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Activin A Is Essential for Neurogenesis Following Neurodegeneration
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ABSTRACT

It has long been proposed that excitotoxicity contributes to
nerve cell death in neurodegenerative diseases. Activin A,
a member of the transforming growth factor-b superfam-
ily, is expressed by neurons following excitotoxicity. We
show for the first time that this activin A expression is

essential for neurogenesis to proceed following neurode-
generation. We found that intraventricular infusion of

activin A increased the number of newborn neurons in the
dentate gyrus, CA3, and CA1 layers of the normal adult
hippocampus and also, following lipopolysaccharide

administration, had a potent inhibitory effect on gliosis in
vivo and on microglial proliferation in vivo and in vitro.

Consistent with the role of activin A in regulating central
nervous system inflammation and neurogenesis, intraven-
tricular infusion of follistatin, an activin A antagonist, pro-

foundly impaired neurogenesis and increased the number
of microglia and reactive astrocytes following onset of

kainic acid-induced neurodegeneration. These results show
that inhibiting endogenous activin A is permissive for a
potent underlying inflammatory response to neurodegener-
ation. We demonstrate that the anti-inflammatory actions
of activin A account for its neurogenic effects following

neurodegeneration because co-administration of nonsteroi-
dal anti-inflammatory drugs reversed follistatin’s inhibi-

tory effects on neurogenesis in vivo. Our work indicates
that activin A, perhaps working in conjunction with other
transforming growth factor-b superfamily molecules, is

essential for neurogenesis in the adult central nervous sys-
tem following excitotoxic neurodegeneration and suggests

that neurons can regulate regeneration by suppressing the
inflammatory response, a finding with implications for
understanding and treating acute and chronic neurodege-

nerative diseases. STEM CELLS 2009;27:1330–1346

Disclosure of potential conflicts of interest is found at the end of this article.

INTRODUCTION

Neurogenesis persists in distinct regions of the adult brain
and is regulated by experience-dependent processes including
learning, exercise, environmental enrichment, and stress [1,
2]. Emerging evidence suggests that neurogenesis may be
impaired in neurodegenerative disorders such as Parkinson’s
disease and Alzheimer’s disease and this might contribute to
the pathogenesis of these chronic neurodegenerative disorders
[3]. Meanwhile, acute injury to the central nervous system
(CNS), such as that which occurs following a stroke, is fol-
lowed by enhanced neural progenitor cell proliferation and
neurogenesis. It has been speculated that this neurogenesis
may contribute to the recovery that is observed [3]. It is
unclear why neurogenesis proceeds after acute neurodegenera-

tion but is impaired in chronic disease states. Although there
is much interest in the potential for stem and progenitor cell-
based therapy of the human CNS, progress requires that we
must first understand the mechanisms that regulate neurogene-
sis in neurodegenerative disease conditions. Given its poten-
tial importance in brain function, disease, and therapy, eluci-
dating the molecular mechanisms that regulate neurogenesis is
imperative.

Excitotoxicity is believed to contribute to cell loss in neu-
rodegenerative disorders [4]. Kainic acid (KA)-induced neuro-
degeneration in the hippocampus provides a powerful model
for investigating the molecular mechanisms of excitotoxicity-
induced neurodegeneration and neurogenesis. Systemic or in-
tracerebral injections of KA result in a well-characterized pat-
tern of neuronal cell loss in the hippocampus [5, 6], which is
followed by extensive cell proliferation and neurogenesis in
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the dentate gyrus (DG) and hippocampal CA1 pyramidal cell
layer [7–10]. Although the functional significance of neuro-
genesis observed in the KA model is still to be elucidated [1],
the model allows investigation of the molecular mechanisms
that regulate proliferation of neural progenitors in neurodege-
nerative disorders.

Very little is known of the mechanisms that regulate neu-
rogenesis in the adult in neurodegenerative conditions. In this
study we provide evidence for the critical role of activin A in
regulating neurogenesis after KA-induced neurodegeneration.
Activin A, a member of the transforming growth factor-b
(TGFb) superfamily, is known to regulate neural cell prolifer-
ation and differentiation during embryogenesis. A number of
studies have shown that activin A expression is increased in
principal neurons in the hippocampus of adult rodents in mod-
els of transient cerebral ischemia and hypoxia and also after
KA treatment [11–14]. Previous in vitro studies have sug-
gested that activin A stimulates the formation of new astro-
cytes [15]. Here, however, we provide evidence in support of
an important but indirect role of activin A in neurogenesis
following KA-induced neurodegeneration in the adult hippo-
campus in vivo. Our data suggest that activin A has an anti-
inflammatory role and that this, possibly in concert with the
action of other TGFb superfamily molecules, is essential for
neurogenesis following excitotoxic neurodegeneration. Since
activin A is expressed by neurons [11–14], ours is the first
study demonstrating a neural response that promotes neuro-
genesis through a potent anti-inflammatory action in vivo.

MATERIALS AND METHODS

Animals

Male C57Bl/6 mice aged 8-16 weeks were obtained from the
Animal Resources Centre in Western Australia. All animal
experiments were performed with the approval of the Garvan
Institute and St. Vincent’s Hospital Animal Ethics Committee, in
accordance with National Health and Medical Research Council
animal experimentation guidelines and the Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes
(2004).

Intracerebroventricular Injection of Kainic Acid
and Lipopolysaccharide

Animals were anesthetized with ketamine (8.7 mg/ml; Mavlab,
Slacks Creek, QLD, http://www.mavlab.com.au) and xylazine
(2 mg/ml; Troy Laboratories Pty Ltd, Smithfield, Australia, http://
www.troylab.com.au). Mice received a single unilateral stereo-
taxic injection of KA (0.2 lg, 1 lg/ll in phosphate buffered
saline (PBS), pH 7.4; Ocean Produce International, Nova Scotia,
CA, http://www.oceanproduce.com), lipopolysaccharide (LPS, 5
lg in PBS; Sigma-Aldrich, St. Louis, http://www.sigmaaldrich.
com), or vehicle control (PBS) into the right lateral ventricle at
Antero-Posterior (AP) �2.0 mm, Medio-Lateral (ML) �2.9 mm,
Dorso-Ventral (DV) �3.8 mm (supporting information Fig. S1a).
Animals that received KA only experienced seizure-like
symptoms postsurgery ranging from tail rigidity to circling for 2–
4 hours.

Osmotic Micropump Implantation

Forty-eight hours after the injection of KA, osmotic micropumps
(ALZET, Cupertino, CA, http://www.alzet.com) filled with acti-
vin A (12.25 ng/ll; R&D Systems Inc., Minneapolis, http://
www.rndsystems.com), follistatin-288 (FS-288, 18.2 ng/ll; R&D
Systems Inc.), or vehicle control (0.1% bovine serum albumin
(BSA) in PBS) were implanted subcutaneously along the back
of the neck. An infusion cannula (PlasticsOne, Roanoke, UA,

http://www.plastics1.com) connected to the micropump was
placed in the right lateral ventricle at AP �0.26 mm, ML �1.0
mm (supporting information Fig. S1a). The pump was removed
72 hours later and the animals were sutured and single-housed
until they were sacrificed.

Administration of Bromodeoxyuridine

We used the protocol developed by Cameron and McKay [16].
Bromodeoxyuridine (BrdU; Sigma-Aldrich) was administered as
an i.p. injection of 300 mg/kg (0.9% saline) every 8 hours for 3
days beginning the morning after osmotic micropump
implantation.

Administration of Nonsteroidal
Anti-inflammatory Drugs

Prior to implantation of osmotic micropumps containing recombi-
nant mouse FS-288, animals received an i.p. injection of indo-
methacin (1 mg/kg; Sigma-Aldrich) and minocycline (50 mg/kg;
Sigma-Aldrich) in 10% dimethyl sulfoxide. A single minocycline
slow release pellet (75 mg; Innovative Research of America, Sar-
asota, FL, http://www.innovrsrch.com) was implanted subcutane-
ously concurrent to pump implantation. Animals received a sec-
ond injection of indomethacin (1 mg/kg) and minocycline (25
mg/kg) following pump implantation. During FS-288 administra-
tion, animals received 12 hourly i.p. injections of indomethacin
(1 mg/kg) and minocycline (25 mg/kg). After removal of (FS-
288)-containing osmotic micropumps, animals received 12 hourly
i.p. injections of minocycline only (25 mg/kg) for the next 2
days, whereas the pellet remained implanted for the entire
42 days.

Tissue Preparation

Mice were anesthetized and perfused transcardially with ice-cold
saline and then with 4% paraformaldehyde (4% PFA). Brains
were harvested, postfixed (4% PFA) for 4 hours, and cryopro-
tected (30% sucrose). Tissue was cryosectioned at 40 lm and
stored in PBS with 0.02% sodium azide at 4�C.

Antibodies

The following antibodies were used. Mouse antibodies: anti-
NeuN (NeuN, neuronal nuclei; Chemicon, Temecula, CA, http://
www.chemicon.com). Rat antibodies: anti-BrdU (Abcam, Cam-
bridge, U.K., http://abcam.com) and anti-CD11b (AbD Serotec
Ltd., Oxford, U.K., http://www.abdserotec.com). Rabbit antibod-
ies: anti-S100b (DAKO, Glostrup, Denmark, http://www.dako.-
com) and anti-GFAP (GFAP, glial fibrillary acidic protein;
DAKO). Goat antibodies: anti-ActRIIb (ActRIIb, activin receptor
IIb; Santa Cruz Biotechnology Inc., Santa Cruz, CA, http://
www.scbt.com) and anti-Alk2 (Alk2, activin-like kinase receptor
2; Santa Cruz Biotechnology Inc.). Secondary antibodies were
obtained from Invitrogen (Carlsbad, CA, http://www.invitrogen.
com).

Immunofluorescence

For DNA denaturation tissue sections were pretreated with TACs
nuclease (1 hour, 37�C; R&D Systems Inc.) and neutralized with
PBS. Sections were blocked in 3% BSA þ 0.25% Triton X-100
in PBS [1 hour, room temperature (rt)]. Primary antibodies were
applied in blocking solution for 3 days at 4�C. Antibodies were
detected with Alexa Fluor tagged secondary antibodies. Tissue
was counterstained using 40,6-diamidino-2-phenylindole (DAPI;
Invitrogen).

Immunoperoxidase

Free-floating sections were incubated in 50% ethanol (20 minutes,
rt) and then in 3% H2O2 (20 minutes, 4�C) prior to blocking in
3% BSA þ 0.25% Triton X-100 in PBS. Sections were incubated
with mouse anti-NeuN. Neuronal labeling was detected using
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biotinylated goat anti-mouse antibody and avidin-biotin peroxi-
dase complex, followed by peroxidase detection (diaminobenzi-
dine; Vector Laboratories, Burlingame, CA, http://www.vectorlabs.
com).

Stereology

For all population estimates we restricted our counts to analysis
of the dorsal hippocampus at the positions between �1.34 mm
and �2.3 from bregma. The regions sampled included the DG,
CA3, CA1, and posterior periventricular area (pPV). The DG was
defined as the area containing the granular cell layer and the hi-
lus. The pPV region was defined as the area between the lateral
ventricle and the CA3 and CA1 regions. All stereological cell
counts were performed blind (a detailed discussion of the theory,
approaches, considerations, and assumptions is outlined in the
supporting information Materials and Methods section).

Isolation of Mouse Primary Astrocytes
and Microglia

Astrocytes and microglia were harvested from mixed glial cells
following the procedure of Butovsky et al. as described previ-
ously [17]. For a detailed description of primary cell culture tech-
niques, see supporting information Materials and Methods
section.

Stimulation of Astrocytes and Microglia

All growth factors were dissolved in 0.1% BSA in Dulbecco’s
PBS (D-PBS). Cells were treated with control solution, 10 lg/ml
LPS, 100 ng/ml activin A, 1 lg/ml activin A, or a combination
of 100 ng/ml activin A or 1 lg/ml activin A with 10 lg/ml LPS.
Astrocytes were treated under serum (10% fetal bovine serum)-
containing conditions for 48 hours when nitric oxide was meas-
ured using Griess reagent. Microglial stimulation was performed
under serum-free conditions for 24 hours. Following treatment,
microglia were fixed for immunocytochemistry analysis.

Immunofluorescence Analysis

After treatment with the growth factors and/or LPS, cells were
washed free of growth factor-/LPS-containing media with PBS.
Glial cells were fixed by 4% PFA/4% sucrose (PBS, pH 7.4,
37�C, 8 minutes), permeabilized using 0.25% Triton X-100 for 5
minutes, and blocked using 10% BSA in PBS for 30 minutes. All
primary antibodies were diluted in chilled 3% BSA in PBS and
applied overnight at 4�C. Primary antibodies were detected using
Alexa Fluor tagged secondary antibodies. Cells were counter-
stained with DAPI.

Measurement of Cytokine Release

After 24 hours of treatment with the growth factors and/or LPS,
media were harvested. Cytokine measurements were performed
using the BD Cytometric Bead Array Mouse Inflammation Kit
(BD Biosciences, San Diego, http://www.bdbiosciences.com) and
FACsCanto according to manufacturers’ protocols.

Image Acquisition

All images were obtained using Leica DM IRE2 TCS SP2 AOBS
inverted laser scanning confocal (Leica, Heerbrugg, Switzerland,
http://www.leica.com). Images were compiled and analyzed using
Adobe Photoshop CS2 (Adobe, San Jose, CA, http://
www.adobe.com).

Statistical Analysis

All statistical analysis was performed using the statistical package
SPSS v11 (Graduate pack) (SPSS Inc., Chicago, IL, http://

www.spss.com). All data sets were tested for normality using the
Shapiro-Wilk test. Unless otherwise stated, pairwise comparisons
were statistically analyzed using independent two-sample t tests
with Bonferroni correction. The reason for our approach was that
we were not interested in all pairwise comparisons, only the com-
parisons of treated groups with control. Hence, we only adjusted
for the comparisons that were performed, not all possible pair-
wise comparisons. The Bonferroni procedure is a general method
that can be applied in this situation. Used in this way, the Bonfer-
roni procedure controls the type I error rate for each collection of
pairwise comparisons that were actually performed [18].

RESULTS

Follistatin Inhibits Neurogenesis in the Intact and
Injured Hippocampus

Kainic acid (KA) is an excitotoxin (supporting information Fig.
S1) and neurogenesis is increased after KA-induced neurode-
generation in the hippocampal DG and in the hippocampal CA1
and CA3 neuronal layers (supporting information Fig. S2). We
were interested in determining whether TGFb superfamily mol-
ecules might play a role in regulating neurogenesis during the
period after cell death has proceeded. As a first step, we investi-
gated whether the expression of specific mRNAs encoding
members of the TGFb superfamily was increased 54 hours after
KA injections (supporting information Table 1), when neurode-
generation had already proceeded. Of all mRNAs we measured,
mRNAs encoding activin A showed the greatest increase in
expression levels at this time point. The mRNA encoding the
bA subunit that makes up activin A increased almost 24-fold in
KA-treated hippocampi compared to that in hippocampi that
received a control injection, although there were essentially no
changes in the expression of mRNAs encoding the bB or a sub-
units that make up inhibin or activin B (supporting information
Table 1). We therefore hypothesized that activin A may play a
role in mediating the neurogenesis observed after KA-induced
neurodegeneration.

Activin A is expressed by principal neurons and has neuro-
protective effects following excitotoxicity [12, 13, 19]. Follista-
tin-288 (FS-288) is a high-affinity antagonist of activin A [20].
To investigate the effects of activin A on neurogenesis, we
developed a protocol to study neurogenesis in which we first
allowed neurodegeneration to be fully committed before admin-
istering activin A or FS-288 (Fig. 1A). In our protocol, a single
dose of KA or PBS control was stereotaxically injected into the
right lateral ventricle. The animals were then allowed to recover
for 48 hours, during which time a reproducible cell loss
occurred in the CA3 and CA1 pyramidal cell layers of the hip-
pocampus (supporting information Fig. S1). Subsequently, ve-
hicle, activin A, or FS-288 was infused into the lateral ventricle
for 72 hours, during which time animals also received bromo-
deoxyuridine (BrdU) for 3 days to label dividing cells. We then
collected tissue 7 days later for analysis.

The proliferative zones of the hippocampus contain the
following: Sox2-expressing cells, considered to be authentic
neural stem cells (NSCs) with multipotent and self-renewing
NSC properties [21]; nestin-expressing cells, considered to be
neural precursor cells (NPCs) [22]; and doublecortin (Dcx)-
expressing cells, considered to be immature migrating neuro-
blasts [23]. These neural stem/precursor cells are observed in
the subgranular zone (SGZ) of the DG and in the posterior
periventricular area (pPV) and they have been shown to be
capable of repopulating the DG and CA1 neuronal layers [7,
24]. Therefore, to assess the extent of neural stem/precursor
proliferation after KA-mediated degeneration, we performed
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Figure 1. Activin A induces neural stem cell and precursor proliferation in the adult injured and intact hippocampus. (A): Experimental time-
line: On day 0 animals received a single i.c.v. injection of KA or PBS control. Starting on day 2, an i.c.v. infusion of activin A, FS-288, or vehi-
cle began and was continued for 3 days via an osmotic micropump. Animals received three times daily i.p. injections of BrdU beginning at
7 a.m. for the 3 days indicated. On day 7 the tissue was harvested for analysis. (B–D): Images of (B) proliferating multipotential neural stem
cells co-expressing BrdU (green) and Sox2 (red), (C) proliferating neural precursor cells co-expressing BrdU (green) and nestin (red), and (D)

proliferating immature migrating neuroblasts co-expressing BrdU (green) and doublecortin (red). For all confocal images, low-power scale bar ¼
50 lm and high-power scale bar ¼ 5 lm. (E–G): Quantification of proliferating cells revealed that compared to their respective vehicle-treated
controls [KA injected with vehicle (dark gray bars, n ¼ 5); PBS injected with vehicle (white bars, n ¼ 5)], infusion of FS-288 in KA-injected
animals (n ¼ 5, black bars) inhibited proliferation, whereas infusion of activin A in PBS-injected animals (n ¼ 5, light gray bars) increased pro-
liferation of (E) multipotential neural stem cells, (F) neural precursors, and (G) immature migrating neuroblasts in the DG, CA3, CA1, and pPV
area. (H): Seven days after KA low- and high-power (confocal z stack) images show that cells did not co-express NeuN (red) and BrdU (green).
Values for all graphs are mean � SEM. *, p < .025; **, p < .005; ***, p < .0005 (independent two-sample t test with Bonferroni correction).
Abbreviations: BrdU, bromodeoxyuridine; Dcx, doublecortin; DG, dentate gyrus; FS-288, follistatin-288; i.c.v., intracerebroventricular; KA,
kainic acid; NeuN, neuronal nuclei; PBS, phosphate buffered saline; pPV, posterior periventricular area.

Abdipranoto-Cowley, Park, Croucher et al. 1333

www.StemCells.com



Figure 2. Activin A regulates long-term neurogenesis in the adult injured and intact hippocampus. (A): Experimental timeline (for details refer to
Fig. 1). Tissue was analyzed at 7 days or 42 days. (B): Forty-two days after KA injection newborn neurons co-express the neuronal marker, NeuN
(red), and the proliferative marker, BrdU (green), although less newborn neurons were seen in KA-treated animals that received FS-288 compared to
animals that did not receive FS-288. Low-power scale bar ¼ 50 lm and high-power scale bar ¼ 5 lm. (C): Quantification revealed that infusion of
FS-288 in KA-injected animals (n ¼ 10, black bars) inhibited neurogenesis in the DG, CA3, and CA1, whereas infusion of activin A in KA-injected
animals (n ¼ 10, gray bars) had no effect on the number of new neurons compared to KA-injected controls (n ¼ 11, white bars). (D): There was, how-
ever, increased neurogenesis in the DG, CA3, and CA1 regions of the dorsal intact hippocampus in activin A-treated animals (n ¼ 10, gray bars),
whereas (FS-288)-treated animals had no effect on neurogenesis (n ¼ 10, black bars) compared to controls (n ¼ 10, white bars). (E): Administration
of activin A or FS-288, 2 days after KA-induced injury, did not alter neuron survival when administered by our protocol since there were no differen-
ces in the total neuron population observed in the CA3 or CA1 regions 7 days after KA in animals that received infusions of activin A (n ¼ 8, gray
bars) or FS-288 (n ¼ 8, black bars) compared to KA-injected controls (n ¼ 8, white bars). However, FS-288 administration prevented the subsequent
increase in total neuron population observed 42 days after the KA-induced neurodegeneration, suggesting endogenous activin A expression increases
total neuron population after KA neurodegeneration. (F):Meanwhile, activin A infusion following PBS injection (n ¼ 8, gray bars) increased the total
neuron population 42 days later in the CA3 and CA1 compared to their respective vehicle-treated controls (n ¼ 8, white bars). Infusion of FS-288 fol-
lowing PBS injection (n ¼ 8, black bars) had no effect on the total neuron population. Values for all graphs are mean � SEM. *, p < .025; **, p <
.005; ***, p < .0005 (independent two-sample t test with Bonferroni correction). Abbreviations: BrdU, bromodeoxyuridine; DG, dentate gyrus; FS-
288, follistatin-288; KA, kainic acid; NeuN, neuronal nuclei; PBS, phosphate buffered saline.
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population estimates of cells labeled for BrdU and either
Sox2, nestin, Dcx, or NeuN, using confocal microscopy and
stereological techniques (see supporting information Materials
and Methods section). As expected [7], we observed that KA-
induced neurodegeneration was followed by a 337%, 120%,

634%, and 157% increase in the average number of proliferat-
ing multipotent NSCs (Fig. 1B, 1E), a 287%, 278%, 770%,
and 44% increase in the average number of proliferating
NPCs (Fig. 1C, 1F), and a 170%, 468%, 935%, and 479%
increase in the average number of migrating immature

Figure 3.
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neuroblasts (Fig. 1D, 1G), in the DG (including the SGZ) and
pPV, and in the CA3 and CA1 neuronal layers, respectively,
compared with animals that received no KA.

No BrdU-labeled mature neurons were observed in the
DG, CA3 or CA1 or neuronal layers of the hippocampus
7 days after the KA-induced neurodegeneration (Fig. 1H),
although many BrdU-labeled neurons were observed at 42
days (Fig. 2). Thus, in our protocol, BrdU did not label
mature neuronal cells during the period of BrdU administra-
tion. BrdU is therefore not labeling dying neurons in our pro-
tocol. We confirmed that BrdU labeling was specific to prolif-
erating cells because intracerebroventricular (i.c.v.) infusion
of the mitotic inhibitor cytosine b-D-arabinofuranoside hydro-
chloride, which is expected to block cell proliferation in the
brain, also greatly reduced BrdU labeling of centrally derived
cells, but not of peripherally derived cells (supporting infor-
mation Fig. S3).

Consistent with the significant role of endogenous activin
A in promoting proliferation after neurodegeneration, infusion
of FS-288, an activin A antagonist, 48 hours after KA injec-
tion, led to a 74%, 82%, 59%, and 77% reduction in the av-
erage number of proliferating multipotential NSCs (Fig. 1B,
1E), a 65%, 72%, 35%, and 63% reduction in the average
number of proliferating NPCs (Fig. 1C, 1F), and a 62%,
71%, 64%, and 72% reduction in the average number of
migrating immature neuroblasts (Fig. 1D, 1G) in the DG
(including the SGZ) and pPV and in the CA3 and CA1 neu-
ronal layers, respectively, compared with animals that
received KA but no FS-288. Since FS-288 is an antagonist
of activin A, these results strongly implicated activin A in
neural stem/precursor cell proliferation after KA-induced
neurodegeneration.

We, therefore, asked whether activin A could stimulate
neural stem/precursor cell proliferation in the absence of KA-
induced neurodegeneration. We found that infusion of activin
A, 2 days after an i.c.v. saline injection, led to a 39%, 70%,
45%, and 16% increase in the average number of proliferating
multipotential NSCs (Fig. 1B, 1E), a 26%, 50%, 30%, and
47% increase in the average number of proliferating NPCs
(Fig. 1C, 1F), and a 56%, 184%, 536%, and 132% increase in
the average number of proliferating immature neuroblasts
(Fig. 1D, 1G) in the DG (including the SGZ) and pPV and in
the CA3 and CA1 neuronal layers, respectively, compared to
animals that received no activin A. These results confirmed
that activin A could stimulate neural stem/precursor cell pro-
liferation and subsequent early differentiation into immature
migrating neuroblasts.

The BrdU-labeled NSCs, NPCs, and migrating neuroblasts
observed at 7 days after KA injection (Fig. 1) transformed
into mature BrdU-labeled neurons by 42 days (supporting in-
formation Fig. S2). The number of newly generated mature
BrdU/NeuN labeled neurons in the CA1 and CA3 regions at

42 days appeared to be less than the number of neural stem/
progenitor cells observed in the CA1, CA3, and pPV (Figs. 1,
2). This suggests some of the neural stem/progenitor cells ei-
ther differentiated into other cell types in addition to neurons
or underwent cell death. Nevertheless, the number of BrdU/
NeuN labeled cells at 42 days after KA was significantly
increased, compared to animals that received no KA (support-
ing information Fig. S2).

Since FS-288 inhibits neural stem/progenitor cell prolifer-
ation after KA-induced neurodegeneration (Fig. 1), we pre-
dicted that it would impair neurogenesis. Indeed, we found
that FS-288 reduced the average number of newly generated
neurons 42 days after KA injection by 88%, 76%, and 65% in
the DG, CA3, and CA1 regions, respectively, compared to
animals that received KA but no FS-288 (Fig. 2B, 2C). Mean-
while, infusion of activin A, 48 hours after KA-induced neu-
rodegeneration had no additional effect on the extent of neu-
rogenesis at 42 days, suggesting that endogenous activin A
was already exerting a maximal effect after KA-induced
neurodegeneration.

We also investigated whether the increase in neural stem/
precursor cell proliferation caused by activin A infusion in
the intact brain at 7 days (Fig. 1) led to increased neurogene-
sis at 42 days (Fig. 2D). As expected, there was a 96%, 65%,
and 234% increase in the average number of newly generated
neurons in the DG, CA3, or CA1 regions of the hippocampus
of animals that received activin A, compared to animals that
received no activin A after a PBS injection. Meanwhile, infu-
sion of FS-288 did not have any effect on neurogenesis com-
pared to vehicle-treated PBS-injected animals (Fig. 2D). Thus,
although exogenously administered activin A can stimulate
neurogenesis, it is not essential for neurogenesis in the nor-
mal, uninjured brain.

Activin A has neuroprotective effects if administered prior
to or in conjunction with excitotoxic insult [12]. Importantly,
however, we noted that the i.c.v. infusion of activin A or FS-
288 beginning 48 hours after KA-induced neurodegeneration
did not significantly alter neuronal survival in the CA3 and
CA1 regions 7 days after KA injection, compared to controls
(Fig. 2E). This confirmed that although activin A may be neuro-
protective when administered prior to, or in conjunction with,
excitotoxic injury [12], neither activin A nor FS-288 exerted
effects on neuronal survival when administered 2 days after
neurodegeneration. This strongly suggests that neurodegenera-
tion was fully committed by the time point where we adminis-
tered FS-288 or activin A in our studies. Activin A is, however,
expressed more than 48 hours after KA injury (supporting in-
formation Table 1) and, as shown in Figures 1 and 2, is required
for neurogenesis after neurodegeneration occurs.

An important observation is that although cell loss is
observed after KA (supporting information Fig. S1), subse-
quent neurogenesis actually partly restored the total neuron

Figure 3 (preceding page). Activin A inhibits astrocyte proliferation in the injured hippocampus. (A): Experimental timeline. (B–G): Increased astro-
cyte proliferation (arrows) was observed in the DG, CA1 and pPV of animals that received KA compared to animals that did not receive KA. Scale bar¼
50 lm. (H–J): Confocal z-stack images showed that proliferating astrocytes (J, overlay ofH and I) co-expresss GFAP (red,H) and BrdU (green, I). Scale
bar¼ 5 lm.K, Quantification revealed enhanced astrocyte proliferation in the DG, CA3, CA1 and pPV regions of the dorsal hippocampus in KA-injected
animals that received FS-288 (n¼ 7, black bars) compared to KA-injected controls (n¼ 7, white bars), while, infusion of activin A following KA injection
(n¼ 7, grey bars) had no significant effect on astrocyte proliferation compared to KA control animals. L–Q, Analysis of astrocytes with S100b and GFAP
revealed extensive gliosis (arrows) in the DG, CA1 and pPV following KA-induced neurodegeneration. Scale bar ¼ 50 lm. (O–Q): Images of astrocyte
morphology show that (O) quiescent astrocytes possess long, thin processes while, (P) gliotic astrocytes displayed cellular hypertrophy and a shortening
or thickening of processes and (Q) co-expressed BrdU (green), GFAP (red) and DAPI (blue). Scale bar ¼ 5 lm. R, Quantification of astrocytes that co-
expressed BrdU and GFAP and exhibited cellular hypertrophy revealed that infusion of FS-288 following KA injection (n¼ 7, black bars) enhanced glio-
sis, while infusion of activin A following KA injection (n ¼ 7, grey bars) inhibited gliosis in the DG, CA3, CA1 and pPV regions of the dorsal hippocam-
pus compared to KA-injected control animals (n ¼7, white bars). Values for all graphs as mean � SEM. *: p < 0.025, **: p < 0.005, ***: p < 0.0005
(Independent two sample t-test with Bonferroni correction). Abbreviations: BrdU, bromodeoxyuridine; DAPI, 40,6-diamidino-2-phenylindole; DG, dentate
gyrus; FS-288, follistatin-288; GFAP, glial fibrillary acidic protein; KA, kainic acid; PBS, phosphate buffered saline; pPV, posterior periventricular area.
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Figure 4. Activin A inhibits microglial proliferation in the intact and injured hippocampus. (A): Experimental timeline. (B): Proliferating
microglia co-express the microglial marker, CD11b (red), and the proliferative cell marker, BrdU (green), counterstained with DAPI (blue). Low-
power scale bar ¼ 50 lm and high-power scale bar ¼ 5 lm. (C): Quantification revealed that the number of proliferating microglia (BrdUþ/
CD11bþ) over 3 days of BrdU treatment in the DG was inhibited by infusion of activin A (n ¼ 5, gray bars) and FS-288 (n ¼ 5, black bars),
compared to controls (n ¼ 5, white bars), whereas in the pPV, infusion of FS-288 in KA-injected animals stimulated microglial proliferation.
(D): Infusion of activin A (n ¼ 5, gray bars) or FS-288 (n ¼ 5, black bars) in KA-injected animals did not change in the total microglial popula-
tion in the DG compared to controls (n ¼ 5, white bars), whereas in the pPV of KA-injected animals, FS-288 led to an increase in the total
microglial population when compared to controls. (E): Infusion of activin A in animals that did not receive KA (n ¼ 5, black bars) inhibited
microglial proliferation over 3 days of BrdU in the DG but had no further effects on microglial proliferation in the pPV compared to controls (n
¼ 7, white bars). (F): Infusion of activin A in animals that did not receive KA (n ¼ 5, black bars) had no effect on the total microglial popula-
tion in the DG and pPV despite decreased microglial proliferation in the DG compared to controls (n ¼ 5, white bars). Values for all graphs are
mean � SEM. *, p < .025; **, p < .005; ***, p < .0005 (independent two-sample t test with Bonferroni correction). Abbreviations: BrdU, bro-
modeoxyuridine; DAPI, 40,6-diamidino-2-phenylindole; DG, dentate gyrus; FS-288, follistatin-288; KA, kainic acid; PBS, phosphate buffered sa-
line; pPV, posterior periventricular area.
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populations in the CA3 and CA1 regions. Indeed, as shown in
Figure 2E, the total neuron populations in the CA3 and CA1
regions increased between 7 days and 42 days post-KA, an
effect that was not observed when neurogenesis was blocked
by FS-288 infusion. Furthermore, infusion of activin A alone
increased the total neuron population in the CA3 and CA1
regions of the hippocampus 42 days later, even in the absence
of previous cell loss (Fig. 2F). These results show that newly
generated neurons can contribute to an increase in the total
neuron population after KA-induced neurodegeneration, that
this increase is blocked by FS-288, and that 3 days of activin
A infusion alone is sufficient to drive an increase in neuron
numbers in the absence of neurodegeneration.

Activin A Regulates Gliosis in the Injured Adult
Hippocampus In Vivo

Injury to the adult CNS is accompanied by reactive gliosis,
whereby astrocytes proliferate and undergo cellular hypertro-
phy (shortening and thickening of processes) [25]. To deter-
mine whether activin A had a role in this process, we first
assessed whether activin A regulated the number of proliferat-
ing astrocytes in the DG, CA3, CA1, and pPV regions [7,
24]. We first analyzed changes in astrocyte proliferation
(BrdU-positive/GFAP-positive) 42 days after the KA-induced
neurodegeneration (Fig. 3A–3K). Consistent with the role of
activin A in regulating astrocyte proliferation after KA-
induced neurodegeneration, infusion of FS-288 following KA
injection resulted in a 94%, 187%, and 194% increase in the
average number of proliferating astrocytes in the DG, CA3,
and CA1 regions, respectively, but not in the neurogenic pPV,
when compared to KA-injected animals that received no FS-
288 (Fig. 3K). Infusion of activin A itself had no additional
effect on astrocyte proliferation in the hippocampal DG, CA3,
CA1, and pPV regions after KA injection (Fig. 3K). The
effect of activin A on astrocytes depends on there being some
other inflammatory insult present since infusion of activin A
did not affect the number of proliferating astrocytes in the
hippocampus of animals that received no KA (data not
shown).

The changes in astrocyte proliferation were associated
with cellular hypertrophy that is characteristic of gliosis (Fig.
3L–3Q) since there were also changes in the number of pro-
liferating astrocytes that exhibited gliotic morphology (short-
ened and thickened processes; Fig. 3P, 3Q) as opposed to a
quiescent morphology (thin, elongated processes; Fig. 3O).
Specifically, the average number of proliferating astrocytes
with a gliotic morphology after KA-induced neurodegenera-
tion was profoundly altered by infusion of FS-288, as this
resulted in a 150%, 183%, 371%, and 123% increase in the
average number of gliotic cells in the DG, CA3, CA1, and
pPV regions, respectively, compared to vehicle-treated ani-
mals that received KA but no FS-288 (Fig. 3R). Infusion of
activin A following KA-induced neurodegeneration resulted
in a 63%, 42%, 61%, and 21% decrease in the average num-
ber of gliotic cells in the DG, CA3, CA1, and pPV regions,
respectively, compared to vehicle-treated animals that
received KA but no activin A (Fig. 3R). In the absence of
KA-induced degeneration, activin A had no effect on the av-
erage number of proliferating astrocytes with gliotic morphol-
ogy, as expected (data not shown).

Activin A Regulates Microglial Numbers in the
Hippocampus In Vivo

Gliosis is characteristic of central inflammation. Our finding
that FS-288 increased gliosis and that activin A infusion
reduced gliosis lead us to hypothesize that activin A may

have anti-inflammatory actions. If true, then activin A would
potentially regulate the microglial response to injury, which
could in turn regulate gliosis. Thus, FS-288 infusion would be
predicted to increase microglial numbers in the hippocampus.
We, therefore, investigated the effects of activin A on micro-
glial responses in the neurogenic regions, the DG and pPV,
42 days after the KA-induced neurodegeneration (Fig. 4A,
4B). In the pPV, we found that inhibition of activin A by FS-
288 resulted in a 72% average increase of microglial prolifer-
ation compared to KA-injected animals that received no FS-
288 (Fig. 4C) and this led to an expected 72% increase in the
average total microglial population (Fig. 4D). In contrast, in
the DG, there was an unexpected 50% decrease in average
microglial proliferation (labeled over 3 days of BrdU),
induced by FS-288 infusion, although the average total micro-
glial population was not significantly changed (Fig. 4D).
Therefore, microglial infiltration, or replication post-BrdU,
must determine the number of microglia in the DG. Mean-
while, infusion of activin A after KA injection led to a 76%
decrease in the average microglial proliferation in the DG
(Fig. 4C) compared to that induced by KA alone, but this did
not have a significant effect on the total number of microglial
cells in the DG or pPV (Fig. 4D).

We also investigated the effect of activin A on microglial
populations in animals that received no KA. Our data showed
that infusion of activin A in the intact hippocampus had no
significant effect on the total microglial population in either
the DG or the pPV compared to vehicle-treated controls (Fig.
4F), although it did lead to an 86% average decrease in
microglial proliferation in the DG (Fig. 4E). Collectively, our
results indicate that activin A regulates microglial numbers
in vivo, acting as an anti-inflammatory agent subsequent to
the action of other inflammatory stimuli in the injured
hippocampus.

Activin A Exerts Anti-inflammatory Effects In Vivo

The toll-like receptor (TLR) pathway, in particular, TLR4 and
TLR2, regulate microglial activation in vivo and in vitro [26].
Activation of this pathway has been implicated in inflamma-
tion in several neurodegenerative diseases and in stroke [27–
29]. The injection of LPS into the CNS can be used to model
these inflammatory effects because LPS activates TLR4 to
induce microglial activation and the release of pro-inflamma-
tory cytokines, stimulating inflammation in the hippocampus,
without inducing any neuronal death [30]. To confirm that
activin A has direct anti-inflammatory effects in vivo, we
investigated whether activin A can suppress microglial activa-
tion by LPS. We infused activin A in a model of LPS inflam-
mation following the protocol shown in Figure 5A. Our analy-
sis confirmed that injection of LPS into the hippocampus,
whether followed by infusion of vehicle or activin A, resulted
in no significant loss of neurons in the DG, CA3, or CA1
regions of the hippocampus compared to PBS-injected vehi-
cle-infused animals (supporting information Fig. S4). We
found, however, that the infusion of activin A following LPS
injection led to a 66% and 81% decrease in average micro-
glial proliferation in the DG and pPV, respectively, when
compared to the DG and pPV of vehicle-treated LPS control
animals (Fig. 5B, 5C). We also found that infusion of activin
A in LPS-injected animals led to a 35% and 40% decrease in
the average total microglial populations in the DG and pPV,
respectively, compared to the DG and pPV of animals that
received LPS but no activin A (Fig. 5D). Our results confirm
that activin A has potent anti-inflammatory effects, inhibiting
microglial proliferation and reducing the total microglial pop-
ulation following LPS-stimulated local inflammation.
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Activin A Directly Regulates the Number and
Activation of Microglia In Vitro

We next set out to confirm that the effects of activin A on
microglia were cell-autonomous. For activin A to directly reg-
ulate inflammation, microglia would have to possess both
type I and type II activin receptors [31]. Using immunocyto-
chemistry, we confirmed that cultured primary microglial
cells, labeled for CD11b, expressed the type II receptor,
ActRIIb (Fig. 6A), and the type I receptor Alk2 (ActRI)
(Fig. 6B).

To determine whether activin A can regulate microglia
numbers directly, cultured primary microglial cells were
treated with vehicle, LPS, activin A plus LPS, or activin A
alone for 24 hours. LPS had no statistically significant effect
on the number of microglial cells compared to (D-PBS)-
treated microglial cells (Fig. 6C). However, microglial cells
treated with activin A with and without LPS showed an 80%
and 62% decrease in average total cell numbers, respectively,
when compared to microglial cells that received LPS alone or

D-PBS alone (Fig. 6C). These results support the in vivo data
and suggest that activin A alters microglial numbers by acting
directly on the cells to inhibit TLR4 signaling pathways.

Activation of microglial cells in vitro by LPS is character-
ized by morphological changes from ramified morphology
(arrow, Fig. 6D), indicating resting state, to bipolar morphol-
ogy (asterisk, Fig. 6D), indicating transition state, and then
into amoeboid morphology (arrowhead, Fig. 6D), indicating
activation state [32]. Therefore, we next investigated whether
the addition of activin A directly altered the morphological
states of microglia. We found that the addition of activin A
alone did not result in any significant changes in the percent-
age of cells exhibiting ramified, bipolar, or amoeboid mor-
phology compared to (D-PBS)-treated control cultures (Fig.
6E). We found that addition of LPS resulted in a 461%
increase in microglia cells exhibiting amoeboid-activated mor-
phology and a concurrent 75% decrease in ramified resting
microglia (Fig. 6E). Treatment of microglial cells with activin
A prior to stimulation with LPS resulted in a 261% increase

Figure 5. Activin A possesses anti-
inflammatory properties in vivo. (A):

Experimental timeline. On day 0 ani-
mals received a single i.c.v. injection of
LPS. Also on day 0, a 7-day infusion
of activin A or vehicle was initiated via
osmotic micropump. During this period,
animals received three times daily i.p.
injections of BrdU for 3 days, begin-
ning at 7:00 a.m. on day 3. On day 7
the tissue was harvested for immunohis-
tochemical analysis. (B): Activin A
infusion decreased the number of
microglia (red) and the number of pro-
liferating microglia (arrows, white) that
co-labeled with BrdU (green), CD11b
(red), and 40,6-diamidino-2-phenylin-
dole (blue), in the DG and pPV of
LPS-injected animals that received acti-
vin A infusion, compared to LPS-
injected animals that did not receive
activin A. Scale bars ¼ 50 lm. (C, D):
Quantification supported observations
that activin A in LPS-injected animals
(n ¼ 5, black bars) (C) inhibited micro-
glial proliferation and (D) decreased the
total microglial population in the DG
and pPV compared to control animals
(n ¼ 5, white bars). Values for all
graphs are mean � SEM. *, p < .025;
**, p < .005; ***, p < .0005 (inde-
pendent two-sample t test with Bonfer-
roni correction). Abbreviations: BrdU,
bromodeoxyuridine; DG, dentate gyrus;
i.c.v., intracerebroventricular; KA,
kainic acid; LPS, lipopolysaccharide;
pPV, posterior periventricular area.
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Figure 6. Activin A has direct anti-inflammatory effects on microglia in vitro. (A, B): Confocal z stack analysis revealed that CD11bþ micro-
glia expressed the (A) type II receptor, ActRIIb, and the (B) type I receptor, Alk2, on the cell surface. (C): Total viable microglial counts showed
that activin A decreases the microglial population in the presence and absence of LPS compared to control-treated microglial cells (LPS or D-
PBS alone). (D): Microglial cells stimulated with LPS exhibited amoeboid (activated) morphology (arrowhead) compared to microglial cells
treated with D-PBS control that exhibited ramified (resting) morphology (arrow). Microglial cells that were pretreated with activin A prior to
LPS stimulation exhibited ramified (resting) morphology (arrow) comparable to microglial cells treated with D-PBS control. There were also
microglial cells that exhibited bipolar morphology (asterisk). (E): Quantification of microglial cell subtypes revealed that stimulation with LPS (n
¼ 3 experiments, light gray bars) increased the acquisition of amoeboid morphology, indicating microglial activation, compared to control-treated
microglia (n ¼ 3 experiments, white bars) exhibiting ramified (resting) morphology. Treatment of microglial cells with activin A (n ¼ 3 experi-
ments, dark gray bars) reversed the effects of LPS as groups treated with LPS and activin A showed similar levels of ramified (resting) microglial
cells and amoeboid (activated) microglial cells as seen in microglia that were not stimulated with LPS. Treatment with activin A alone (n ¼ 3
experiments, black bars) had no effect on microglial states compared to control-treated cells. There was also no change in microglial cells exhib-
iting bipolar morphology. (F–I): LPS stimulates release of (F) TNFa, (G) IL-6, and (H) MCP-1 but not (I) IFN-c from cultured microglial cells,
all of which are significantly inhibited by pretreatment with activin A. Values are mean � SEM. *, p < .025; **, p < .005; ***, p < .0005 (in-
dependent two-sample t test with Bonferroni correction). Abbreviations: ActRIIb, activin receptor IIb; Alk2 (ActRI), activin-like kinase receptor
2; DAPI, 40,6-diamidino-2-phenylindole; D-PBS, Dulbecco’s phosphate buffered saline; INFc, interferon-c; IL-6, interleukin-6; LPS, lipopolysac-
charide; MCP-1, monocyte chemoattractant protein-1; PBS, phosphate buffered saline; TNFa, tumor necrosis factor-a.
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Figure 7.
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Figure 7. NSAIDs inhibit microglial proliferation, inhibit gliosis, and restore neurogenesis in (FS-288)-treated KA-injected animals. (A): Experi-
mental timeline. Some animals received NSAIDs beginning on day 2, prior to implantation of osmotic micropumps, and ending on day 42 when tis-
sue was harvested. (B): Immunohistochemistry and confocal analysis of proliferating microglial cells in (FS-288)-treated, KA-injected animals that
did or did not receive NSAIDs. Scale bar ¼ 50 lm. (C): Immunohistochemistry and confocal analysis of newborn neurons (arrows) in the DG,
CA3, and CA1 regions in (FS-288)-treated, KA-injected animals that did or did not receive NSAIDs. Scale bar ¼ 50 lm. (D, E): Quantification of
microglial populations revealed that NSAIDs in (FS-288)-treated, KA-injected animals (n ¼ 5, black bars) inhibited (D) microglial proliferation and
reduced (E) the total microglial population in the DG and pPV compared to (FS-288)-treated, KA-injected animals that did not receive NSAIDs (n
¼ 5, gray bars). (F): Quantification of gliosis, defined as the number of proliferating astrocytes exhibiting gliotic morphology, revealed that NSAID
treatment of (FS-288)-treated, KA-injected animals (n ¼ 5, black bars) decreased the extent of gliosis in the DG, CA1, and pPV compared to (FS-
288)-treated, KA-injected animals that did not receive NSAIDs (n ¼ 5, gray bars). (G): Quantification showed significant recovery of neurogenesis
in the DG, CA3, and CA1 regions of (FS-288)-treated, KA-injected animals that received NSAIDs (n ¼ 5, black bars) compared to (FS-288)-treated,
KA-injected animals that did not receive NSAIDs (n ¼ 10, gray bars). (H): Local activin A expression following injury acts as an anti-inflamma-
tory, inhibiting gliosis and microglial activation while promoting neurogenesis. Neurodegeneration activates microglia, possibly in part through acti-
vation of TLR2 and TLR4 receptors (see Discussion), and also directly and/or indirectly leads to a gliotic response by astrocytes. Microglial
activation leads to release of pro-inflammatory cytokines, including TNF-a and IL-6. Cytokines inhibit neural stem/precursor cell proliferation and,
consequently, neurogenesis. However, increased activin A expression from surviving neurons is a potent anti-inflammatory agent that inhibits prolif-
eration and activation of microglia and either directly and/or indirectly inhibits the gliotic response by astrocytes. This in turn is permissive for neu-
rogenesis. Activin A also regulates neurogenesis by stimulating neural stem/precursor proliferation, leading to increased number of immature
neuroblasts and, ultimately, increased neurogenesis. It is uncertain whether activin A also alters differentiation of neural stem/precursor cells. This
model does not exclude the possibility that other transforming growth factor-b/bone morphogenetic protein molecules act in concert with activin A;
however, their actions would also be, at least in part, anti-inflammatory (see Discussion). The fact that activin A is expressed by neurons raises the
possibility of an internal response system, where injured neurons signal for anti-inflammatory action. This model is of relevance for understanding
not only postinjury response within the central nervous system but also the environment of neurodegenerative disease. Values are mean � SEM. *,
p < .025; **, p < .005; ***, p < .0005 (independent two-sample t test with Bonferroni correction). Abbreviations: BrdU, bromodeoxyuridine; Dcx,
doublecortin; DG, dentate gyrus; FS-288, follistatin-288; IL-6, interleukin-6; KA, kainic acid; NeuN, neuronal nuclei; NSAIDs, nonsteroidal anti-
inflammatory drugs; PBS, phosphate buffered saline; pPV, posterior periventricular area; TLR, toll-like receptor; TNFa, tumor necrosis factor-a.
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in microglial cells exhibiting ramified resting morphology and
a concurrent 69% decrease in amoeboid-activated microglial
cells compared to LPS-treated microglial cells (Fig. 6E), indi-
cating that activin A is capable of directly reversing or pre-
venting microglial activation by LPS. The levels of ramified
(resting), bipolar, and amoeboid (activated) microglial cells in
activin A plus LPS-treated cultures were comparable to that
observed in (D-PBS)-treated control cells (Fig. 6E).

Since we observed changes in microglial morphology, we
next set out to determine whether activin A altered cytokine
release from microglial cells. We found that stimulation of
microglial cells with LPS resulted in significant increases in
the expression of several pro-inflammatory cytokines includ-
ing tumor necrosis factor-a (TNFa) (Fig. 6F), interleukin (IL)-
6 (Fig. 6G), and monocyte chemoattractant protein (MCP)-1
(Fig. 6H). Pretreatment of microglial cells with activin A
prior to stimulation with LPS resulted in a significant reduc-
tion in the release of TNFa (Fig. 6F), IL-6 (Fig. 6G), and
MCP-1 (Fig. 6H). The levels of the cytokines interferon
(IFN)-c (Fig. 6I), IL-10 (data not shown), and IL-12p70 (data
not shown) were below the levels of detection, indicating that
the microglia do not release significant amounts of these cyto-
kines (IFN-c, IL-10, or IL-12p70) in response to LPS stimula-
tion. Combined with the study conducted by Sugama et al.,
which showed that activin A reduced cytokine expression in
LPS-treated microglia [33], our results show that activin A
directly inhibits microglial proliferation, microglial activation,
and microglial release of pro-inflammatory cytokines.

Activin A Effects on Neurogenesis Are Secondary to
Its Effects on Inflammation

Our data strongly suggest that activin A is a potent anti-
inflammatory in the CNS (Figs. 5, 6). Inflammation has been
shown to inhibit neurogenesis [34, 35]. This led us to
hypothesize that the essential role of activin A in neurogene-
sis after cell loss is secondary to its inhibition of inflamma-
tion. Therefore, since FS-288 binds to activin A and thereby
inhibits activin A, we reasoned that the inhibition of neuro-
genesis by FS-288 may result from inhibition of the anti-
inflammatory effects of activin A. In that case, neurogenesis
should proceed whether activin A is blocked by follistatin,
providing inflammation is suppressed in some other way. To
test this hypothesis, we investigated whether nonsteroidal
anti-inflammatory drugs (NSAIDs), indomethacin and minocy-
cline, would reverse the effects of FS-288 on inflammation
and neurogenesis after KA-induced excitotoxic neurodegener-
ation (Fig. 7A).

We first investigated whether administration of NSAIDs
to animals that received FS-288 after KA injection had signif-
icant anti-inflammatory effects as expected. As shown in Fig-
ure 7, NSAID treatment resulted in 83% and 87% reduction
in the average number of proliferating microglial cells in the
DG and pPV, respectively (Fig. 7B, 7D) and a reduction of
66% and 68% in the average total microglial population in
the DG and pPV, respectively (Fig. 7E), compared to KA-
injected (FS-288)-treated animals that did not receive anti-
inflammatory agents (Fig. 7B, 7D, 7E). Similarly, gliosis was
reduced by NSAID treatment (Fig. 7F). Specifically, the aver-
age number of proliferating astrocytes that displayed gliotic
morphology in the DG, CA1, and pPV was 87%, 87%, and
63% less than that observed in KA-injected, (FS-288)-treated
animals that did not receive NSAIDs (Fig. 7F). These results
confirm that, in the KA-injured hippocampus, the inflamma-
tory effects of FS-288 are reversed by NSAIDs.

To determine whether inhibition of inflammation in ani-
mals that received a KA injection and FS-288 infusion indu-
ces recovery of neurogenesis, tissue was analyzed for the

number of newly generated neurons in the DG, CA3, and
CA1 (Fig. 7C). We first confirmed that i.c.v. infusion of FS-
288 almost abolishes neurogenesis after neurodegeneration
(compare the gray bars with the white bars in Fig. 7G). FS-
288 binds to activin A and therefore blocks the activin A that
is expressed in the brain from having any effect. This data
confirms that, in the absence of activin A, neurogenesis does
not proceed after neurodegeneration. The effect of FS-288 on
neurogenesis was quite profound.

When we added a nonsteroidal anti-inflammatory agent to-
gether with FS-288, the neurogenesis was restored to levels
observed when endogenous activin A is not blocked (compare
the black bars with the white bars in Fig. 7G). Indeed, the aver-
age number of newly generated neurons in the DG, CA3, and
CA1 was increased by 547%, 371%, and 299%, respectively, in
animals that received NSAIDs compared to the DG, CA3, and
CA1 regions of KA-injected (FS-288)-treated animals that did
not receive NSAIDs (Fig. 7G). The extent of neurogenesis in
animals that received NSAIDs was comparable to the extent of
neurogenesis that we observed in the DG, CA3, and CA1 of ve-
hicle-treated KA-injected animals (Fig. 7G).

In summary, neurogenesis after neurodegeneration
requires expression of activin A (Fig. 7H). Activin A signal-
ing stimulates neurogenesis after neurodegeneration by inhibi-
ting inflammatory and gliotic mechanisms, which would oth-
erwise negatively regulate neural stem/precursor cell
populations in the adult hippocampus. If activin A is blocked,
neurogenesis can be completely restored by adding a nonster-
oidal anti-inflammatory agent, even in the absence of active
activin A. Thus, neurogenesis will proceed after neurodegen-
eration, providing an anti-inflammatory agent is present,
whether it be activin A or, in its absence, an exogenously
administered anti-inflammatory agent.

DISCUSSION

We provide evidence for a centrally derived anti-inflammatory
response after acute excitotoxic neurodegeneration that is
required for neurogenesis to proceed in vivo. Several studies
have demonstrated that activin A is expressed by neurons fol-
lowing an acute excitotoxic insult to the CNS [11-13, 19].
Our data demonstrate that activin A exerts potent anti-inflam-
matory effects in the CNS by suppressing microglial numbers,
microglial activation, and pro-inflammatory cytokine release.
Activin A also directly or indirectly suppresses gliosis. Con-
sistent with this, we found that, after KA-induced neurodegen-
eration, administration of FS-288, an activin A antagonist, in
the CNS in vivo profoundly increased microglial numbers and
gliosis compared to that induced by KA alone. This (FS-288)-
induced inflammatory response, in turn, led to a profound
reduction in neurogenesis, an effect that was reversed by the
administration of NSAIDs. Thus, FS-288 exerts its effects on
neurogenesis, at least in part through blockade of an intrinsic
anti-inflammatory mechanism in the CNS. Our results there-
fore demonstrate that activin A, which is expressed by neu-
rons, is capable of inducing neural stem/progenitor cell prolif-
eration, leading to increased neurogenesis, through a potent
anti-inflammatory action in vivo (Fig. 7H).

It is increasingly thought that Parkinson’s disease, Alzhei-
mer’s disease, spinal cord injury, seizures, and excitotoxicity
may involve a microglial response that is regulated by TLR4
signaling [26, 29, 36–38]. TLR4 is also activated by LPS [26,
29, 36, 38, 39]. We showed that activin A blocks LPS-medi-
ated microglial activation in vivo and in vitro. We also
observed that activin A impaired inflammation following KA-
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induced neurodegeneration. Given the evidence for TLR4
activation in degenerative conditions [26, 29, 36, 37], it is
feasible that the effect of activin A on inflammation following
excitotoxic neurodegeneration may also result from inhibition
of TLR4-mediated signaling in microglia. Regardless,
although activin A may not be expressed exclusively by neu-
rons in the CNS, our study suggests that activin A expression
by neurons is part of an intrinsic overall centrally derived
anti-inflammatory response to excitotoxic neurodegeneration
that regulates neurogenesis in the CNS. This raises the possi-
bility of an internal response system, where injured neurons
signal for anti-inflammatory action. This is of relevance for
understanding not only postinjury response within the CNS
but also the environment of neurodegenerative disease.

The TGFb superfamily consists of two branches, the bone
morphogenetic protein (BMP)/growth differentiation factor
(GDF) branch and the TGFb/activin branch. Molecules in the
BMP/GDF branch have been shown to inhibit neurogenesis
and stimulate the formation of new astrocytes [40–42]. Some
studies suggest that ligands in the TGF/activin branch,
TGFb1, TGFb2, and TGFb3, have neurogenic effects [43],
whereas contrasting studies suggest that inhibition of TGFb
ligands enhances neurogenesis in the adult hippocampus [44,
45]. Furthermore, TGFb signaling effectors such as smad4,
smad1/5/8, and smad2/3 have been shown to play a role in
neurogenesis [43]. Clearly, the effects of TGFb ligands on
neurogenesis are complex.

An important conclusion from our work that may explain
this complexity is that the effect of a ligand on neurogenesis
will depend on the inflammatory state of the tissue, the region
of the brain being analyzed, and more particularly, the indi-
rect effects of the ligand via actions on other cell types that
in turn regulate neurogenesis. In other words, it appears that
interactions in the cellular microenvironment critically define
the effect of activin A on neurogenesis.

Our data showed that administration of activin A to the
uninjured hippocampus increased neural stem/precursor cell
proliferation and, consequently, neurogenesis (Fig. 2D, 2F).
Indeed, neurogenesis induced by 3 days of activin A treat-
ment in the intact brain was sufficient to increase the total
neuron population in the hippocampus. The increased number
of neurons resulted from changes in proliferation of Sox2-pos-
itive neural stem cells [21] and nestin-positive precursor cells
[22], an effect that led to increased numbers of Dcx express-
ing neuroblasts and neurogenesis. This suggests that activin A
can have a direct effect on neurogenesis in the animal in the
absence of KA-induced injury. However, activin A expression
is low in the intact brain. Therefore, activin A is unlikely to
play a role in neurogenesis in the absence of injury. We con-
firmed this when we gave an i.c.v. infusion of FS-288 (a
high-affinity antagonist of activin A) into the intact brain and
found that it did not block baseline neurogenesis. Clearly,
activin A can stimulate neurogenesis but it is not required for
neurogenesis in the absence of injury (Fig. 2D, 2F). So
whereas activin A may stimulate neurogenesis directly, it is
of minimal physiological relevance in the intact brain.

We also observed that KA-induced neurodegeneration was
followed by extensive proliferation of Sox2-positive neural
stem cells [21] and nestin-positive neural precursor cells. This
was followed by neurogenesis and recovery of the total neu-
ron numbers in the hippocampus (Fig. 2E). We confirmed
that KA-induced neurodegeneration leads to expression of
activin A. FS-288, a high-affinity activin A antagonist, pro-
foundly impaired precursor cell proliferation and neurogene-
sis, an effect that was entirely reversed by the administration
of NSAIDs (Fig. 7). Thus, progression of neurogenesis after
neurodegeneration requires the presence of an anti-inflamma-

tory agent, either endogeneously expressed activin A or, in its
absence, an exogenously administered anti-inflammatory
agent. Given the large increase in the number of Sox2-posi-
tive and nestin-positive cells and Dcx-positive migrating neu-
roblasts observed after KA, it seems that the anti-inflamma-
tory actions of activin A in turn permit the proliferation of
multipotent and self-renewing NSCs [21] and the subsequent
proliferation and/or differentiation of neural precursor cells,
which in turn lead to neurogenesis.

A physiologically important question is whether endoge-
nously expressed activin A is required for neurogenesis
(beyond its postinjury inhibition of inflammation) in the neu-
rodegenerating brain? Endogenously expressed activin A may
directly stimulate neurogenesis after neurodegeneration
(because it stimulated neurogenesis directly in the intact brain,
Fig. 2). However, although this would be important in terms
of facilitating the neurogenesis after neurodegeneration, the
data shown in Figure 7G make it clear that a direct effect of
activin A on stem/precursor cells is not an essential require-
ment for neurogenesis after neurodegeneration. We know this
because we observed that neurogenesis proceeds following
KA-induced degeneration when activin A is blocked, provided
that a nonsteroidal anti-inflammatory drug is also present. We
therefore conclude that the essential role of centrally derived
activin A is an anti-inflammatory response that is permissive
for neurogenesis. Any direct role that activin A exerts directly
on neurogenesis would facilitate regeneration but is not essen-
tial for it.

Thus, activin A exerts its critical effects on neurogenesis
through inhibition of the replication and activation of inflam-
matory cells and through inhibition of cytokine release from
these cells (Figs. 5, 6). When activin A is blocked, an exoge-
nously administered anti-inflammatory is sufficient to restore
its effect (Fig. 7). This suggests that molecules other than
activin A are primarily responsible for driving the prolifera-
tion of stem/precursor cells although activin A may also
directly assist this process. The essential role of activin A,
however, is to provide an environment that is permissive for
neurogenesis. This has significant implications for future
research into mechanisms of regeneration in neurodegenera-
tive diseases and for the development of treatments.

Although data from previous in vitro studies have sug-
gested that TGFb ligands, including activin A, induce the dif-
ferentiation of neural precursors into astrocytes, while also in-
hibiting proliferation of astrocyte lineage cells [15, 40, 46],
we found no evidence for such an effect of activin A in the
adult CNS in vivo. This again points to the importance of the
cellular niche in determining the effects of a ligand in vivo.
Activin A infusion did not lead to a detectable change in the
number of newly generated astrocytes in brains that did not
receive KA (Fig. 3). Furthermore, activin A infusion also did
not lead to a change in glial cell proliferation in brains after
KA-induced neurodegeneration. Our data, however, is consist-
ent with the role of activin A in regulating gliosis, either
directly or indirectly, since FS-288 infusion greatly increased
astrocyte proliferation and gliosis after KA-induced neurode-
generation (Fig. 3). Microglia can regulate gliosis [47]; there-
fore, it is possible that the effects of FS-288 on gliosis we
observed in vivo occur secondarily to its pro-inflammatory
effects on microglia. Given that glia can regulate neural stem/
precursor cell proliferation and neurogenesis [48, 49], the
extent of gliosis will, in turn, regulate neurogenesis. In addi-
tion, it has been established that inflammatory cytokines that
are expressed by activated microglia alone are sufficient to
directly inhibit neurogenesis [34].

We observed that other TGFb superfamily ligands such as
BMP1, BMP2, BMP5, and BMP7 were also expressed in the
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CNS after KA-induced neurodegeneration (supporting informa-
tion Table 1). There are reports that, in addition to its high-af-
finity antagonism of activin A, FS-288 may also have antago-
nist activity against other TGFb superfamily molecules,
especially BMP4, BMP7, and TGFb1 [50] and osteogenic pro-
tein-1 [51]. This raises the possibility that FS-288 in our study
may mediate some of its effects through binding other BMP
and TGFb molecules, in addition to binding to activin A. How-
ever, we showed that NSAIDs reversed the inhibitory effects of
FS-288 on neurogenesis. Therefore, if blockade of other
specific BMP molecules contributes to the inhibitory effects of
FS-288 on neurogenesis, then those specific BMP molecules
are also working in concert with activin A, at least in part,
to impair the inflammatory response after KA-induced
neurodegeneration.

Activin A appears to have diverse roles in tissue repair, fi-
brosis, and inflammation outside the CNS [52]. Our study
shows that activin A, which is released by neurons, is an anti-
inflammatory agent in the CNS. It has also been reported that,
outside the CNS, activin A has anti-inflammatory effects on
myeloblasts, monocytic M1 cells, B lymphoid cell line, and
hepatoma cell lines [52–54]. In surprising contrast to this, a
recent study [55] suggests that follistatin, administered i.p.,
has anti-inflammatory effects in the peripheral circulation in
response to an i.p. injection of LPS. The mechanisms by
which follistatin exerted these anti-inflammatory effects in the
peripheral circulation is unclear. The peripheral actions of
activin A and follistatin on inflammation are clearly complex
and unraveling this will require a broad understanding of
TGFb superfamily effects, both on specific leukocyte cell
types and on the complex cellular interactions that underlie
the peripheral inflammatory response in vivo.

Although increasing evidence suggests that neurogenesis
is functionally important [1, 2], the role of neurogenesis in
normal brain function and disease remains to be fully eluci-
dated. Evidence suggests that neurogenesis is impaired in neu-
rodegenerative diseases, an effect that could contribute to the
overall loss of neurons and cognitive decline [3]. Recent liter-
ature has demonstrated that inflammation inhibits neurogene-
sis in the adult hippocampus [34, 35]. Our study is the first to
demonstrate an endogenous mechanism that is required for
neurogenesis following acute excitotoxic neurodegeneration
that exerts its effect by inhibiting the detrimental effects of
inflammation. Although we have shown that the anti-inflam-
matory effect of activin A, and perhaps other TGFb superfam-
ily molecules, is permissive for neurogenesis, it is possible
that this anti-inflammatory effect would also contribute to the
reported neuroprotective effects of TGFb superfamily mole-
cules [12, 19]. Thus, we suggest that activin A is a pivotal
molecule at the nexus between neurodegeneration, inflamma-
tion, and neural regeneration.

Chronic neurodegenerative diseases are characterized by
chronic inflammation and reduced neurogenesis [3, 17, 56].
Our study now raises the question of whether expression of
an endogenous brain-derived anti-inflammatory response is
impaired in chronic neurodegenerative diseases. If so, this
would explain why a regenerative response is seen after acute
neurodegeneration but not in chronic neurodegenerative dis-
eases. Recent studies have reported deficient TGFb signaling
in neurodegenerative disorders including Alzheimer’s disease
[57]. These conditions are also characterized by increased
inflammation [58–60]. It is, therefore, quite possible that an
altered endogenous anti-inflammatory response may contribute
to the observed inflammation in these chronic diseases, an
effect that would, in turn, contribute to reduced neuronal sur-
vival and reduced regeneration that lead to their inevitable
pathological outcomes.
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