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ABSTRACT The complexity of allele interactions constrains crop improvement and the prediction of disease
susceptibility. Additive allele effects are the foundation for selection in animal and plant breeding, and
complex genetic and environmental interactions contribute to inefficient detection of desirable loci.
Manipulation and modeling of other sources of variation, such as environmental variables, have the potential
to improve our prediction of phenotype from genotype. As an example of our approach to analysis of the
network linking environmental input to alleles, we mapped the genetic architecture of single and combined
abiotic stress responses in two maize mapping populations and compared the observed genetic architecture
patterns to simple theoretical predictions. Comparisons of single and combined stress effects on growth and
biomass traits exhibit patterns of allele effects that suggest attenuating interactions among physiological
signaling steps in drought and ultraviolet radiation stress responses. The presence of attenuating interactions
implies that shared QTL found in sets of environments could be used to group environment types and identify
underlying environmental similarities, and that patterns of stress-dependent genetic architecture should be
studied as a way to prioritize prebreeding populations. A better understanding of whole-plant interactor
pathways and genetic architecture of multiple-input environmental signaling has the potential to improve the
prediction of genomic value in plant breeding and crop modeling.
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Mechanistic understanding and prediction of the relationship between
genotype and phenotype depend on the genetic architecture—the
number of large-effect and small-effect genes and the way these alleles

interact to generate variation in traits. At the molecular scale, non-
linear epistatic interactions between different genes are common,
whereas at the population and evolutionary scales, additive infinites-
imal models of genetic architecture are widespread and successful in
explaining observed patterns (Lynch andWalsh 1998; Hill et al. 2008).
The genetic architecture is plastic, with causal alleles in one context
typically becoming unimportant in different environments (Lynch
and Walsh 1998; Crossa 2012; Tardieu 2012). This environmental
input dependency has been modeled by Cooper and Podlich (2002)
as E(NK), with environment (E) affecting genes (N) and gene inter-
actions (K). In this formulation, increasing the number of modifying
environments deforms the parameter space, leading to local optima
and saddles between optima. This nonuniform parameter space for
genotype–environment interaction was seen in a comprehensive analysis
of genetic architecture in barley, in which increasing the number of
environments up to 22 decreased the number of general environmental-
controlling loci and increased the number of environment subset-
specific loci (Lacaze et al. 2008).

Representation of allele interactions as edges in a network is often
used in molecular-scale models of gene regulation and provides a useful
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abstraction when considering alternative models of genotype–
environment interaction. Recent work on control of networks indi-
cates that relatively large numbers of separately controlled genes are
needed to specify gene regulation output state (Liu et al. 2011),
which fits with the formulation of E modifying NK at the whole-
plant level. Liu et al. (2011) also found that densely interconnected
networks rapidly decrease the number of nodes needed to specify the
output state, which is also consistent with the finding that modeling
of crop-scale output landscapes generates complex cross-sections
and local optima (Cooper and Podlich 2002). Signaling networks
regulate multiple downstream activities in cells and tissues, in con-
trast to ongoing metabolic homeostatic processes (Trevino Santa
Cruz et al. 2005). Signaling implies input control, analogous to E
controlling NK or input signaling to driver nodes in networks. At
the highest level of aggregation, signal networks can be mapped to
logical operators to predict output (Trevino Santa Cruz et al. 2005;
Mittenthal and Zou 2011). Signals at this higher level of abstraction
may encapsulate or control physiological effects at the whole-organism
level (Martin et al. 2011). Models of this top hierarchical level thus
focus on prediction of combined inputs on the same output (Trevino
Santa Cruz et al. 2005).

Although environment-specific alleles are commonly identified
and are often ascribed to additional (unspecified) environmental inputs,
controlled combined stress experiments are rare (Mittler 2006). Pheno-
typic data regarding the combination of ultraviolet (UV) radiation and
drought, however, are available for several species. For example,
a protective response to combined stress is observed in soybean,
in which factorial experiments with increased UV-B and drought
resulted in growth inhibition similar to the level seen in the indi-
vidual stress treatments (Murali and Teramura 1986; Sullivan and
Teramura 1988). This protective response suggested that photomor-
phogenic changes such as stomatal density alterations might confer
drought tolerance (Gitz and Liu-Gitz 2003). Factorial experiments mea-
suring drought and UV radiation in wheat suggested that increases in
lipid peroxidation products generated a protective response in the com-
bination drought plus UV-B treatment group (Alexieva et al. 2001).

In these soybean and wheat cases, the two input stresses applied in
combination were not additive. Genetic differences were not examined
in either study, however. The nonlinear effect of UV and drought in
these cases motivated us to examine the genetic architecture of these
particular stresses in maize mapping populations. Maize is a model
system and crop of major economic importance; corn acreage in the
United States covers approximately 32 million hectares per year (Baker
2010). The most important abiotic stress in maize is drought; limited
water availability reduces yield worldwide (Boyer 1982). Projections of
crop effects under climate change indicate that water availability will
decline and water demand will increase (Schneider et al. 2007). Addi-
tional abiotic stress factors important for maize yield include nitrogen
insufficiency, high or low temperatures, UV radiation increases, mineral
deficiency or toxicity, and ozone (Gao et al. 2004; Collins et al. 2008).

We examined the role of environmental inputs in an experimental
test of abiotic factor interactions by comparison of patterns of genetic
architecture. We used the tractable and publiclly available maize (Zea
mays L.) mapping population resources to identify loci with significant
genotype–environment interactions for plant growth traits. These
mapping resources have complementary strengths, with the maize
intermated recombinant inbred populations providing high resolution
via relatively small introgressed regions (Lee et al. 2002) and the
nested association mapping population providing allelic comparisons
to a reference allele across the subpopulations (Yu et al. 2008). Factorial
environmental experiments, in contrast to analyses that fit environmental

variation from weather and soil records, require controlled conditions
and are thus limited by the availability of managed stress environments
rather than field records. Thus, analysis of multiple mapping popula-
tions for trends in genetic architecture is more tractable than very large
factorial experiments with one mapping population—and multiple
populations address genetic generality rather than focusing on high
power to detect allele and population-specific patterns. For our anal-
ysis of factorial environmental inputs in these two maize mapping
populations, we defined three simple logical expectations for the

Figure 1 Alternative pathways for two-stress signaling. Square boxes
indicate signaling or perception steps with genetic variation that could
be detected as QTL. (A) Two abiotic stress treatments are perceived
by separate signaling pathways. The effect of the combined stress is
predictable by adding or multiplying the individual allele effects. (B)
The two abiotic stress treatments are perceived by a sensor that is only
activated by those two stress signals applied together (an AND gate).
(C) The two abiotic stress treatments are perceived by a single
integrative cellular component (e.g., a transcription factor or reactive
oxygen species sensor), with the effect of each stress increasing the
output signal (an OR gate). The effect of a combined stress at a locus
encoding an integrator is assumed to be predictable from the single-
stress allelic effects.
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genetic architecture of combined stress inputs using the Trevino
Santa Cruz et al. (2005) formulation for our expected maize stress
effects (Figure 1). Our three possible combinations of two inputs are
independent effect (Figure 1A), an AND gate (Figure 1B), and an OR
gate (Figure 1C). Each of these combination types generates a pre-
diction for the genetic architecture in quantitative trait locus (QTL)/
association mapping experiments. If signal transmission for each
stress is indeed independent, then alleles or genes important for
differences in growth under drought would be different from the
alleles important for growth under UV radiation (Figure 1A). Dif-
ferent genes are by definition at different genomic locations, so
mapping of the location of the important allelic differences (single
nucleotide polymorphism or marker state) for independent inputs
would result in identification of different nonoverlapping sets of loci
for the two stresses. In the combined stress environment, the union
of these sets would be predicted. Typical-size QTL mapping experi-
ments such as ours have a detection limit of tens of loci (Lynch and
Walsh 1998). This means that the prediction for combined stress is
for truncated lists instead of the complete union; the effect size of the
important alleles (in other words, the rank order in the list) is thus
also needed for interpretation of the expected effect in the combined
stress. For the independence case, we expect that the loci would
show consistent effects—for example, the UV locus with the largest
effect should also appear on the combined stress important locus list.
Nonindependent stress signaling could result from specific signal
detection (an AND gate), as diagrammed in Figure 1B, or from
shared signal input integration (Figure 1C). The genetic architecture
for combination stress-specific signaling (AND gate) (Figure 1B)
would show novel loci for the two-stress experimental treatment,
with the detection limit on the total number of loci determining
how many single stress-specific loci are still visible in the joint stress
treatment. A third alternative is stress input combination signaling
through integrators (OR gates) (Figure 1C), with the integrator func-
tion responsive to signals from either stress. Some integrators for plant
stress signaling have been molecularly identified, such as reactive
oxygen species and hormones (Tognetti et al. 2012). The genetic
architecture prediction for OR gate integrator alleles is that the same
loci will be identified in both stresses and in the combined stress
(fully overlapping sets).

We tested our simplified predictions (Figure 1) for response to
a combination of two abiotic stresses in biparental and multiparental
maize mapping populations for three traits. The presence of an allele
with a large effect in one stress was not a good predictor of the
importance of that allele in a combined stress environment. We pro-
pose a signaling circuitry with repressive attenuating modifier loci that
better explains our experimentally observed genetic architecture.

MATERIALS AND METHODS

Mapping populations
Traditional recombinant inbred line (RIL) QTL mapping experiments
contain alleles from two parents, with intermating in early generations
providing increased resolution in populations such as the maize
intermated B73-Mo17 (IBM) set (Lee et al. 2002) that we used for
mapping. Current large-scale production of RIL resources (www.panzea.
org) provides the opportunity to consider effects of alleles contributed
by multiple parents (Holland 2007). The common parent in the maize
nested association mapping (NAM) recombinant inbred line resource is
B73; this inbred line is the source of the public maize genome sequence
data (Schnable et al. 2009). However, the NAM population was not
intermated, and the nested contributing populations confer trade-offs

in choosing populations subsets for more intensive analyses (Yu et al.
2008). We used the first 50 recombinant inbred lines from five different
parental populations, Z005[non-B73 parent CML277], Z010[Hp301],
Z011[IL14H], Z016[M37W], and Z022[Oh43].

Abiotic stress treatments and trait measurements
The IBM94 maize populations were grown in the Kresge greenhouse
located on the University of North Carolina Wilmington campus.
Each replicate of the experiment consisted of four treatment groups:
control; drought; UV; and UV plus drought. Experiment 1 was
conducted in May, experiment 2 was conducted in June, experiment 3
was conducted in July, and experiment 4 was conducted in August of
2007 (n = 4). By replicating across time we increased the generality of
our results and optimized the power to detect genotype–environment
interactions for the drought and UV radiation factors within each
block. Ninety-two RILs from the IBM94 population were evaluated
in this series of experiments. In addition, check plants were added for
comparison across the 4-month blocks. Plants were grown in 11.-4cm
plastic pots for 10 d before beginning experimental treatment. Plants
were irrigated every other day from sowing through the eighth day

Figure 2 Allele effects of loci important for plant height. Loci with
significant genotype by stress treatment interaction for plant height
difference (after stress treatment value minus before stress treatment
value) are indicated with the chromosome and chromosome bin at left,
and then region within the chromosome indicated to the right of the
bar in centimorgans (cM). The position of the colored box indicates the
responsive allele, with B73 on the top and Mo17 on the bottom for
each QTL, and arrows indicate whether the allele effect increased or
decreased plant growth as compared to the population mean in each
environment. The size of the arrow is proportional to the allele effect
size. Only allele effects significantly different than zero are shown.
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after planting. The full water weight was measured for pots containing
soil and no plants, and plant height was recorded for each plant before
stress. Plants in the drought and UV plus drought combined treat-
ment groups were not watered again until the 3-d treatment was over,
whereas plants in the control and UV treatment groups continued to
be watered each day. Pot weights were recorded again on the first day
after treatment to gauge the drought intensity on the drought treat-
ment groups relative to the control group. Final height measurements
were recorded 7 d after treatment, for a total of 10 d between initial
and final measurements. Dry weights of root tissue were collected after
complete drying of root mass as judged by no further decrease in mass.

For the NAMmapping population, two replicates of each genotype
were included in round 1 and three replicates of each genotype were
included in round 2 in a randomized complete block design for each
round. Seeds were planted in 4-inch plastic pots and grown 10 days in
the Cape Fear Community College horticulture department green-
house in Castle Hayne, North Carolina. At the three-leaf stage, plants
were photographed and measured and stress treatments were begun.
Water was withheld from drought plants for 5 d, whereas the remaining
plants were watered every other day to full water weight. UV radiation
was applied from UV313 bulbs. Pots containing soil but no plants were
used to measure water loss rates and final percent water weight.
Plants were watered again and allowed to recover for 4 d after stress
and then measured. Plant height (to canopy top) was recorded from
plant photographs before and after the stress treatment. After treatment,
above-ground plant tissue and root biomass were dried and weighed.

Data analysis of IBM94 population:Variance components heritability
estimation: Heritability for the IBM94 data set was calculated as
previously described for recombinant inbred lines (Holland and Coles
2011; Holland et al. 2003). The SAS code for this calculation is pro-
vided in Supporting Information, File S1.

QTL analysis: Mixed-model analysis can be scaled to increasingly
complex experimental and field designs (van Eeuwijk et al. 2010). We
chose the mixed-model framework for our data analyses to provide
suitable sensitivity and specificity for our comparison of genetic archi-
tecture across defined, factorial, controlled stress environments. Our ap-
proach is similar to the mixed-model approaches used for density stress
in the IBM population (Gonzalo et al. 2006) and in a barley example
(Malosetti et al. 2004), except that we included a combined stress as
well as single-stress environments. We considered the allele–environment
interaction term as random so that we could estimate the variance
for this term to use in our comparison of allele effect sizes. The
intermated structure of the IBM population, and the fact that nearly
every recombination event that occurred during population devel-
opment is tagged in the dense marker set, provided us with the
ability to cluster correlated markers to increase detection of QTL.
This grouping of correlated markers increased the power to detect
QTL, at the cost of decreasing the resolution by broadening the map
interval. Marker genotypes for linear modeling included the full set
of 4678 markers publicly available for the IBM94 RILs (www.maizegdb.
org). To allow comparison to other work, the marker map locations
from the IBM2 Neighbors 2005 map build (Schaeffer et al. 2006) were
used for all analyses. Markers with low P values were examined for
artificial coinheritance as described previously (Williams et al. 2001).
Mixed models were fit using SAS 9.2 and SAS Proc PSmooth from SAS
Genetics version 2.2 (SAS, Cary, NC). We fit the experimental data
using a randomized complete block structure, which incorporated the
interaction block effect with the marker–treatment interaction into one
error term, because the block effect was not our main focus. The block

effect for these data was examined by Richbourg (2008) and did not
contribute substantially to the variance explained.

Smoothing across markers adjacent to each other on the chromo-
some increases our ability to detect QTL, at the cost of broadening the
QTL interval (Morrison et al. 2010). To perform smoothing, raw
P values for each marker from the mixed model were sorted by chro-
mosome location. As suggested by Sun et al. (2006), we used the rank
method (Zaykin and Zhivotovsky 2005) to transform P values before
smoothing, with multiple test correction using the false discovery rate.
The SAS code for our analyses is provided in File S7. The P values
of type III sum of squares based on F-tests for the marker by envi-
ronment interaction terms were obtained for each marker. Once the
P values obtained from the mixed model were assigned fractional ranks,
they were ordered by the location of the marker along the chromosome
and adjacent marker P values combined using Proc PSmooth. The Proc
Mixed model was then used to reanalyze the markers using the same
model structure, with markers that were clustered into a certain loca-
tion combined as a unified representation. The interaction terms were
compared and contrasted using the Estimate and Contrast statement
in Proc Mixed. In addition, least-square means, SEs, and 95% CIs were
obtained from the mixed model; allelic effect estimates of which allele

Figure 3 Allele effects of loci important for leaf biomass. Loci with
significant genotype by stress treatment interaction for leaf dry weight
are indicated with the chromosome and chromosome bin at left, and
then region within the chromosome indicated to the right of the bar in
centimorgans (cM). The position of the colored box indicates the
responsive allele, with B73 on the top and Mo17 on the bottom for
each QTL, and arrows indicate whether the allele effect increased or
decreased leaf biomass as compared to the population mean in each
environment. The size of the arrow is proportional to the allele effect
size. Only allele effects significantly different from zero are shown.
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state confers an increase or decrease in the measured trait are key for
comparisons across treatments and for choosing desirable alleles for
breeding (Lynch and Walsh 1998), and these effect estimates were an
essential feature of our genetic architecture pattern comparison.

Data analysis of NAM populations
For the NAM data set, model selection for significant marker population
stress treatment was performed using modifications of the joint stepwise
regression SAS code (Buckler et al. 2009) provided by Dr. Peter Bradbury
of the USDA-ARS/Cornell University (http://www.maizegenetics.
net/images/stories/interests/statgen/model_selection_and_scan.txt).

Thresholds for marker inclusion in the model (SLE) are critical in
controlling type I and type II errors. We generated simulated data
with five QTL of effect sizes ranging from 50% to 8% using the marker
set and population structure from our experiment and performed
200 simulations for a range of SLE thresholds. The best balance be-
tween type I and type II error rates was found with SLE of 0.001,
which had a positive predictive value of 0.9 (Table S1) and a sensitivity
of 0.99, corresponding to an FDR of 10%. We thus used SLE of 0.001
for our data analysis. Allele effects were estimated with SAS PROC
MIXED, as for the IBM data analysis. SAS and R code for our
analyses are provided in File S7.

RESULTS

IBM mapping population

Change in plant height: Seven loci on five different chromosomes
were important for explaining environmental interactions for plant
height difference (Figure 2). The estimated allele effects for the B73
and Mo17 alleles in each environment that were not significantly
different from the population mean are excluded from Figure 2 for
ease of viewing; graphs of all the allele effects with their SEs are pro-
vided in File S1. Loci important for variation in plant height in the
control environment are also shown in File S1. These control no-stress
loci do not overlap with the stress-specific QTL shown in the figures.

Two loci important for change in plant height have a UV-
responsive allele that is not important in explaining plant height
difference in the combined UV and drought treatment. This is indicated
in Figure 2 as “synergistic.” The five other UV-responsive QTL, in bins
5.01, 5.03, 7.02, 8.03, and 9.04, have a significant allele effect in the
UV environment and no allele effect in the combined stress, and are
indicated in Figure 2 as “UV effect lost.” It is apparent from Figure 2
that UV-responsive QTL tend to increase plant growth under that
stress and that all the alleles in this group have similar patterns of
stress-specific effects whether the allele at that locus is inherited
from the B73 or the Mo17 parent.

The change in plant height QTL in bin 5.03 (Figure 2) overlaps
with a QTL important for leaf biomass under standard control growth
conditions (File S1). The probability of overlap was calculated as in
Balint-Kurti et al. (2010) and the P value was 0.12, suggesting that this
degree of overlap occurs by chance.

Leaf biomass: Eight loci on six different chromosomes had a signif-
icant locus by stress interaction effect for the leaf dry weight trait
(Figure 3). The allele effect estimates for each environment at each
locus for each allele are provided in File S1. Loci important for var-
iation in leaf biomass in the control environment are also shown in
File S1; three control loci, in bins 1.10, 2.07, and 5.05, overlapped with
stress-specific QTL. The overlapping loci were removed from further
consideration of stress effects and are not shown in Figure 3. The

Figure 4 Allele effects of loci important for root biomass. Loci with
significant genotype by stress treatment interaction for root dry weight
are indicated with the chromosome and chromosome bin at left, and
then region within the chromosome indicated to the right of the bar in
centimorgans (cM). The position of the colored box indicates the
responsive allele, with B73 on the top and Mo17 on the bottom for
each QTL, and arrows indicate whether the allele effect increased or
decreased plant growth as compared to the population mean in each
environment. The size of the arrow is proportional to the allele effect
size. Only allele effects significantly different from zero are shown.

n Table 1 IBM94 variance components for each environment and trait

Environment

Root Biomass Leaf Biomass Change in Height

Variance
(Line)

Variance
(Error) Line %

Variance
(Line)

Variance
(Error) Line %

Variance
(Line)

Variance
(Error) Line %

Control 0.12094 0.75083 13.9 0.0024655 0.0088126 21.8 0.04399 25.457 0.17
Drought 0.17118 0.62438 21.5 0.0009114 0.01123 7.5 0 18.38979
UV 0.03159 0.82779 3.7 0.0022684 0.01487 13.3 0.89026 19.87988 4.3
Combined drought

and UV
0.10671 0.79746 11.8 0.0014126 0.01251 11.3 0.73096 19.80387 3.6
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stress-specific QTL in bin 7.00 (Figure 3) showed additive, opposite
allele effects, with the Mo17 allele conferring decreased leaf biomass in
drought and increased leaf biomass in UV, with no effect under
combined stress, as would be predicted from summing the individual
stress response effects. The QTL in bin 9.06 exhibited a Mo17 allele
UV-responsive allele that was not present in the combined stress
treatment. The remaining seven QTL all showed stress-responsive
allele effects that were not significantly different from zero in the
combined stress environment. Six of these loci had a drought-responsive
allele, with four from the B73 parent (shown in upper half of QTL
regions in Figure 3) and two with the drought-responsive Mo17
allele (shown in the lower half of the QTL regions in Figure 3).
For leaf biomass, the drought-responsive allele tended to decrease
plant growth, in contrast to the UV-responsive alleles for leaf
biomass (in bin 7.00) and in contrast to the UV-responsive alleles
for plant height (Figure 2), which also tended to increase height
under UV.

Root biomass: Twelve loci on eight different chromosomes had
significant locus by stress treatment interactions (Figure 4). Two
QTL for root biomass in bin 9.02 and 10.06 colocalized with QTL
for root biomass in the control condition, so these were not shown
in Figure 4 (see File S1). Bar graphs and SEs for each environment
at each locus are shown in File S1, along with loci important for
variation in plant height in the control environment. The root bio-
mass trait QTL had five different allelic patterns, with the UV effect
lost, drought effect lost, single allele additive, and dose-dependent/
additive patterns as seen for plant height and leaf biomass traits.
One root biomass locus had a complex allele effect pattern—the
QTL in bin 1.07. There was no overall trend for more high or low
B73 or Mo17 allele effects in UV or drought for the root biomass
trait. Root biomass effects were expected to show a different sig-
naling pattern, because UV radiation was not directly perceived by
root tissue. For this trait, additive allele effects loci were more com-
mon (Figure 4). This may reflect the length and complexity of the
signaling pathway between perception in leaves and effects on root
growth.

When the heritability of each trait in each environment was
considered individually, there was no consistent pattern of high or low
heritability associated with a QTL effect pattern (Table 1). Thus, the
pattern of QTL allele effects was not dependent on having relatively
high or low amounts of variation explained by the QTL.

NAM mapping population

Plant height difference: Two QTL were detected in the NAM map-
ping population for the plant height trait (Table 2). Allele effect esti-
mates for these loci in each environment are provided in File S2 and
File S3. For the bin 9.02 Il14H QTL, the sensitive B73 allele conferred
decreased growth under UV, with the UV effect no longer detectable
in the combined stress treatment. The bin 4.09 QTL was only detected
in the combined stress environment and thus was additive or dose-
dependent, with the CML277 allele conferring decreased growth when
two stress treatments were applied.

Root biomass: Two QTL were detected for root biomass (Table 3).
The QTL in bin 4.04/4.05 spanned the centromere, and there was
extensive linkage disequilibrium with markers in this region (File S4
and File S5 show marker details). The allele effects were complex,
which could be attributable either to multiple coinherited loci in this
large region or to one locus with nonadditive allele effects. The bin n
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10.04 QTL was a dose-dependent/combined stress–only locus, with the
M37W allele conferring more root biomass than the B73 allele in the
combined stress environment.

As expected, fewer QTL were detected in the NAM populations.
There was no evidence for an allelic series (in which alleles from
multiple populations have significant effects at a locus and the effects
can be sorted by size). The four QTL detected were not in the same
locations as in the B73/Mo17 IBM population QTL for those traits,
which may be attributable to differences between details of the ex-
perimental setup across 2 yr or, more likely, to population-specific
allele effects, as for complex traits like growth and yield each population
typically has unique genetic effects (Carena et al. 2010). However, the
pattern of environmental stress factor effects was generally similar to
the patterns seen in the IBM population for each trait. For example,
the largest effect size plant height QTL (bin 9.04) in the IBM pop-
ulation exhibited “UV effect lost,” as did the largest-effect NAM
allele.

DISCUSSION
For each significant locus in the IBM mapping population (Figure 2,
Figure 3, and Figure 4), we examined the prediction from a simple
combined signaling theory (Figure 1) and compared the prediction to
our observed genetic architecture (Table 4). There were no cases at
any locus for the three traits where the independent prediction (Figure
1A) matched the combined stress allele effect (Table 4). In particular,
we would expect the largest-effect loci (bin 9.04 in Figure 2, bin 9.06 in
Figure 3, and bin 2.03 in Figure 4; details in File S1) to be detectable
in both the UV and the combined stress cases if the pattern were
independent—but this was not observed. Thus, UV and drought input
signaling shared one or more components. This was consistent with
the nonadditivity of UV and drought seen in other crops (Mittler
2006).

How are UV and drought stress inputs combined? The OR gate
model (Figure 1C) predicted that loci should be significant in all three
treatments, although if allele effects were opposite for UV and
drought, then an XOR gate would be generated and there would be
no significant allele in the combined stress. We observed two XOR
patterns (Table 4), one for the leaf biomass trait (Figure 3, bin 7.00)
and one for the root biomass trait (Figure 4, bin 2.04). We found no
simple OR gate loci; this is consistent with the lack of separate in-
tegrator-type plasticity loci in barley mapping experiments with many
environments (Lacaze et al. 2008). Most of the loci we mapped
showed a pattern of allele importance in one stress and no significant
effect in the combined stress treatment; these are labeled UV effect lost
or drought effect lost in Figure 2, Figure 3, Figure 4, and Table 2. This
genetic architecture shared some similarity with the AND gate signal-
ing circuitry (Figure 1B), in that novel loci were detected in combined
stress. However, the simple AND gate arrangement also predicted that
at least some of the largest-effect alleles should be present and should
have a consistent effect direction in the single and combined stress—
and we saw no loci with this pattern (Table 4). The AND gate ar-
rangement (Figure 1B) did not explain the synergistic allele effects
pattern seen for both plant height and root biomass trait loci. In
addition, it was a priori unlikely that every possible combination of
different abiotic and biotic stress inputs had a separate sensor circuit
reserved only for that combination. Consideration of the “effect lost”
pattern we observed and the need for parsimony in signaling promp-
ted us to modify our original simple signaling model.

Our modified explanation for the prevalence of combined stress–
lost loci in our results incorporated a modifier with a blocking effect
(Figure 5). Any allelic difference in the UV signaling step would be n
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“invisible” under drought alone, and any allelic effect for the drought
signaling step would be undetectable under UV alone. This symbolized
the classic modifier locus (Hamilton and Yu 2012) with the additional
specification of an attenuating, negative effect on signaling. Signals
characterized as blocking, negative, or repressive are often experimen-
tally observed in physiological or regulatory networks. For example,
negative edges are prevalent in immune system networks (Campbell
et al. 2011) and in rice complex trait epistasic networks (Zhang et al.
2011). Theoretical analysis of stable network structures also suggested
that negative regulation should be favored (Mittenthal and Zou 2011).
Recent work regarding metabolic pathways showed that inhibitory
pathway interactions are difficult to detect (Blair et al. 2012); our
approach of manipulating environments provided an alternative de-
tection scheme.

Our analysis of the multiparent NAM population had a more even
balance between "combined effect lost" additive one-locus environment
effect alleles, as compared to AND gate/negative regulator genetic archi-
tectures. If this is seen as a typical pattern in larger better-powered
experiments such as those using connected multiparent or diallel map-
ping populations, then diverse germplasm may be a fruitful source of
less complex environmental network interactions. Balanced multi-
parent populations created from parents with a range of genetic dis-
tances, such as sets of AMPRIL populations (Huang et al. 2011),
would be good candidates for future experimental comparisons of
combined stress genetic architectures. Analysis of QTL and of ge-
netic architecture are conflicting goals (Verhoeven et al. 2006), and
connected multiparent populations can balance these two goals.
Theoretical models of the evolution of genetic architecture indicate
that the divergence between parents influences the number of po-
tential QTL (Rajon and Plotkin 2013); mathematical modeling in-
corporating varying and combined environmental inputs as well as
optimum subpopulation size and type should be a first step in select-
ing the best experimental population type and replication structure
for follow-up large-scale experiments that would allow statistical com-
parisons of the patterns of genetic architecture in stress combinations.

It would also be of interest to apply our combined stress experimental
design to other abiotic and biotic stress types to determine if other stress
combinations are independent or have a modifier-type interaction in
generation of the measured phenotype. A qualitative survey of ge-
netic architecture patterns in different stress combinations would be
a useful complement to large-scale multiparent population statistical
tests for differences in genetic architecture. The pattern of inter-
action among drought, flooding, nitrogen stress, plant density, and
plant disease susceptibility might allow higher-order classification of
stress response networks that would support intensive investigation
of specific examples and then generalization across similar network
types.

Modifiers of allelic effects can be detected through alterations in
the expected ratios of progeny classes (Zhang et al. 2011), although
most quantitative genetics and association experiments have little
power to detect such interactions (Carlborg et al. 2003; Cordell
2009). It is more common to see modifiers as background effects when
defined alleles are "transplanted" into new genomic contexts (Hamilton
and Yu 2012); however, it is labor-intensive to identify the allele con-
ferring the newly visible modifier effect in an inbred or ecotype in most
model systems. We thus have little information about the types of
genes and types of nucleotide changes that act as modifiers. In Saccha-
romyces cerevisiae, systematic analysis of epistasis is possible using de-
letion collections (Xu et al. 2011) and it is possible to perform one-step
replacements of alleles identified from QTL mapping experiments
(Ehrenreich et al. 2012); therefore, examination of combination inputn
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(e.g., combination chemical) treatments in yeast may provide a tractable
test system for the molecular nature of input-blocking signals and
network components and interactions.

The blocking signal network we propose (Figure 5) makes the
effects of multiple stresses most predictable in the specific multiple
stress environment. This restricted predictive range is seen in crop
breeding, in which breeding for desirable traits in high-input environ-
ments does not always translate to improvement in low-input settings
(Weber et al. 2012) despite efforts by breeders to select for environ-
mentally invariant (stable) improved genotypes. Both modeling results
(Malcom 2011) and the focus on additive variation in breeding pro-
grams (Lynch and Walsh 1998) suggest that small networks of genes
are more stable in changing environments. Early screening of diverse
populations for small, limited modifier networks may allow more
efficient breeding for novel environments. We thus suggest that fur-
ther modeling of the effects of choosing starting populations from
low-input, high-stress environments with the goal of locating popu-
lations with small attenuating networks and little variation in modifier
alleles would be productive. We recommend modeling of the types of
environmental input networks that we described in a breeding simu-
lator such as QuGene (Podlich and Cooper 1998).

The differences between predicted and observed QTL, and the
differences between mapping populations, highlight the challenge of
locating suitable test environments. Efforts to exploit QTL by environ-
ment variability focus on grouping environments using additive–main
effect–multiplicative interaction models or genotype–main effect/
environment interaction biplots (Gauch et al. 2008), and focus on
fitting environmental covariates such as temperature to move to-
ward an understanding of the nonlinear/network functions (Messina
et al. 2011). Any two environments that do have the same QTL, or
that have the same underlying parameter QTL for variables such as
temperature, thus exhibit the same stress on the plants grown in the
environments (van Eeuwijk et al. 2010). It may be especially useful
to consider locating field experiments in environments of this type,
in other words, to use these environments to further query the
genetic networks for complex traits. Compilation of QTL experiment
raw data and results from commonly used mapping populations along

with associated environmental covariates and crop model parameters
would be a first step toward choosing informative field sites; un-
fortunately, field GPS coordinates and planting dates are not typi-
cally curated with QTL information but are embedded in individual
investigator’s records and are labor-intensive to access. Leveraging of
existing mapping and climate information would allow identification
of potential independent E signaling inputs more efficiently than
testing all possible combinations of managed stresses.
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