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Abstract: The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent
need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum
antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs
and vaccines are developed and rolled out. Viruses depend on the host’s protein synthesis machinery
for replication. Several natural compounds that target the cellular DEAD-box RNA helicase eIF4A,
a key component of the eukaryotic translation initiation complex eIF4F, have emerged as potential
broad-spectrum antivirals. Rocaglates, a group of flavaglines of plant origin that clamp mRNAs
with highly structured 5′ untranslated regions (5′UTRs) onto the surface of eIF4A through specific
stacking interactions, exhibit the largest selectivity and potential therapeutic indices among all
known eIF4A inhibitors. Their unique mechanism of action limits the inhibitory effect of rocaglates
to the translation of eIF4A-dependent viral mRNAs and a minor fraction of host mRNAs exhibiting
stable RNA secondary structures and/or polypurine sequence stretches in their 5′UTRs, resulting in
minimal potential toxic side effects. Maintaining a favorable safety profile while inducing efficient
inhibition of a broad spectrum of RNA viruses makes rocaglates into primary candidates for further
development as pan-antiviral therapeutics.

Keywords: pan-antiviral; rocaglates; eIF4A; silvestrol; CR-31-B; Zotatifin; translation initiation;
coronavirus; COVID-19

1. Introduction

The frequency of infectious disease outbreaks caused by RNA viruses of zoonotic
origin in human populations has been rising at an alarming rate in recent years. Prominent
examples since the beginning of this millennium are severe acute respiratory syndrome
coronavirus (SARS-CoV) (2002–2004), influenza A virus subtype H1N1 (2009–2010), and
Middle East respiratory syndrome coronavirus (MERS-CoV) (2012-present). The causes for
this intensification are many, including anthropogenic modifications of the environment,
encroachment of humans into forested and other natural areas, and overall increased
human contact with wildlife [1].

The ongoing SARS-CoV-2 pandemic is the latest example of the widespread and
damaging effects such outbreaks can have on a global scale. In just the past three decades,
such events have resulted in millions of excess deaths and in economic losses totaling
billions of USD [2–4]. Preventing new outbreaks from occurring through continuous and
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coordinated surveillance remains a top public health priority, but developing strategies to
mitigate the effects of an outbreak once it is detected, and while a vaccine is developed,
has taken on an added sense of urgency [5].

In parallel to the increase in the incidence of infectious diseases, there has been a
gradual shift toward more outbreaks being of viral origin rather than caused by other
infectious organisms such as bacteria, protozoa, parasites, or fungi [6]. Historically, viruses
constituted about one-tenth of all novel human pathogens of zoonotic origin but since 1980
that proportion has increased to about two-thirds [7]. Viruses replicate with extremely high
mutation rates compared to other microorganisms, allowing them to rapidly adapt to new
hosts and evolve resistance to vaccines and antiviral drugs [8]. Moreover, among viruses,
RNA viruses exhibit the highest mutation rates compared to DNA viruses, which gives
them an evolutionary advantage that results in RNA viruses accounting for over 80% of the
zoonotic viral burden and a disproportionate contribution to the total burden of zoonotic
human pathogenesis [9]. Indeed, all major epidemic and pandemic outbreaks since 2000
have been caused by RNA viruses (Table 1). This dominance is most likely not just a result
of their high genetic plasticity but also of their high human-to-human transmissibility,
especially in cases where RNA viruses can be transmitted by aerosols [10].

Table 1. Major epidemics and pandemics of zoonotic origin since 2000 (Source: WHO). Abbreviations: COVID-19—
coronavirus disease 2019; SARS-CoV-2—severe acute respiratory syndrome coronavirus 2; ZIKV—Zika virus; CHIKV—
Chikungunya virus; EBOV—Ebola virus; IAV/H1N1—influenza A virus subtype H1N1.

Years Disease Causative Agent Epidemic/Pandemic Taxonomic Family

2019–present COVID-19 SARS-CoV-2 Pandemic Coronaviridae
2015–present Zika virus disease ZIKV Epidemic Flaviviridae

2015/2016 Chikungunya fever CHIKV Epidemic Togaviridae
2014–2016 Ebola hemorrhagic fever EBOV Epidemic Filoviridae

2012–present Middle East respiratory
syndrome MERS-CoV Epidemic Coronaviridae

2009/2010 Influenza IAV/H1N1 Pandemic Orthomyxoviridae

2002/2003 Severe acute respiratory
syndrome SARS-CoV Epidemic Coronaviridae

Given the disproportionate contribution of RNA viruses to human infectious disease
of zoonotic origin and their dominant role in causing major epidemics and pandemics
over the past 20 years, developing antiviral therapeutics targeting RNA viruses should
be a priority in the quest to curb the spread of future emerging and re-emerging RNA
virus outbreaks. Accurate predictions of which RNA viruses will cause future outbreaks is
however impossible due to the multiplicity of potential animal hosts and the genetically
highly heterogeneous makeup of the virus strains present in these hosts [11]. Ideally
therefore, antivirals developed for use against future outbreaks of zoonotic RNA viruses
would have to be effective against positive (+)- and negative (−)-stranded RNA viruses
across as many virus families as possible.

Antivirals can target either the virus or the host. Virus-specific or direct-targeting
antiviral strategies, which include neutralizing antibodies targeting surface antigens of the
virus itself, compounds targeting virus–receptor interactions, fusion/budding inhibitors,
and viral protease inhibitors [12], are by definition directed against known viral strains,
and their development can only be promoted to a preliminary stage before an outbreak
happens. Nonspecific virus-targeting antivirals, which consist mostly of nucleoside analogs
that inhibit the viral RNA polymerase machinery [12], have found broader application
because they can be developed a priori, but their efficacies and safety profiles have been
inconsistent and not directly transferable among viral strains. The biggest drawback of
direct-targeting antivirals however has been the high selective pressure they exert on the
RNA viruses themselves. This results in enhanced mutation rates and translates into
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unpredictable “moving goalposts” for drug development and, in more extreme cases, gives
rise to escape mutants that can render antivirals altogether ineffective over time [13–15].

By contrast, host-targeting antiviral strategies, including host receptor inhibitors, en-
dosomal pathway inhibitors, host protease inhibitors, modulators of lipid metabolism,
modulators of innate immune response or assorted nuclear signaling pathway modula-
tors [16], minimize the risk of viral mutations by eliminating any direct selective pressure
on the viruses. A potential drawback of host-targeting antivirals, however, resides in the
risk of substantial side effects caused by interfering with the normal function of the targeted
host factors and pathways [11]. Consequently, host-targeted antivirals tend to have narrow
therapeutic windows and are complex to manage from a clinical perspective [15].

One host mechanism essential to viral proliferation is translation. RNA viruses do
not encode their own translational machinery, rendering them dependent on host protein
synthesis. The eukaryotic translational machinery has long been targeted in the context of
cancer because aberrant mRNA translation and high expression levels of oncogenes are two
hallmarks of many neoplasias [17]. Targeting protein synthesis to inhibit viral proliferation
has only been proposed more recently as an attractive therapeutic option to treat viral or
bacterial infections [18,19]. The ongoing SARS-CoV-2 pandemic has further accelerated
the clinical development of such antivirals through repurposing compounds already in
development to inhibit host translation factors in the context of cancer [20–23]. Importantly,
the potential broad-spectrum application of host-specific translational inhibitors is a crucial
argument for their development. Such pan-antivirals could be deployed as first-line drugs
in the event of an epidemic or pandemic outbreak caused by a novel virus for which there
are no direct-targeting antivirals available.

Recent advances in the development of compounds to target the cellular, cap-dependent
DEAD-box RNA helicase eIF4A, an essential factor in viral protein synthesis, have under-
scored the potential of targeting this translational host factor as an antiviral strategy [24]. A
large number of RNA viruses depend on eIF4A to translate their mRNAs because the complex
structure of their 5′ untranslated regions (5′UTRs) requires the helicase activity of eIF4A
to form the 43S-preinitiation complex (43S-PIC) during translation initiation [25]. In vitro,
ex vivo, and in vivo inhibition of eIF4A with small natural compounds has been shown to
prevent replication of RNA viruses, including corona-, picorna-, flavi-, filo-, hepe-, toga-,
arena-, nairo-, and bunyaviruses [26,27].

A very promising class of eIF4A inhibitors are rocaglates, a group of flavaglines
that target eIF4A with high specificity [28,29]. The resulting high potencies and optimal
selectivity indices compared to all other known eIF4A inhibitors make rocaglates ideal
candidates for further preclinical and clinical development as pan-antivirals.

In this review, we discuss the essential role of eIF4A in RNA virus translation, the
antiviral properties of all known eIF4A inhibitors, recent advances in our understanding
of the rocaglate-based eIF4A inhibition mechanism, and the broad spectrum of rocaglate-
mediated eIF4A antiviral activities, and we lay out a roadmap for advancing rocaglates
through preclinical and clinical development. Our ability to reduce the widespread and
damaging effects of future epidemics and pandemics will greatly benefit from having
access to pan-antiviral drugs that can help manage the initial phases of an outbreak.

2. The Role of the DEAD-Box RNA Helicase eIF4A in RNA Virus Translation

All known viruses usurp the translational machinery of their host cells to synthesize
large amounts of viral proteins in a short period of time. To achieve this, viral mRNAs
compete with the host’s own mRNAs for access to the necessary factors of the eukaryotic
translation initiation apparatus, a complex machinery comprising at least twelve different
components [30]. Indeed, all viruses, but RNA viruses in particular, have developed several
sophisticated strategies to direct the host’s translation machinery to preferentially synthe-
size viral proteins over the host’s own proteins [31–33]. The two translation mechanisms
mainly used by RNA viruses are cap-dependent translation and internal ribosome entry
site (IRES)-dependent translation.
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Cap-dependent translation follows a precise sequence of events orchestrated by dif-
ferent eukaryotic initiation factors (eIFs) [34]. First, the mRNA is recruited to the het-
erotrimeric eIF4F complex [35]. This complex consists of the cap-binding protein eIF4E,
eIF4A, and the scaffold protein eIF4G that binds to the poly (A)-binding protein (PABP)
and eIF3, another initiation factor [36,37]. Binding of eIF4F to the cap structure leads to cy-
clization of the mRNA [38]. Next, and in order for the 40S ribosomal subunit to gain access
to the highly structured viral 5′UTRs, eIF4A springs into action [39]. The helicase unwinds
RNA secondary structures in the 5′UTR and removes adherent proteins to generate an
unstructured region that allows stable binding of the 43S-PIC [40,41]. This complex scans
the 5′UTR to identify the AUG start codon where formation of the elongation-competent
80S complex takes place followed by protein synthesis [38,41–44] (Figure 1).
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Figure 1. Schematic illustration of the eukaryotic translation initiation mechanism (modified
from [38]). Binding of the heterotrimeric eIF4F complex to the 5′ cap structure of mRNAs is followed
by unwinding of stable RNA secondary structures by the DEAD-box RNA helicase eIF4A. This
enables binding of the 43S preinitiation complex (PIC), which scans down the 5′-untranslated regions
(5′UTRs) to identify the start codon AUG.

In IRES-dependent translation, the 40S ribosomal subunit is recruited directly to the
mRNA start codon by binding to the secondary structure of an IRES [45]. Most viral
IRES-dependent translation mechanisms have been categorized into one of four classes
based on the RNA structures involved and the initiation factors they recruit [46]. In classes
I to III, the IRES is located in the 5′UTR and translation initiation depends on eIFs, while
class IV IRES are located in intergenic regions and do not recruit any eIFs. Class I and II
IRES contain simple short and long hairpin structures while class III IRES contain more
complex, knotted secondary structures. Class I and II IRES-dependent translation requires a
combination of eIF4G, eIF3, eIF2, and eIF4A, while class III does not use eIF4A to assemble
the 40S initiation complex [46–48]. Finally, ribosome recruitment occurs upstream of the
start codon in class I IRES-dependent translation and requires 5′ to 3′ scanning to reach
the start codon, while the translation complex binds directly to the start codon in class II
IRES-dependent translation [46].

The translation initiation factor eIF4A is a DEAD-box RNA helicase, a group of ATP-
dependent eukaryotic RNA helicases named after the conserved amino acid sequence
Asp-Glu-Ala-Asp (D-E-A-D) [49]. There are three paralogs of eIF4A in mammals: eIF4A1
(DDX2A), eIF4A2 (DDX2B), and eIF4A3 (DDX48). While eIF4A1 and eIF4A2 have a se-
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quence identity of 90–95%, eIF4A3 shares only ~60% sequence identity with eIF4A1 [50].
Functionally, eIF4A3 differs from eIF4A1 and eIF4A2. eIF4A3 is involved in the assembly
of the Exon Junction Complex, which coordinates splicing of pre-mRNAs [50]. By contrast,
eIF4A1 and eIF4A2 exhibit equivalent biochemical activities but differ significantly in bio-
logical function and expression levels in vivo. eIF4A1 is present in almost all tissues during
active cell growth, whereas eIF4A2 is mainly produced in organs with low proliferation
rates [51]. In addition, when eIF4A1 is suppressed, eIF4A2 levels rise, but the loss of eIF4A1
is not fully compensated. Consequently, eIF4A1 but not eIF4A2 is essential for cell survival.

All DEAD-box RNA helicases contain two RecA-like domains that are connected by a
flexible linker [52]. In the absence of an RNA substrate or ATP, the two domains adopt an
inactive open conformation [53,54]. Binding to RNA and ATP leads to closure of the gap
between the two domains (Figure 2). In this closed, active conformation, the conserved
motifs of the two domains form an interface exhibiting ATPase and helicase activities.
Following ATP hydrolysis, the gap between the two domains re-opens to allow the release
of the unwound RNA.
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Figure 2. Top: Architecture of DEAD-box RNA helicases. Two RecA-like domains are connected by a flexible linker to form
the helicase core. This core consists of 9 conserved motifs that are involved in ATP binding and hydrolysis (blue) and RNA
binding (red) [50]. Bottom: Conformational cycling of eIF4A. Binding of eIF4G enables eIF4A to switch from the open to
the half-open state. In the presence of eIF4B, ATP and an RNA substrate, eIF4A can undergo conformational cycling and
alternate between the active-closed and half-open state to enable helicase and ATPase activity [53].

While eIF4A is the main helicase responsible for unwinding RNA secondary structures
in 5′UTRs, several other RNA helicases play essential roles during translation [55]. Among
them, the RNA helicase DEAD-box polypeptide 3 (DDX3) was reported to facilitate trans-
lation of complex secondary RNA structures in general as well as of secondary structures
specifically associated with the 7-methylguanylate structure (m7GTP) of the RNA cap [46].
DDX3 also plays a role equivalent to that of eIF4A in class I and II IRES-dependent transla-
tion [46], and its essential role in viral RNA translation has been documented for a number
of viruses, including the RNA viruses Japanese encephalitis virus, Dengue virus (DENV),
and West Nile virus [56–59]. Several studies have further shown the broad-spectrum
antiviral potential of targeting DDX3 [60–62].
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3. eIF4A Inhibitors

A number of natural products that inhibit protein synthesis in eukaryotic cells, and
eIF4A in particular, have been described, and their number continues to grow [63,64]
(Figure 3). Originally, eIF4A inhibitors were identified as potential antitumor therapeu-
tics [65,66]. In addition to its ATP-binding pocket, eIF4A has a nucleic acid-binding region
where RNA substrates bind via their phosphate backbone in a sequence-independent man-
ner, providing several possible interaction surfaces for inhibitors to bind to the eIF4A–RNA
complex [67]. High-throughput screens for eukaryotic translation inhibitors resulted in
the identification of three natural substances—hippuristanol, pateamine A (PatA), and
silvestrol—that differ substantially in their chemical structures [68–70].
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phylum of multicellular eukaryotes for which putative eIF4A inhibitors could be identified. Porifera are the most primordial
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chemical structures of the inhibitors are diverse and some compounds appear to be straightforward derivatives of other
bio-molecules such as sterols in case of hippuristanol or prostaglandins in case of 15d-PGJ2. Although eIF4A inhibitors
have not yet been identified in fungi, blocking of eIF4A appears to be a widespread mechanism in eukaryotes.

Hippuristanol is a polyhydroxysteroid found in the golden fan coral Isis hippuris
(Figure 3). Hippuristanol interacts with the C-terminal domain of eIF4A via motifs V and
VI (Figure 2), preventing the binding of RNA [71]. Through this allosteric inhibition, eIF4A
is fixed in the closed conformation and cannot release the unwound RNA substrate [72].
Hippuristanol is a selective inhibitor of eIF4A due to the high sequence variation of motifs
V and VI across DEAD-box helicases [72]. In contrast to RNA binding, the binding of
ATP can take place in the presence of the inhibitor because the N-terminal domain of
eIF4A is not affected by hippuristanol [71]. The antiviral activity of hippuristanol has been
documented against several viruses such as the encephalomyocarditis virus (EMCV) and
the norovirus, two positive-stranded RNA viruses, and human T cell leukemia virus type 1
(HTLV-1), a retrovirus [70,73,74].

PatA is a macrolide isolated from the encrusting marine sponge Mycale hentscheli
(Figure 3) that induces dimerization of eIF4A and RNA [69,75,76]. PatA disrupts interaction
with eIF4G and reduces levels of eIF4A present in the eIF4F complex [68,75], which in turn
may affect the assembly of the 43S-PIC. In contrast to hippuristanol, PatA only binds free
eIF4A, suggesting that the binding site for PatA likely occurs at the interface of the eIF4A
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N- and C-terminals domains, two domains rendered inaccessible once the eIF4F complex
has formed [66]. PatA has been shown to have antiviral activity against influenza A virus,
a negative-stranded RNA virus [77].

Silvestrol is a rocaglate isolated from Asian mahogany plants of the genus Aglaia [28]
(Figure 3). A characteristic feature of silvestrol and its diastereomer episilvestrol is the
presence of a 1,4-dioxane moiety linked to their A rings (Figures 3 and 4) [29]. Since the
first rocaglate, rocaglamide A (RocA), was isolated and its chemical structure solved, over
200 rocaglates have been identified [78] and isolated, including silvestrol and episilvestrol
in 2004 [79,80]. A chemical synthesis route of RocA was published in 1990 that allows
the control of the absolute stereochemistry of the molecule class [81]. Since then, the
synthesis has been further optimized and expanded to include a large number of modified
rocaglates [82]. An example of such a non-naturally occurring rocaglate is CR-31-B. The
synthesis of CR-31-B results in a racemic mixture of two enantiomers, of which only the
(−)-enantiomer is biologically active [83,84]. The antiviral activity of natural and synthetic
rocaglates has been well documented (see Section 5 below).
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Figure 4. Structures of the natural rocaglates silvestrol and rocaglamide A (RocA) and the synthetic
rocaglates CR-31-B (-) and Zotatifin (eFT226). The typical cyclopenta[b]benzofurane skeleton is
indicated in red. The blue ring shows the dioxane moiety that is only found in silvestrol and its
diastereomer episilvestrol.

In addition to the three best-known classes of eIF4A inhibitors, other low-molecular-
weight compounds have been shown to inhibit the helicase, although the specificity and
selectivity of several of them remains to be established, and their potential antiviral activity
has not yet been determined [85]. The list includes allolaurinterol, elatol, elisabatin A,
6-aminocholestanol, sanguinarine, and the prostaglandin 15d-PGJ2 [86–90]. Allolaurinterol
and elatol are found in red algae and silvestrol and other rocaglates in plants, all within
the supergroup Archaeplastida. By contrast, hippuristanol and elisabatin A have been
isolated from cnidaria (corals) and pateamine A from porifera (sponges) species, both in
the supergroup Opisthokonta. Finally, 15d-PGJ2 is an example of an eIF4A inhibitor that
is produced in mammalian (human) cells [88]. Considering that eIF4A, the prototype of
DEAD-box RNA helicases [49], is an evolutionarily ancient and highly conserved enzyme,
the widespread occurrence of chemically diverse eIF4A inhibitors across eukaryal super-
groups suggests that the potential to interfere with eIF4A activity evolved independently
as an advantageous antagonistic principle in eukaryal evolution (Figure 3).
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4. Mechanism of Action of Rocaglates

Rocaglates are a group of flavaglines that contain a characteristic cyclopenta[b]benzofuran
structure (Figure 4) [28,29].

Initial binding studies of eIF4A with several rocaglates—and the more recent elucida-
tion of the crystal structure of a truncated version of human eIF4A (PDB: 5ZC9) in complex
with RocA, polypurine RNA, and AMP-PNP, a non-hydrolyzable ATP analogue—have
revealed that rocaglates reversibly clamp the RNA–helicase complex (Figure 5) [65,91,92].
Specifically, RocA forms stable π–π interactions with the phenylalanine residue at position
163 (Phe163) and two consecutive purine bases (5′-AG) in the eIF4A-(AG)5RNA complex.
Additional hydrogen bonds with Gln195 and Asp198 of eIF4A, as well as with the N7 nitro-
gen of the guanine base of the RNA substrate, stabilize the RocA–eIF4A–RNA complex [91].
The co-crystal structure has provided the foundation for the structure-based development
of new potential eIF4A inhibitors. Comparative in silico docking analysis of silvestrol and
CR-31-B (-), two rocaglates with similar antiviral activities, indicates subtle differences in
the binding mode between dioxane-containing silvestrol and rocaglates lacking the dioxane
moiety [83]. In silico docking results suggest an expanded interface involving contacts
of the dioxane moiety of silvestrol to nearby arginine residues of eIF4A (Figure 5). This
differential interaction with the eIF4A–RNA complex might explain why “larger” dioxane-
containing rocaglates can clamp eIF4A–RNA complexes containing RNA substrates with
short hairpin structures, while rocaglates without a dioxane moiety strictly require RNA
substrates with unstructured polypurine sequences for complex formation [83]. Ligand-
based optimization studies should help further to optimize the clamping characteristics of
novel rocaglates [23,93].
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Figure 5. Predicted binding mode of silvestrol using structure-based computational modeling of
silvestrol onto the eIF4A–RNA complex (PDB: 5ZC9). The dioxane moiety of silvestrol has the
potential to form additional contacts with arginine residues on the surface of eIF4A and may thus
bridge over the RNA substrate to tightly clamp the RNA onto eIF4A [83]. UCSF (University of
California, San Francisco) Chimera was used for graphical illustration and electrostatic surface
coloring of eIF4A (blue: positive charged, red: negative charged).

DDX3, the second DEAD-box RNA helicase targeted by rocaglates [94], interacts with
multiple viral components and affects several processes, including translation [95]. As
a result, dual targeting of DDX3 and eIF4A might enhance the broad-spectrum antiviral
effect of rocaglates. Mechanistically, there is no evidence for a π–π-stacking interaction
with an aromatic residue of DDX3 that may resemble the ring C stack with Phe163 of eIF4A.
However, Gln360 of DDX3, analogous to Gln195 of eIF4A, forms an essential hydrogen
bond with the rocaglate [94].
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At the cellular level, ribosome profiling experiments have revealed the effects of eIF4A
inhibition by rocaglates on the cell’s transcriptional program. Several studies showed that
the global cellular effects of eIF4A inhibition are limited to about 300 cellular mRNAs [96,97].
Among the affected mRNAs, proto-oncogenic mRNAs with relatively long and structured
5′UTRs prevailed, which explains the strong antitumor effects of rocaglates [28,79]. This
mRNA selectivity also might explain the low toxicity of rocaglates in primary cells and ani-
mals [98]. The cytotoxic effects of rocaglates observed in primary cells might be correlated
with cellular proliferative activity [99].

5. eIF4A as an Antiviral Rocaglate Target

RNA viruses have evolved different ways to capitalize on their host’s translation
machinery, making it a challenge to develop a universal strategy for inhibiting viral
replication via translation inhibition. However, because of its central role in the translation
mechanism, and especially in viral protein synthesis, eIF4A provides an excellent broad-
spectrum target in the context of host-targeting antiviral strategies [27]. Next, we will
summarize the antiviral effects of rocaglate eIF4A inhibitors in different viral families (see
also Figure 6).
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Figure 6. Half maximal cytotoxicity (CC50) and effective inhibitory (EC50) concentrations (in nM)
for cell treatment with silvestrol or CR-31-B (-); CC50 values were measured for noninfected (mock-
infected) cells and EC50 values for cells infected with the indicated viruses [18,26,83,100–102]. Am-
bisense: arenaviruses have negative- and positive-stranded regions in their genomes; cap: 5′ cap-
dependent translation initiation; IRES: eIF4A-independent translation initiation via a type III IRES;
n.d.: not determined.
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5.1. Negative (−)-Stranded and Ambisense RNA Viruses

Arenaviridae, Nairoviridae, Filoviridae are negative-stranded (including ambisense) RNA
viruses and the causative agents of diseases such as measles, rabies, influenza, and viral
hemorrhagic fevers (VHFs). The latter are febrile illnesses caused by members of vari-
ous (−)-stranded RNA virus families, including arenaviruses (e.g., Lassa virus (LASV)),
nairoviruses (e.g., Crimean–Congo hemorrhagic fever virus (CCHFV)), and filoviruses
(e.g., Ebola virus (EBOV)) [103]. With fatality rates of up to ~35% to 80% in humans, EBOV
is the most prominent member of this group [104]. EBOV comprises seven transcriptional
units that possess long and structured UTRs in their 5′ regions, making eIF4A helicase
inhibition an obvious choice to combat this virus [105]. Indeed, in EBOV-infected Huh-7
cells and primary macrophages, silvestrol levels of 10–50 nM inhibited viral replication
efficiently [18]. Similarly, low nanomolar concentrations of silvestrol and CR-31-B (-) also
inhibited proliferation of LASV and CCHFV [83].

5.2. Positive (+)-Stranded RNA Viruses
5.2.1. Coronaviridae

This large and genetically divergent family of plus-stranded RNA viruses infects a
wide range of animals and has significant zoonotic potential, as illustrated by several
coronavirus epidemics since the beginning of the century and the current SARS-CoV-2
pandemic [106] (see Table 1). Members of the family Coronaviridae are very sensitive to
eIF4A inhibition. For example, dose-dependent inhibition by silvestrol and CR-31-B (-) was
shown for human coronavirus 229E (HCoV-229E), MERS-CoV, and SARS-CoV-2 replication
in vitro, with EC50 values in the range of 1–3 nM [26]. In an ex vivo bronchial epithelial cell
system, HCoV-229E and SARS-CoV-2 replication was reduced to undetectable levels in the
presence of 100 nM CR-31-B (-) [100]. A comprehensive analysis of the SARS-CoV-2 protein
interaction map published in early 2020 identified the host translational machinery, and
in particular eEF1A and eIF4A, as top targets for drug repurposing aimed at abolishing
SARS-CoV-2 replication [107]. Zotatifin, another eIF4A inhibitor of the rocaglate family,
was shown to inhibit SARS-CoV-2 replication with an IC90 of 37 nM in vitro [107]. Zotatifin
entered a phase 1 clinical trial in patients with COVID-19 in November 2020 [22,23,108].

5.2.2. Togaviridae

Chikungunya virus (CHIKV), an arthropod-borne virus, is a member of the family
Togaviridae. The family includes arthropod-borne viruses (arboviruses) that are transmitted
by blood-feeding vectors including mosquitos, sandflies, and ticks [109]. The (re)emergence
of arboviruses such as CHIKV has been linked to intensive growth of global transporta-
tion, arthropod adaptation, and increase of population density due to urbanization. This
combination of factors is generally thought to cause an increasing number of arbovirus epi-
demics [110]. To date, no antivirals are available to treat these emerging arbovirus-related
infections effectively [111].

CHIKV RNAs include 5′ capped UTRs with distinct secondary structural elements [112].
Silvestrol treatment of CHIKV-infected 293 T cells was shown to cause delayed viral protein
synthesis, a less profound CHIKV-induced host protein shut-off, and suppression of innate
immune responses, with an EC50 of 1.9 nM [101]. Efficient transmission of CHIKV from
infected animals or humans to mosquitoes requires high virus titers [113]. A potent antiviral
therapy leading to decreased viral loads could help prevent the sickness and reduce the
transmission of CHIKV and potentially other arboviruses in human populations.

5.2.3. Hepeviridae

Hepatitis E virus (HEV) is the causative agent of hepatitis E and a common cause of
acute viral hepatitis in humans. HEV requires several host eIFs, including eIF4A, eIF4G,
and eIF4E for viral mRNA translation [114]. In vitro, silvestrol exhibits a pan-genotypic
antiviral effect against HEV [102,115]. In humanized mice, intraperitoneal treatment with
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0.3 mg/kg silvestrol inhibited HEV growth with no effect on body weight after 10 days of
treatment [102].

5.2.4. Picornaviridae

Picornaviridae is a family of plus-strand RNA viruses that includes important human
pathogens, such as poliovirus (PV) type 1, 2, and 3 and human rhinoviruses (HRV). Picor-
navirus RNA translation is mediated by class I and II IRES structures and thus depends
on eIF4A. In HeLa cells, hippuristanol slowed down PV replication [70], while silvestrol
inhibited PV and HRV replication in MRC-5 cells, with EC50 values of 20 nM and 100 nM,
respectively [83]. The eIF4A-directed antiviral potency of rocaglates was less pronounced
in members of the Picornaviridae compared to other RNA viruses, such as members of the
family Coronaviridae. The question of whether or not these differences are related to mecha-
nistic differences between cap-dependent and IRES-dependent eIF4A functions and the
relevance of DDX3 with its equivalent role to that of eIF4A in class I and II IRES-dependent
translation remains to be addressed in further studies.

5.2.5. Flaviviridae

The family Flaviviridae includes viruses that employ fundamentally different strate-
gies to ensure viral genome translation. One group of viruses, including members of the
genera Hepacivirus (e.g., hepatitis C virus (HCV)), Pestivirus (e.g., classical swine fever
virus (CSFV)), and Pegivirus, control viral protein translation strictly through class III
IRES elements and are thus resistant to eIF4A inhibitors such as hippuristanol and silve-
strol [26,116]. The second group, including arboviruses of the genus Flavivirus (e.g., Dengue
virus (DENV) and Zika virus (ZIKV)), was widely accepted to employ 5′ cap-dependent
translation initiation mechanisms [116]. However, more recent studies suggest that pro-
tein synthesis in DENV- and ZIKV-infected cells does not stringently depend on 5´ cap
structure-dependent translation, and there is evidence that the 5′UTRs of these viruses have
IRES competence [117,118]. Treatment of ZIKV-infected A549 cells and primary human
hepatocytes with silvestrol or CR-31-B (-) was reported to inhibit viral replication [119].

Altogether, the broad-spectrum of eIF4A-dependent RNA viruses that are sensitive to
rocaglate-mediated inhibition of viral protein translation illustrates the potential of this
class of compounds as pan-antiviral treatments in future outbreaks of newly emerging or
re-emerging RNA viruses.

6. A Pan-Antiviral Translational Roadmap for Rocaglates

The a priori development of pan-antivirals has become increasingly urgent in light
of the accelerating pace of novel and re-emerging viral outbreaks [120,121]. Among the
host factors known to be required for the replication of a broad-spectrum of viruses, eIF4A
stands out as one of the most promising targets. Additionally, rocaglates are increasingly
being recognized as some of the most promising broad-spectrum antiviral compounds
modulating the activity of eIF4A [24,93]. However, the development of such compounds,
from basic and preclinical research to clinical studies and commercialization, involves a
number of experimental, monetary, clinical, manufacturing, and regulatory challenges.

6.1. Foundational Research

To date, the default rapid response to an outbreak caused by an unknown virus has
been to set up large screens of approved antivirals or compounds that have passed phase 1
or 2 (proof-of-concept) clinical trials and have been shown to have favorable safety profiles
in humans [122–124]. However, no systematic efforts to drive early discovery of novel
antivirals and their follow-up development exist.

A framework for the systematic discovery and development of pan-antiviral rocaglates
would need to include a large but defined number of in vitro and ex vivo studies showing
consistent antiviral effects across viral families and eIF4A-dependent translation mecha-
nisms. Such a framework would provide a solid mechanistic foundation to help predict
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whether a novel viral strain might be sensitive to rocaglates following an initial sequence-
based determination of its putative translation mechanism [125,126]. The framework would
ideally also include comprehensive pharmacological profiles of candidate rocaglates, and
in particular of their immunomodulatory effects, to maximize treatment safety during a
potential emergency rollout in the initial phases of an outbreak [99,127]. A consensus on
what the minimum validation criteria of such foundational research need to be would
provide the basis for proceeding to preclinical in vivo studies.

6.2. Preclinical Research

Once reasonable in vitro and ex vivo evidence of the pan-antiviral activity of a
rocaglate exists, critical in vivo studies need to be carried out in preparation for potential
clinical development of the compound [128]. The challenge faced here is two-fold: on the
one hand, relevant and informative animal models for every representative viral family
and/or strain need to be used to demonstrate the pan-antiviral potential of the compound.
On the other hand, preclinical studies of drug metabolism and pharmacokinetics need to be
carried out to determine the potential viability of a compound as a drug. The latter studies
consist of determining the absorption, distribution, metabolism, elimination, and toxicity
(ADMET) characteristics of a compound in the context of the animal model used [129].
Initial studies of the pharmacokinetic properties of silvestrol, for example, have shown
100% systemic availability with good distribution to liver, spleen, kidney, but not brain, fol-
lowing intraperitoneal administration. By contrast, oral bioavailability was below 2%, and
plasma stability following intravenous administration was about 75% [130]. Extrapolating
ADMET values to humans based on accumulated pharmacological knowledge for other
drugs is a key component of designing clinical trials.

The need to use a diverse panel of preclinical animal models to test for pan-antiviral
activity of a rocaglate means that there will be an equally diverse number of ADMET
data that will require careful harmonization to be able to meaningfully extrapolate them
to humans. Critical aspects include optimization of the in vivo panel to minimize the
number of animal models used and to maximize the similarity of their infection mechanism
parameters to humans. If there is for any given virus a choice of model, the model that
closest resembles human biology should be used—usually, this would mean to choose
larger non-rodent rather than smaller rodent animals. However, this guideline would need
to be balanced by how well established and efficient larger infection models are for a given
virus, and the ethical, operational, and cost constraints of testing such animals.

6.3. Clinical Studies

Once reasonable evidence has been gathered, and the necessary preclinical ADMET
data have been collected and evaluated for a range of viral families, the stage is set for
carrying out the necessary clinical studies leading to the potential approval of a rocaglate-
based antiviral drug. The ongoing SARS-CoV-2 outbreak triggered an unprecedented
initial effort to rapidly identify antiviral drugs that could be used to curb infection and/or
mortality rates. Although, to shortcut the long time frames required for discovery of novel
activities, the immediate focus was on the identification of compounds that had already
passed phase 1 clinical studies and for which sufficient safety and potential dosage data in
human were available to allow large scale phase 2 and phase 3 clinical trials to take place
immediately [122,131]. A similar approach—consisting of keeping an updated database of
such safe-in-human compounds with antiviral activities that can be used to rapidly identify
drug candidates against a novel virus outbreak—has been proposed as a strategy for the
development of antivirals to tackle future outbreaks [132].

Rocaglates offer an opportunity to expand this approach and develop a novel frame-
work for the development of truly pan-antiviral compounds that could be enlisted immedi-
ately upon an outbreak of a novel virus to mitigate its initial spread and effects while more
permanent solutions such as vaccines are developed. Critical to this framework would
be the confirmation that the compound is safe and effective against a broad-spectrum of
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existing viruses. Once a novel virus appears, such a drug could be immediately deployed
and its effectiveness and possible virus-related adverse effects monitored using the existing
framework of a phase 4 or so-called post-marketing clinical study [133].

With Zotatifin (eFT226), the first eIF4A inhibitor in the rocaglate family to enter clinical
trials as an antiviral, the foundation is set for the further development of rocaglates as
potential pan-antivirals [22]. Although at the time of this writing antiviral preclinical data
for Zotatifin have not yet been published, the quick progression from initial identification
of Zotatifin as an antiviral agent against SARS-CoV-2 to phase 1 clinical studies suggests
favorable ADMET results and bodes well for rocaglates overall as a novel class of antivirals.

6.4. Other Considerations

Beyond the focus on gathering biological, mechanistic, and clinical evidence of the
pan-antiviral potential of a rocaglate, several other critical aspects of drug development
need to be considered as well. (i) Manufacturing and scale-up: Rocaglates are complex
to manufacture, and as such, the feasibility of manufacturing a lead rocaglate efficiently
and in high quantities needs to be determined early in the development process [82]. Key
parameters are consistency and scale-up capacity. These parameters are critical when it
comes to ease of distribution and the ability to meet demand during an outbreak. Stability
and cost are also central to the ability of stockpiling the drug in anticipation of a possible
outbreak [134]. (ii) Regulatory: The development of novel antiviral drugs presents several
challenges that have been reviewed elsewhere [134]. Of relevance to rocaglate-based
antivirals are the complexity of clinical trial design—access to infected populations, ethical
issues with placebo treatment in the case of high mortality viral outbreaks—and the
challenges associated with determining endpoints—viral load, symptoms, survival.

It is advisable to initiate conversations with industry partners and regulatory author-
ities early in the process to explore solutions and optimize the overall process. Pharma
partners can contribute both invaluable medicinal chemistry knowhow and the infrastruc-
ture and resources for clinical trials, while early contact with regulatory bodies can be key
to designing and implementing the clinical trials most conducive to eventual approval of
the drug.

Finally, before becoming a focal point as potential antiviral drugs, rocaglates were
already being extensively researched in the context of cancer [28,98]. In vivo activity of
rocaglates has been shown in a number of relevant animal models of cancer, and their
ADMET profiles have been well described. In addition to a phase 1 clinical study for
SARS-CoV-2, Zotatifin is also in a phase 1–2 clinical study in advanced solid tumors. The
body of research accrued in the context of cancer could prove to be very useful in terms
of helping accelerate the development of novel rocaglates as antivirals. Given that most
infections caused by recent viral outbreaks are acute and respiratory in nature, there is the
added advantage of potentially larger therapeutic windows due to short treatment needs
and potential local oral administration rather than systemic.

7. Outlook and Perspectives

Rocaglates have emerged as strong contestants in the race to develop broad-spectrum
antivirals to deploy against future emerging and re-emerging RNA viral outbreaks. Key to
their favorable therapeutic profile is a distinct mechanism of action that provides exquisite
target specificity and minimal interference with host biology, resulting in potentially large
therapeutic windows.

It is worth pointing out here that beyond their antiviral and antitumor activity,
rocaglates have also been shown to have eIF4A-dependent antiplasmodial effects in vitro
and in vivo against Plasmodium falciparum and P. berghei [135] and an eIF4A-dependent anti-
fungal effect in vitro against Candida auris [136], further highlighting the broad therapeutic
potential of this class of eIF4A-targeting compounds against potential pathogens.

With several rocaglates now entering preclinical development and at least one rocaglate
already in early clinical development, a translational path for rocaglates as antiviral and
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eventually pan-antiviral therapeutics is starting to materialize. Many biological, clinical,
and practical challenges remain, but a concerted effort to further develop the many thera-
peutic possibilities of this promising family of compounds should result in an improved
understanding of the biology of eIF4A and of the potential benefits of modulating its
activity using small molecules.
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