these may cause delay or complete arrest in
the damage-directed repair response. Although less fre-
quently observed, genes encoding products required to
effectively excise detected aberrations also demonstrate
dysregulation following exposure to disorder-associated
environmental agents, specifically within the NER response
to induced DNA adducts (e.g., XPG) [72]. In such instan-
ces, acquired mutations remain unextruded despite appro-
priate activation of the DDR, precluding the repair response
and permitting DNA damage and, thereby, de novo varia-
tion to persist.

Critically, exposure-induced dysregulation of genes
required in the assembly and incision of corrected DNA
sequences can be observed in both the HR (e.g., RAD51)
[73, 74] and NHEJ (e.g., XRCC4) [71] DSB response
pathways, suggesting ASD-associated toxicants are not only
capable of inducing DSB lesions, but also inhibiting their
effective repair. This represents a salient risk for the
acquisition of de novo mutations, as un- or mis-repaired
DSBs exert potent mutagenic potential as previously dis-
cussed (see section Direct interaction with genetic mate-
rial). Remarkably, suppressed expression of HR repair
genes following exposure to valproate, an anticonvulsant
drug associated with elevated ASD risk [75], has been
linked to idiosyncratic deficits in social-communicative
behaviours in mammalian models [74], suggestive of a
potentially causative relationship between impaired DDR
and development of the disorder phenotype. Although it is
plausible that this relationship could be mediated, at least in
part, by accumulation of genetic aberrations through failure
to appropriately repair acquired lesions, experimental con-
firmation is required.

Relative to HR, NHEJ DSB repair confers greater risk of
acquiring structural anomalies through its ability to ligate
strands of damaged DNA irrespective of homology. The
unspecific nature of this mechanism allows tethering of
mismatched or significantly mutilated termini, increasing
the likelihood of gross chromosomal rearrangements or loss
of genetic material [68]. To enact HR following lesion
acquisition, an intact sister chromatid is required to act as a
template for replication and synthesis of the damaged
genetic material, resulting in high-fidelity repair. Initiation
of HR is largely dependent on the breast cancer type
1 susceptibility protein, BRCA1, which can elicit DNA
resection to inhibit NHEJ and trigger homology-directed
repair [76]. Susceptibility to mutagenic events in early
embryogenesis necessitates accurate DDR, hence HR is
implemented as the preferred mechanism for DSB repair at
this stage of development [77]. Exposure to ASD toxicants
including valproate and phthalate, the latter a common
plasticiser, downregulate BRCA1 in mammalian ovarian
cells [69, 73] thereby reducing availability of the BRCA1

protein for the purposes of DNA resection. This increases
reliance of the developing cellular system on the error-prone
NHEJ DDR to ameliorate acquired DSBs, elevating the risk
of, and frequency at which, the foetus will sustain de novo
mutations.

Oxidative DNA damage

Generation of oxidative stress and reactive oxidative species
(ROS) are important components of cellular metabolism,
however, can become genotoxic when produced en masse
in response to harmful environmental toxicants. The capa-
city for this otherwise non-pathogenic process to elicit DNA
damage is due to the highly reactive hydroxyl radical (•OH).
•OH forms double bonds with bases in the nucleic structure
and abstracts hydrogen atoms from both the carbon-
hydrogen bonds of 2’-deoxyribose and the methyl groups
of thymine nucleotides [78]. This can elicit several genomic
changes, including base-specific modifications, DNA-DNA
and DNA-protein crosslinks, and both single- and DSBs
[79]. Several classes of ASD-associated exposures elevate
•OH ROS production and redox cycling across a range of
mammalian and human tissue, suggestive of potentially
ubiquitous consequences to the biological system.

Occupational and residential exposures are among the
primary sources of oxidative DNA damage for several key
ASD-associated toxicants. Prolonged contact with ROS-
inducing agents increases the intracellular burden of oxida-
tion, permitting accrual of genotoxic and cytotoxic lesions as
consequence of persistent generation of •OH radicals.
Among those aetiologically relevant exposures, the con-
taminants individuals are likely to interact with chronically –

either through workplace activities or residential pollutants—
include oxidative chemicals used in the production of syn-
thetic materials (e.g., phthalates, styrene) [80–82], compo-
nents of petroleum exhaust (e.g., 1,3-butadiene) [83], and
toxic chemicals such as lead [84, 85] and mercury [86] uti-
lised in industrial manufacturing processes. Of note, the
oxidative DNA damage associative of chronic inhalation of
1,3-butadiene has been demonstrated to selectively target
HRAS, a high-confidence ASD susceptibility gene, resulting
in elevated point mutation accrual in affected cells [87].
Although typically assessed through urinary markers of
oxidative DNA damage (i.e., 8-hydroxy-2′-deoxyguanosine,
or 8-OHdG) [83, 88] or conveniently acquired biologicals
(e.g., blood samples, buccal cells) [80, 89], occupational
exposure to chemicals including phthalates [82] and styrene
[90] have been directly observed to induce DNA aberration
in gametes, supporting the capacity for ROS-induced lesions
to localise to reproductive tissue. If viable, these mutated
cells may result in genetic anomalies in subsequent offspring,
thereby affording a mechanism for elicitation of non-familial
genomic variability.
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To counteract the pathological consequences of
environmentally-induced oxidative stress, the biological
system relies on a complex array of endogenous and exo-
geneous antioxidant defence mechanisms. These include
metabolic antioxidant enzymes (e.g., glutathione perox-
idase, catalase, superoxide dismutase), non-enzymatic pro-
teins (e.g., lactoferrin), and scavengers of free radicals (e.g.,
iron) [91, 92]. Collectively, these constituents protect
intracellular DNA and the broader cellular system from the
damaging effects of excessive oxidative stress. It is there-
fore unsurprising that antioxidant deficiencies or interrup-
tion of their endogenous functions can indirectly contribute
to the acquisition of genomic lesions if sustained over time.
Maternal multivitamin supplementation during pregnancy
has been shown to both reduce the incidence of ASD onset
[37, 93] and buffer against oxidative DNA damage [94, 95],
whereas ASD toxicants such as formaldehyde, a gaseous
chemical used in the production of building materials, and
flame retardant constituents including polybrominated
diphenyl ethers disrupt antioxidant status in both gametal
[96–98] and non-reproductive cells [99], potentiating oxi-
dative imbalances and ROS-induced DNA damage in
afflicted tissues.

De novo risk persists beyond embryogenesis

Spontaneous genetic mutations can be acquired at any stage
of the lifespan [44, 45], and although those preceding or in
early embryogenesis elicit a greater number of cells har-
bouring genetic anomalies (see Fig. 2), exposure-induced
mutations in later periods of pregnancy or childhood may
perturb neurodevelopment if sustained in temporally-critical
brain-expressed genes. Mutations elicited in the post-
zygotic period are restricted to specific subsets of dividing
somatic cells, resulting in genetically dissimilar assem-
blages of tissue within the biological system [100]. This
phenomenon, referred to as somatic mosaicism, permits
variable expression of genes across clusters of daughter
cells with diverse parental lineages, creating irregularity in
the availability and integrity of the encoded protein [101]. If
harboured in neural tissue prior to scheduled periods of
brain development, disruption of genes central to processes
of proliferation, synaptogenesis, or synaptic pruning may
result in aberrant or stunted neurological growth; a corner-
stone feature of the disorder phenotype (see Fig. 2). The
deleterious effects of localised genetic lesions in ASD have
been evidenced in histopathological studies of post-mortem
brain tissue, with atypical segments of neocortical archi-
tecture in the frontal and temporal regions arising as con-
sequence of somatic mutations in a subset of ASD patients
[102, 103].

The incidence of de novo mutations and their role
in the underlying pathology of ASD beyond early

development has received little research attention, how-
ever the mutational capacity of environmental factors
represents a source of somatic mosaicism likely to influ-
ence neural maturation throughout childhood. Although in
isolation these are unlikely to elicit symptomatic pre-
sentations of ASD or ASD-like behaviours, such muta-
tions may play an influential role in augmenting the
severity and persistence of symptoms for at-risk indivi-
duals, hence contributing to the functional impairment
coinciding clinical diagnosis.

Elevated genomic sensitivity to exposure-induced
mutagenesis

Elevated genomic instability among ASD probands may
enhance sensitivity to exposure-induced mutagenesis,
increasing opportunity for mutation accrual and, by
extension, de novo variation. Tandem repeat DNA motifs
are highly liable genomic constituents prone to sponta-
neous somatic mutations [104], with increasing numbers
of motif iterations (i.e., expansions) elevating the like-
lihood of novel genetic variation [105]. Constituting ~6%
of the human genome, these units of repetitive DNA are
known to contribute to molecular dysfunction across sev-
eral complex clinical phenotypes, with recent analyses
implicating repetitive DNA variants in the aetiology of
ASD. Genome-wide interrogation of rare tandem repeat
expansions has suggested that up to 2.6% of ASD risk may
be explained by tandem expansions of repeat sequences
enriched in exonic and splice sites across the genome, and
often correlating with fragile sites [106]. In a separate
study of a subset of the samples analysed by Trost and
colleagues [106], the role of tandem repeat alterations in
ASD was validated [107], further signalling that tandem
repeats represent a significant component of the genetic
aetiology of ASD. Critically, ASD-associated tandem
repeat expansions were determined to be further expan-
sions of large, inherited motifs, suggesting a transmission
bias of these genomically unstable units among ASD
probands [106, 108]. This preferential inheritance of
mutationally liable DNA may therefore augment suscept-
ibility to the mutagenic actions of environmental toxicants,
likely increasing the incidence of putative de novo events
across predominantly protein-coding and alternative tran-
scription sites (we use the term putative due to the com-
plexities in defining what is considered de novo in
dynamic regions of the genome such as tandem repeats).
The phenotypic consequences of such mutational events
would vary depending on the putative gene affected,
however given the elevated burden of de novo variation in
loss-of-function intolerant regions among sporadic cases
of ASD (see Table 1), the effects on clinical presentation
are likely to be pronounced.
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Environmental agents and epigenetics

Harmful exposures in the pre- and post-pregnancy period
may elicit non-mutational epigenetic changes to the
expression of genes central to early development [109].
Epigenetic modifications provoke transformations in the
conformational arrangement of the nuclear structure and
modulate intracellular activity, regulating the capacity for
molecular machinery to transcribe and translate encoded
genetic materials without directly affecting the underlying
DNA. Several toxicants implicated in the aetiology of ASD
are known to disrupt epigenetic mechanisms, particularly
processes of DNA methylation [110], across devel-
opmentally sensitive stages of neural differentiation, pro-
liferation, and migration [111], indicating that these non-
genomic gene-environment interactions are important
determinants in the susceptibility profile of ASD. Research
suggests, however, that the role of the epigenome in per-
turbing processes central to the pathophysiology of ASD
may extend beyond dysregulated gene expression. Studies
concerning the mechanisms of tumorigenesis, a pathology
largely underpinned by mutation accrual and disrupted gene
regulation, have discerned that aberrant functioning in key
epigenetic regulators may be causative of de novo genetic
events [112]. For example, methylation of cytosine residues
in CpG dinucleotides has been associated with repair-
resistant T:G nucleotide mismatches, elevating base-level
mutation rates at CpG sites relative to other dinucleotides
across the genome [113]. Furthermore, accumulation and
persistence of de novo events has been demonstrated to
coincide promoter hypermethylation of key cell signalling
and DDR-associated genes [112], thereby contributing to de
novo mutations through both elicitation and impaired rec-
tification of novel DNA variants. Evidence implicating
DNA methylation as a target of ASD-associated toxicants
has been reviewed elsewhere [110], and provides compel-
ling support for the physiological consequences these
agents exert on the epigenome, suggestive of its potential
role in elicitation of de novo variation.

Limitations and future directions

The parallels between epidemiological trends and muta-
genicity following exposure to ASD toxicants leads to
intriguing hypotheses regarding the role of environmental
agents in eliciting de novo mutations. Nonetheless, dis-
cerning causality in relation to the incidence of sporadic
ASD remains challenging given the current state of the
available research literature and therefore our review should
support hypothesis building.

A key limitation in characterising the gene-environment
relationship underscoring the de novo burden of ASD is the
disparity in approaches from which heritable and non-

heritable aetiological evidence is derived. On the one hand,
identification of environmental agents that are likely to
influence ASD development has depended on comparing
the rates of ASD between exposed versus unexposed chil-
dren from population cohorts (see Table 2). Since family-
based designs are typically not employed within such stu-
dies, data is lacking both on the rate of de novo mutations in
these samples and therefore the potential causative role of
environmental exposures on de novo mutations. Clinic-
referred samples, on the other hand, have afforded great
insights into the contribution of rare, de novo mutations to
the aetiology of ASD, but have rarely surveyed environ-
mental risk as a modifier of this contribution, with the
exception of parental age. As consequence, there is no
informative estimate as to the proportion of de novo
mutations among ASD probands which develop in response
to environmental toxicant exposure. Moreover, although
evidence supports a contribution of de novo mutational load
in ASD at the level of specific genes and pathways, there is
no overwhelming support for this effect genome-wide [21].
Thus, although we consider this line of inquiry to be of
significant aetiological interest, we acknowledge the inher-
ent limitations in trying to bridge these literatures.

A further limitation for the field is the absence of long-
itudinal evidence - human or otherwise - which simulta-
neously considers acquisition of non-familial genetic
variation and ASD outcomes following pre- or post-
conception toxicant exposure. The prognostic trajectory of
ASD and other neurodevelopmental conditions has led to
increasing interest and activity in establishing prospective
birth cohorts to monitor environmental correlates of child-
hood disorder phenotypes (e.g., the Children of Nurses’
Health Study [66], Table 2). This has permitted the detri-
mental effects of developmental exposures to be observed in
relation to symptomatic onset in later life, enhancing
understanding of the non-heritable aetiology of ASD.
Nevertheless, incorporation of the biological techniques
necessary to detect and trace mutational events among such
cohorts is limited, if not entirely absent. As such, this
review has drawn upon broader evidence of exposures’
mutagenicity from in vivo and in vitro methodologies.
Although the literature reviewed provides tantalizing
insights into the ways in which environmental exposures
might be linked to de novo mutational events, disorder-
specific causation is lacking. To establish the role of
disorder-relevant genotoxins in enhancing the de novo
burden of ASD, both the genotypic and phenotypic con-
sequences of parental/prenatal exposures must be assessed
prospectively from birth in broader population cohorts. This
will not only permit identification of novel genetic variation
resulting from harmful toxicants, but allow the corollaries of
acquired mutations on neurodevelopment to be traced
across sensitive periods of childhood.
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Identification of spontaneous de novo mutations relies on
availability of the genetic information from each of the
mother, father, and offspring, allowing intergenerational
divergence in the DNA sequence to be distinguished from
inherited allelic compositions [12]. Detection and assess-
ment of acquired genomic abnormalities has traditionally
relied on cytogenetic assays which, although capable of
discerning significant aberrations in the chromosomal
structure [101], cannot capture less conspicuous mutations
known to contribute to the genetic aetiology of ASD.
Current conceptualisations of the mutagenicity and geno-
toxicity intrinsic to several environmental toxicants has
therefore been limited to their capacity to elicit large-scale
malformations in the genomic structure, neglecting the
subtler effects these exposures may exert on the genetic
sequence. With the development of next generation
sequencing (NGS) methods, however, the ability to identify
nucleic acid deviations in as little as a single base pair in
offspring relative to parental genomes is achievable, accu-
rate, and increasingly affordable. NGS involves compre-
hensive assessment of the nucleic arrangement of either the
entire genome (i.e., whole genome sequencing) or specifi-
cally gene-encoding segments of DNA (i.e., whole exome
sequencing), allowing variation in the genomic code to be
detected and compared between individual genomes. Such
techniques have provided important insights into the rate of
spontaneous genetic variation in cases of sporadic ASD,
demonstrating the importance of genotypic variation to
ASD development [19]. The advances in technology which
spurred the advent of NGS have significantly reduced the
costs associated with performing high-throughput sequen-
cing, hence it is feasible to apply these to existing and
emerging birth cohorts to assess the origin and frequency of
de novo mutations among infants diagnosed with ASD in
childhood. Such data would provide crucial insight into the
genuine risks environmental toxicants pose to accentuating
the genetic aetiology associated with ASD, enhancing our
understanding of the mechanisms by which these agents
contribute to the ASD phenotype.

Concerns for the harmful effects of prenatal exposure to
environmental toxicants has led to a maternal bias in
epidemiological studies assessing trends in ASD onset.
Although such concerns are founded on well-established
evidence for the disruptive consequences of exogenous
agents on foetal development in utero [25], this focus has
arguably undermined the significance of pre-conception
paternal exposures. Relative to oocytes, spermatocytes
appear to possess heightened sensitivity to genotoxic
agents within the environment, putting male gametes at
greater risk of acquiring and transmitting genomic lesions
to the subsequent generation [91]. As previously dis-
cussed, recurrent spermatogenesis across the lifespan ele-
vates the risk of defective DNA replication and repair in

male relative to female gametes [43]. Should the testicular
tissue from which spermatozoa divide acquire
environmentally-induced genomic damage, as has been
evinced following exposure to several known ASD tox-
icants (see Table 2), it is likely that resultant sperm cells
will harbour genetic abnormalities. Germline susceptibility
to environmental agents may be additionally mediated by
the intrinsic ability of cells to effectively employ DDR
following harmful exposures, the capacity for which is
significantly compromised in sperm [114]. During sper-
matogenesis, the nuclear chromatin within the cell
becomes highly condensed to improve motility for inse-
mination. As consequence, the capacity to effectively
excise and extrude genomic aberrations is limited, hence
mutations in the genomic sequence may persist to fertili-
sation. Although there is evidence to support the capacity
of the fused oocyte to perform post-fertilisation DDR of
spermatic DNA, the frequency of de novo mutations of
paternal origin in atypically developing offspring [33]
suggests this repair response is imperfect. Given such
sensitivity to mutagenic agents, assessing the incidence of
ASD among offspring of fathers exposed to toxicants is
essential to characterising the role of paternally acquired
mutations in enhancing onset risk, further characterising
the aetiological basis and more specifically the de novo
origin of the disorder.

Notwithstanding these limitations, understanding the
mutagenic mechanisms of environmental toxicants and, by
proxy, their role in the elicitation of de novo risk variants,
may inform public health initiatives to combat increasing
rates of ASD within the community. Mutagenic exposures
such as parental drug use and pre- and post-conceptual
health factors offer targetable and inexpensive intervention
opportunities which may assist to circumvent disorder-
associated mutational events. For example, maternal folate
and vitamin D supplementation prior to and during gesta-
tion has been shown to significantly reduce the rate of ASD
among offspring [37]. In contrast, administration of sub-
stances such as paracetamol [29, 115] and antidepressant
medications [30] during pregnancy is associated with
increased risk of disorder onset in the subsequent genera-
tion. Addressing these modifiable factors may prove to be
effective combatants to the de novo burden of ASD, war-
ranting further research in the interest of public health. To
this end, the advent and increased accessibility of novel
molecular tools such as induced pluripotent stem cell
(iPSCs)-derived neuronal lines has equipped researchers to
evaluate agent-induced mutagenesis in clinically relevant
tissue [116], facilitating the evaluation of the current
hypothesis and its utility in informing primary intervention
strategies. Recent advances in developing evidence-based
list of genes relevant to autism and the neurobehavioral
characteristics associated with it [117] will also enable more
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specific hypothesis testing in model systems, as well as
epidemiological studies.

Concluding remarks

The paradox of stable (or increasing) ASD rates in the
general population despite reduced fecundity provides a
compelling rationale for the contribution of de novo muta-
tions to the genetic aetiology of ASD [12]. The potential for
non-heritable factors such as environmental toxicants to
elicit de novo events may afford an explanation for the
underlying mutational trigger, leading to novel pathogenic
mutationsin specific disorder-associated gene(s), thereby
contributing to symptomatic onset. At both the pre- and
post-gestational period, harmful environmental agents may
induce genomic lesions through a myriad of genotoxic
mechanisms, summarised within this review into direct,
repair inhibition, and oxidative DNA damage induction.
Acquired mutations in parental gametes or the developing
embryo may potentiate the disorder phenotype if localised
to genes salient in processes of general development or
specific neurodevelopmental pathways, however this risk
may persist throughout maturation through the phenomenon
of somatic mosaicism. The mutagenic potential of ASD
toxicants may be further potentiated by intrinsic genomic
instability among ASD probands, with recent identification
of rare tandem repeat expansions among affected indivi-
duals likely increasing mutational liability to environmental
toxins. Whereas iPSC derived neuronal lines might now be
used to test toxin exposure on mutation rates [116], deter-
mining the specific contribution of these environmentally-
induced DNA alterations to ASD is difficult, as there is a
paucity of population-based, longitudinal evidence neces-
sary to draw conclusive links between exposure, genotypic
responses, and phenotypic consequences. In addition,
neglect for the critical influence of paternal exposures on
offspring outcomes is evident in available epidemiological
surveys of ASD trends, creating a maternally-biased view of
the contribution of environment to the disorder phenotype.
The development of comprehensive prospective birth
cohorts in tandem with increasing fidelity and accessibility
of high-throughput sequencing offers unprecedented
opportunities to trace the effects and outcomes of devel-
opmental genotoxin exposure. This will deepen our under-
standing of the complex gene-environment relationships
underpinning the aetiology of ASD.
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