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The COVID-19 pandemic has caused more than 1,000,000 reported deaths globally, of which
more than 200,000 have been reported in the United States as of October 1, 2020. Public health
interventions have had significant impacts in reducing transmission and in averting even more deaths.
Nonetheless, in many jurisdictions the decline of cases and fatalities after apparent epidemic peaks
has not been rapid. Instead, the asymmetric decline in cases appears, in most cases, to be consistent
with plateau- or shoulder-like phenomena – a qualitative observation reinforced by a symmetry
analysis of US state-level fatality data. Here we explore a model of fatality-driven awareness in which
individual protective measures increase with death rates. In this model, fast increases to the peak are
often followed by plateaus, shoulders, and lag-driven oscillations. The asymmetric shape of model-
predicted incidence and fatality curves are consistent with observations from many jurisdictions. Yet,
in contrast to model predictions, we find that population-level mobility metrics usually increased
from low early-outbreak levels before peak levels of fatalities. We show that incorporating fatigue and
long-term behavior change can reconcile the apparent premature relaxation of mobility reductions
and help understand when post-peak dynamics are likely to lead to a resurgence of cases.

I. INTRODUCTION

The spread of COVID-19 has elevated the importance
of epidemiological models as a means to forecast both
near- and long-term spread. In the United States, the
Institute for Health Metrics and Evaluation (IHME)
model has emerged as a key influencer of state- and
national-level policy [1]. The IHME model includes a
detailed characterization of the variation in hospital bed
capacity, ICU beds, and ventilators between and with-
in states. Predicting the projected strains on underly-
ing health resources is critical to supporting planning
efforts. However such projections require an epidemic
‘forecast’. Early versions of IHME’s epidemic forecast
differed from conventional epidemic models in a signifi-
cant way – IHME assumed that the cumulative deaths in
the COVID-19 epidemic followed a symmetric, Gaussian-
like trajectory. For example, the IHME model predicted
that if the peak is 2 weeks away then in 4 weeks cas-
es will return to the level of the present, and continue
to diminish rapidly. But, epidemics need not have one
symmetric peak – the archaic Farr’s Law of Epidemics
notwithstanding (see [2] for a cautionary tale of using
Farr’s law as applied to the HIV epidemic).

Conventional epidemic models of COVID-19 represent
populations in terms of their ‘status’ vis a vis the infec-
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tious agent, i.e., susceptible, exposed, infectious, hospi-
talized, and recovered [3–9]. New transmission can lead
to an exponential increases in cases when the basic repro-
duction number R0 > 1 (the basic reproduction number
denotes the average number of new infections caused by
a single, typical individual in an otherwise susceptible
population [10]). Subsequent spread, if left unchecked,
would yield a single peak – in theory. That peak corre-
sponds to when ‘herd immunity’ is reached, such that the
effective reproduction number, Reff = 1. The effective
reproduction number denotes the number of new infec-
tious cases caused by a single infectious individual in a
population with pre-existing circulation. But, even when
herd immunity is reached, there will still be new cases
which then diminish over time, until the epidemic con-
cludes. A single-peak paradigm is robust insofar as the
disease has spread sufficiently in a population to reach
and exceed ‘herd immunity’. The converse is also true –
as long as a population remains predominantly immuno-
logically naive, then the risk of further infection has not
passed.

In contrast to the IHME model, the Imperial College of
London (ICL) model [3] used a conventional state-driven
epidemic model to show the benefits of early intervention
steps in reducing transmission and preserving health sys-
tem resources vs. a ‘herd immunity’ strategy. The ICL
model assumed that transmission is reduced because of
externalities, like lockdowns, school closings, and so on.
As a result, early predictions of the ICL model suggest-
ed that lifting of large-scale public health interventions
could be followed by a second wave of cases. This has
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FIG. 1: Plateaus and shoulder-like dynamics in COVID-19 fatalities. (A) Examples of daily number of reported deaths for
COVID-19 (black points and lines) and the corresponding locally estimated scatterplot smoothing (LOESS) curves (red lines)
in four states, including two estimated to be the most plateau-like (Minnesota and North Carolina) and two estimated to be
the most peak-like (Indiana and Maryland). Daily number of deaths is smoothed in log space, only including days with one or
more reported deaths. We restrict our analysis to states in which the peak smoothed death is greater than 10 as of June 7, 2020
(resulting in 17 states in total). (B) Smoothed daily number of reported deaths centered around the first peak time tP across
17 states. Smoothed death curves are plotted between tP − ∆t and tP + ∆t, where ∆t is defined such that smoothed death
at time tP −∆t corresponds to 10% of the smoothed peak value. (C) Measured symmetry coefficient and confidence intervals.
Symmetry coefficient is calculated by dividing the death value at time tP −∆t by the death value at time tP + ∆t. If the death
curve is symmetric, the symmetry coefficient should equal 1. Confidence intervals are calculated by bootstrapping across the
date of deaths for each individual 1000 times and recalculating the symmetry coefficient (after smoothing each bootstrap time
series). LOESS smoothing is performed by using the loess function in R.

turned out to be the case, in some jurisdictions. Yet,
for a disease that is already the documented cause of
more than 200,000 deaths in the United States alone, we
posit that individuals are likely to continue to modify
their behavior even after lockdowns are lifted. Indeed,
the peak death rates in the United States and globally
are not as high as potential maximums in the event that
COVID-19 had spread unhindered in the population [3].
Moreover, rather than a peak and symmetric decline,
there is evidence of asymmetric plateaus and shoulder-
like behavior for daily fatality rates in the spring-summer
trajectory of the pandemic in US-states (Figure 1; full
state-level data in SI Appendix, Fig. S1). These early
plateaus have been followed, in many cases, with resur-
gence of cases and fatalities.

In this manuscript we use a nonlinear model of epi-
demiological dynamics to ask the question: what is the
anticipated shape of an epidemic if individuals modify
their behavior in direct response to the impact of a dis-
ease at the population level? In doing so, we build upon
earlier work on awareness based models (e.g. [11–14])
with an initial assumption: individuals reduce interac-
tions when death rates are high and increase interactions
when death rates are low. As we show, short-term aware-
ness can lead to dramatic reductions in death rates com-
pared to models without accounting for behavior, lead-
ing to plateaus, shoulders, and lag-driven oscillations in
death rates. We also show that dynamics can be driv-
en from persistent dynamics to elimination when aware-
ness shifts from short- to long-term. Notably, we find

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2020. ; https://doi.org/10.1101/2020.05.03.20089524doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.03.20089524
http://creativecommons.org/licenses/by/4.0/


3

that despite model predictions, the empirical data reveals
that mobility increased even as fatalities were increasing.
This reveals the potential role for fatigue and long-term
changes in behavior beyond those linked to mobility (e.g.,
mask-wearing) in shaping Covid-19 dynamics.

II. RESULTS AND DISCUSSION

Notation Description Values/Ranges

β Transmission rate 1/2 days−1

1/µ Mean latent period 2 days

1/γ Mean infectious peri-
od

6 days

1/γH Mean time in a hos-
pital stay before a
fatality

7–28 days

fD infection fatality
probability

0.01

N Population size 107

Nδc Half-saturation con-
stant for short-term
awareness

5–500 deaths/day

NDc Half-saturation con-
stant for long-term
awareness

2,500–10,000 deaths

k sharpness of change
in the force of infec-
tion

1–4

ε Time scale of behav-
ior change

1/7 days−1

TABLE I: Parameter descriptions and values/ranges used for
simulations. Transmission rate is chosen to match R0 = 3.

A. SEIR Model with Short-Term Awareness of
Risk

Consider an SEIR like model

Ṡ = − βSI[
1 + (δ/δc)

k
] (1)

Ė =
βSI[

1 + (δ/δc)
k
] − µE (2)

İ = µE − γI (3)

Ṙ = (1− fD)γI (4)

Ḋ = fDγI (5)

where S, E, I, R, and D denote the proportions of
susceptible, exposed, infectious, recovered, and deaths,
respectively, given transmission rate β /day, transition
to infectious rate µ /day, recovery rate γ /day, where

Susceptible

Recovered

Awareness

Transmission

Infectious

Deaths

FIG. 2: Schematic of an SEIR model with awareness-driven
social distancing. Transmission is reduced based on short-
and/or long-term awareness of population-level disease sever-
ity (i.e., fatalities).

fD is the infection fatality probability. The awareness-
based distancing is controlled by the death rate δ ≡ Ḋ,
the half-saturation constant (δc > 0), and the sharpness
of change in the force of infection (k ≥ 1) (see Figure 2
for a schematic and Table I for a list of all parameters
used in models). Since δ is proportional to I, this model
is closely related to a recently proposed awareness-based
distancing model [14] and to an independently derived
feedback SIR model [15]. Note that the present model
converges to the conventional SEIR model as δc →∞.

Uncontrolled epidemics in SEIR models have a single
case peak, corresponding to the point where γI = βSI
such that the population obtains herd immunity when
only a proportion S = 1/R0 have yet to be infected.
However, in the model above individuals decrease trans-
mission in response to awareness of the impacts of the
disease, δ(t). In this case, infected cases can peak even
when the population is far from herd immunity, specifi-
cally when

γI =
βSI[

1 + (δ/δc)
k
] . (6)

When δc is small compared to the per-capita death rate
of infectious individuals (γfD) we anticipate that indi-
vidual behavior will respond quickly to the disease out-
break. Hence, we hypothesize that the emergence of an
awareness-based peak can occur early, i.e., S(t) ≈ 1,
consistent with a quasi-stationary equilibrium when the
death rate is

δ(q) ≈ δc (R0 − 1)
1/k

(7)

and the infection rate is

İ(q) ≈ δc
fD

(R0 − 1)
1/k

. (8)

These quasi-equilibrium is maintained not because of
herd immunity, but because of changes in behavior.

We evaluate this hypothesis in Figure 3 for k = 1,
k = 2, and k = 4 given disease dynamics with β =
0.5/day, µ = 1/2/day, γ = 1/6/day, fD = 0.01, N = 107,
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FIG. 3: Infections and deaths per day in a death-awareness
based social distancing model. Simulations have the epidemi-
ological parameters β = 0.5 /day, µ = 1/2 /day, γ = 1/6/day,
and fD = 0.01, with variation in k = 1, 2 and 4. We assume
Nδc = 50 /day in all cases.

and Nδc = 50/day. As is evident, the rise and decline
from peaks are not symmetric. Instead, incorporating
awareness leads to dynamics where incidence decreases
very slowly after a peak. The peaks occur at levels of
infection far from that associated with herd immunity.
Post-peak, shoulders and plateaus emerge because of the
balance between relaxation of awareness-based distanc-
ing (which leads to increases in cases and deaths) and
an increase in awareness in response to increases in cas-
es and deaths. As the steepness of response k increases,
individuals become less sensitive to fatality rates where
δ < δc and more sensitive to fatality rates where δ > δc.
This leads to sharper dynamics. In addition, infections
can over-shoot the expected plateau given that awareness
is driven by fatalities which are offset with respect to new
infections.
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FIG. 4: Dynamics given variation in the critical fatali-
ty awareness level, δc for awareness k = 2. Panels show
deaths/day (top) and the susceptible fraction as a function of
time (bottom), the latter compared to a herd immunity level
when only a fraction 1/R0 remain susceptible. These sim-
ulations share the epidemiological parameters β = 0.5 /day,
µ = 1/2 /day, γ = 1/6 /day, and fD = 0.01.

B. Short-term awareness, long-term plateaus, and
oscillations

Initial analysis of an SEIR model with short-term
awareness of population-level severity suggests a generic
outcome: fatalities will first increase exponentially before
before slowing to plateau at a level near δc. Figure 4
shows dynamics for values of δc ranging from to 5 to 500
deaths/day in a population of 107 (here k = 2; results for
k = 1 or k = 4 are similar, see SI Appendix, SI Fig. S2).
When δc is small (compared to (γfD), fatalities can be
sustained at near-constant levels for a long time. When
δc is higher then the decline of cases and fatalities due
to susceptible depletion is relatively fast. However, over
a wide range of assumptions about critical daily fatality
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rates δc, the population remains largely susceptible even
as sustained fatalities continue for a period far greater
than the time it took to reach the plateau. To explore the
impacts of lags on dynamics, we incorporated an addi-
tional class H, assuming that fatalities follow potential-
ly prolonged hospital stays. We do not include detailed
information on symptomatic transmission, asymptomat-
ic transmission, hospitalization outcome, age structure,
and age-dependent risk (as in [3]). Instead, we consider
the extended SEIR model:

Ṡ = − βSI[
1 + (δ/δc)

k
] (9)

Ė =
βSI[

1 + (δ/δc)
k
] − µE (10)

İ = µE − γI (11)

Ṙ = (1− fD)γI (12)

Ḣ = fDγI − γHH (13)

Ḋ = γHH (14)

where TH = 1/γH defines the average time in a hospital
stay before a fatality. Note, we recognize that many indi-
viduals recover from COVID-19 after hospitalization; this
model’s hospital compartment functions as a prefilter.

The earlier analysis of the quasi-stationary equilibri-
um in fatalities holds in the case of a SEIR model with
additional classes before fatalities. Hence, we anticipate
that dynamics should converge to δ = δ(q) at early times.
However, increased delays between cases and fatalities
could lead to oscillations. Indeed, this is what we find
via examination of models in which TH ranges from 7 to
28 days, with increasing magnitude of oscillations as TH
increases (see Figure 5 for k = 2 with qualitatively simi-
lar results for k = 1 and k = 4 shown in SI Appendix, SI
Fig. S3).

C. Dynamical consequences of short-term and
long-term awareness

Awareness can vary in duration, e.g., awareness of
SARS-CoV-2 may prepare individuals to more readily
adopt and retain social distancing measures [16, 17]. In
previous work, long-term awareness of cumulative inci-
dence was shown to lead to substantial decreases in final
size of epidemics compared to baseline expectations from
inferred strength [14]. Hence, we consider an extension of
the SEIR model with lags between infection and fatalities
that incorporates both short-term and long-term aware-
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FIG. 5: Emergence of oscillatory dynamics in a death-driven
awareness model of social distancing given lags between infec-
tion and fatality. Awareness is k = 2 and all other parameters
as in Figure 3. The dashed lines for fatalities expected quasi-
stationary value δ(q).

ness:

Ṡ = − βSI[
1 + (δ/δc)

k
+ (D/Dc)

k
] (15)

Ė =
βSI[

1 + (δ/δc)
k

+ (D/Dc)
k
] − µE (16)

İ = µE − γI (17)

Ṙ = (1− fD)γI (18)

Ḣ = fDγI − γHH (19)

Ḋ = γHH (20)

where Dc denotes a critical cumulative fatality level (and
formally a half-saturation constant for the impact of long-
term awareness on distancing). Note that the relative
importance of short- and long-term awareness can be
modulated by δc and Dc respectively. Figure 6 shows
daily fatalities (top) and cumulative fatalities (bottom)
for an SEIR model with R0 = 2.5, TH = 14 days, and
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FIG. 6: SEIR dynamics with short- and long-term awareness.
Model parameters are β = 0.5 /day, µ = 1/2 /day, γ = 1/6
/day, TH = 14 days, fD = 0.01, N = 107, k = 2, Nδc = 50
/day (short-term awareness), with varying NDc (long-term
awareness) as shown in the legend. The dashed line (top)

denotes δ(q) due to short-term distancing alone.

Nδc = 50 fatalities per day and critical cumulative fatal-
ities of NDc = 2, 500, 5,000, 10,000 as well as a compar-
ison case with vanishing long-term awareness. As is evi-
dent, long-term awareness drives dynamics towards rapid
declines after reaching a peak. This decline arises because
D monotonically increases; increasing fatalities beyond
Dc leads to rapid suppression of transmission. However,
when short-term, rather than long-term, awareness drives
dynamics, then shoulders and plateaus can re-emerge. In
reality, we expect that individual behavior is shaped by
short- and long-term awareness of risks, including the
potential for fatigue and ‘decay’ of long-term behavior
change [11, 12].

D. Empirical assessment of mechanistic drivers of
asymmetric peaks in Covid-19 death rates

The models developed here suggest that awareness-
driven distancing can lead to asymmetric epidemic

peaks even in the absence of susceptible deple-
tion. To test this hypothesis mechanistically, we
jointly analyzed the dynamics of fatality rates
and behavior, using mobility data obtained from
Google COVID-19 Community Mobility Reports
(https://www.google.com/covid19/mobility/) as a
proxy for behavior (see Methods for the aggregation of
multiple mobility metrics via a Principal Component
Analysis (PCA)). Notably, we find that in the bulk of
states examined aggregated rates of mobility typically
began to increase before the local peak in fatality was
reached (Figure 7A). This rebound in mobility rates
implies that real populations are opening up faster
than our simple model could predict. Awareness-driven
models, shown in Figure 7B, show either ‘reversible’ or
‘counter-clockwise’ dynamics. In these models, risky
behavior decreases until fatalities reach their peak.
Models with short-term awareness but no long-term
awareness exhibit a tight link between fatality and
behavior (reversible behavior, like the top curve in
Figure 7B). Models with long-term awareness exhibit
counter-clockwise dynamics as risky behavior remains
at low levels even as fatalities decrease; the asymmetry
here is driven by the extent of long-term awareness.

In contrast, the real data (Figure 7A) exhibit predomi-
nantly clockwise dynamics; exceptions include New York
which has a nearly reversible (but still clockwise) pat-
tern and Washington which has a counter-clockwise pat-
tern anticipated by the awareness model. We hypothe-
sized that a combination of awareness-driven distancing
and fatigue could lead to clockwise dynamics: if peo-
ple become fatigued with distancing behavior, then risk
could rise even as deaths were rising. We developed the
following model as a proof of concept in which fatigue
is driven directly by deaths (though alternatives could
also be explored linked to cases, hospitalizations, deaths
and/or a combination):

Ṡ = −g(D)βSI (21)

Ė = g(D)βSI − µE (22)

İ = µE − γI (23)

Ṙ = (1− fD)γI (24)

Ḣ = fDγI − γHH (25)

Ḋ = γHH (26)

β̇ =
ε

2


(

β̂

1+(δ/δc)k
− β

)
1 + (D/Dc)

k
+
(
β̂ − β

) (27)

In this model with fatigue, the force of infection is
related to the mobility denoted by β(t) (which dictates
the number of interactions per unit time) modulated by
a reduction in risk per infection g(D). In this model,

β̂ denotes the baseline behavior, and ε denotes a time-
scale for behavior change. The level of fatigue is con-
trolled by Dc, such that mobility returns to a baseline

β̂ once D � Dc. We consider two models, correspond-
ing to g(D) = 1 such that the force of infection depends
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FIG. 7: Phase-plane visualizations of deaths vs. mobility for state-level data (top) and SEIR models (bottom panels). (Top)
Deaths and mobility indexes through time for the 17 analyzed states. Both data series are smoothed. Time windows as in
1. (B) Dynamics of effective behavior and death rates in a SEIR model with short- and long-term awareness. Curves denote
different assumptions regarding long-term awareness, in each case β = 0.5/day, µ = 0.5/day, γ = 1/6/day, such that R0 = 3,
with k = 2, γH = 1/21/day, and fD = 0.01. The short-term awareness corresponds go Nδc = 50 deaths/day. Thin lines denote
full dynamics over 400 days; thick lines denote the dynamics near the case fatality peak. (C) Dynamics of effective behavior
and death rates in a SEIR model with awareness and fatigue. The three different curves denote different assumptions regarding
long-term awareness, in each case β = 0.5/day, µ = 0.5/day, γ = 1/6/day, such that R0 = 3, with k = 2, γH = 1/21/day,
fD = 0.01, and ε = 1/7/day. The short-term awareness corresponds go Nδc = 50 deaths/day. The force of infection does
not include long term changes in behavior beyond mobility, i.e., g(D) = 1. (D) As in (C), but the force of infection includes
long-term changes in behavior, i.e., g(D) = 1/

(
1 + (D/Dc)

k
)
.

on mobility alone, and g(D) = 1/
(
1 + (D/Dc)

k
)

corre-
sponding to sustained changes in the risk of infection per
contact (e.g., due to mask wearing, contact-less interac-
tions, use of PPE, etc.). As shown in Figure 7C/D, the
dynamics switch from counter-clockwise to clockwise in
the δ−β plane given the incorporation of fatigue. Deaths
drive down mobility, but eventually, decreases in β due
to short-term awareness are over-come by fatigue, leading
to increases in β. If g(D) = 1, then the dynamics include
increases in both mobility and fatalities akin to levels
expected in the absence of behavior, and eventually lev-
els of infection that are stopped by herd immunity, rather

than by awareness (see Figure 7C). In contrast, if there is
sustained behavior change such that g(D) decreases with
increasing cumulative deaths then there is a single peak
that forms a clockwise loop; with the peak close to, but
after the minimum in behavior (Figure 7D); as observed
in nearly all state-level data sets.

III. CONCLUSIONS

We have developed and analyzed a series of mod-
els that assume awareness of disease-induced death can
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reduce transmission, and shown that such awareness-
driven feedback can lead to highly asymmetric epidemic
curves. Resulting fatality time series can exhibit extend-
ed periods of near-constant levels even as the majori-
ty of the population remains susceptible. Hence: pass-
ing a ‘peak’ need not imply the rapid decline of risk.
In these conditions, if individuals are unable to sus-
tain social distancing policies, or begin to tolerate higher
death rates, then cases and fatalities could increase (sim-
ilar results have also been proposed in a recent, indepen-
dently derived feedback SIR model [15]). Indeed, detailed
analysis of mobility and fatalities suggest that mobili-
ty increased before fatalities peaked with the exceptions
of Washington and New York. This increase of mobil-
ity amidst rising fatalities is not consistent with simple
models of awareness-driven distancing, but is consistent
with more detailed models that include fatigue. Notably,
we find that if mobility increases but the risk of infec-
tion per interaction decreases due to systemic changes
in behavior, then models suggest ‘clockwise’ dynamics
between behavior and fatality as found in nearly all state-
level data sets analyzed here. Awareness-driven endoge-
nous changes in Reff are typically absent in models that
form the basis for public policy and strategic planning.
Our findings highlight the potential impacts of short-
term and long-term awareness in efforts to shape informa-
tion campaigns to reduce transmission after early onset
‘peaks’, particularly when populations remain predomi-
nantly immunologically naive.

In moving from concept to intervention, it will be crit-
ical to address problems related to noise, biases, and
the quantitative inference of mechanism from model-data
fits. First, epidemic outbreaks include stochasticity of
multiple kinds. Fluctuations could arise endogenous-
ly via process noise (especially at low levels of disease)
or exogenously via time-varying parameters, Moreover,
given the evidence for clustered transmission and super-
spreading events [18–21], extensions of the present model
framework should explicitly account for awareness-driven
behavior associated with risky gatherings [22, 23]. Next,
the link between severity and behavior change depends
on reporting of disease outcomes. Biases may arise due to
under-reporting of fatalities, particularly amidst intense
outbreaks [24]. Awareness may also vary with communi-
ty age structure and with other factors that influence the
infection fatality rate and hence the link between total
cases and fatalities [25]. Such biases could lead to sys-
tematic changes in awareness-driven responses. Finally,
we recognize that estimating the influence of awareness-
driven behavior change is non-trivial, given fundamen-
tal problems of identifiability. Nonetheless, it is impor-
tant to consider the effects of behavior changes. Other-
wise, reductions in cases (and fatalities) will necessari-
ly be attributed to exogeneous factors (e.g., influential
analyses of the impact of non-pharmaceutical interven-
tions on Covid-19 in Europe do not account for changes
in behavior [26]). Disentangling the impact of entangled
interventions will require efforts to link model predictions

with measurements of behavior, awareness, and disease
dynamics.

Although the models here are intentionally simple,
it seems likely that observed asymmetric dynamics of
COVID-19, including slow declines and plateau-like
behavior, is an emergent property of awareness-driven
epidemiological dynamics. Moving forward, it is essen-
tial to fill in significant gaps in understanding how aware-
ness of disease risk and severity shape behavior [27].
Mobility data is an imperfect proxy for distancing and
other preventative behaviours, and thus for transmis-
sion risk. Thus far, measurements of community mobil-
ity have been used as a leading indicator for epidemic
outcomes. Prior work has shown significant impacts of
changes in mobility and behavior on the COVID-19 out-
break [7]. Here we have shown the importance of looking
at a complementary feedback mechanism, i.e., from out-
break to behavior. In doing so, we have also shown that
decomposing the force of infection in terms of the number
of potential transmissions and the probability of infection
per contact can lead to outcomes aligned with observed
state-level dynamics. Understanding the drivers behind
emergent plateaus observed at national and sub-national
levels could help decision-makers structure intervention
efforts appropriately to effectively communicate aware-
ness campaigns that may aid in collective efforts to con-
trol the ongoing COVID-19 pandemic.

IV. METHODS

A. Epidemiological data

Daily number of reported deaths as of June 7, 2020,
is obtained from The COVID Tracking Project (covid-
tracking.com).

B. Mobility data

Mobility data as of June 12, 2020, are obtained
from Google COVID-19 Community Mobility Reports
(www.google.com/covid19/mobility/). The data set
describes percent changes in mobility across six cate-
gories (grocery and pharmacy; parks; residential; retail
and recreation; transit; and workplaces) compared to the
median value from the 5–week period Jan 3–Feb 6, 2020.
Raw mobility data are plotted in SI Appendix, SI Fig. S4.

C. Principal component analysis

We use principal component analysis (PCA) on the
mobility data to obtain a univariate index of mobility.
We exclude park visits from the analysis due to their
anomalous, noisy patterns (SI Appendix, SI Fig. S4).
Before performing PCA, we first calculate the 7-day
rolling average for each mobility measure in order to
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remove the effects of weekly patterns. We combined
mobility data from all 17 analyzed states, and standard-
ized each measure (to zero mean and unit variance). The
first principal component explains 93% of the total vari-
ance in this analysis, and the loading of the residential
metric had a different sign from the other four mobility
metrics. We thus used this component as our index of
mobility (setting the direction so that only the residen-
tial metric contributed negatively to the index). To draw
phase planes, we further smoothed our mobility index
and daily reported deaths using locally estimated scat-
terplot (LOESS) smoothing. Daily number of deaths is
smoothed in log space, only including days with one or
more reported deaths. LOESS smoothing is performed
by using the loess function in R.

Data availability: All simulation codes, figures,
and data used in the development of this manuscript
are available at https://github.com/jsweitz/
covid19-git-plateaus.
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FIG. S1: Daily number of reported deaths for COVID-19 (black points and lines) and the corresponding locally estimated
scatterplot smoothing (LOESS) curves (red lines) in 50 states.
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