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Abstract

Repeat proteins are abundant in eukaryotic proteomes. They are involved in many eukary-

otic specific functions, including signalling. For many of these proteins, the structure is not

known, as they are difficult to crystallise. Today, using direct coupling analysis and deep

learning it is often possible to predict a protein’s structure. However, the unique sequence

features present in repeat proteins have been a challenge to use direct coupling analysis for

predicting contacts. Here, we show that deep learning-based methods (trRosetta, DeepMe-

taPsicov (DMP) and PconsC4) overcomes this problem and can predict intra- and inter-unit

contacts in repeat proteins. In a benchmark dataset of 815 repeat proteins, about 90% can

be correctly modelled. Further, among 48 PFAM families lacking a protein structure, we pro-

duce models of forty-one families with estimated high accuracy.

Author summary

Repeat proteins are widespread among organisms and particularly abundant in eukaryotic

proteomes. Their primary sequence presents repetition in the amino acid sequences that

origin structures with repeated folds/domains. Although the repeated units often can be

recognised from the sequence alone, often structural information is missing. Here, we

used contact prediction for predicting the structure of repeats protein directly from their

primary sequences. We benchmark the methods on a dataset comprehensive of all the

known repeated structures. We evaluate the contact predictions and the obtained models

for different classes of repeat proteins. Further, we develop and benchmark a quality

assessment (QA) method specific for repeat proteins. Finally, we used the prediction pipe-

line for all PFAM repeat families without resolved structures and found that forty-one of

them could be modelled with high accuracy.

Introduction

Repeat proteins contain periodic units in the primary sequence that are likely the result of

duplication events at the genetic level [1]. Repeat proteins emerge through replication slippage
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[2] and double-strand break repair [3]. This protein class is present in all genomes but is more

frequent in eukaryotic organisms [4–6] where they are involved in a wide range of functions

[7]. In particular, due to their extended structures, repeat proteins often behave as molecular

scaffolds in protein signalling or for protein complexes as WD40 domain [8], or ankyrin

repeats [9,10]. Repeat proteins are usually conserved among orthologs [4,11] while exhibiting

a more accelerated evolution and divergence among paralogs [11].

A classification of repeat proteins was proposed by Kajava [12,13] based on the length of

the repeat units and the tertiary structure of the repeat units. According to Kajava’s classifica-

tion, there are five classes of repeat proteins. However, in this study, we ignore class I and II

because there are no available structures for class I, and class II structures are folded in a

coiled-coil structure possible to predict using other methods. Moreover, the extreme amino

acid compositional bias of many of these proteins makes it difficult to identify the coevolving

residues in these two classes.

The dataset used in our study contains three classes of proteins divided into 20 subclasses

by their secondary structure, according to RepeatsDB [14], Fig 1. The three types are; class III

extended repeats (e.g. α and β solenoids); class IV closed repeats structures (e.g. TIM and β
barrels and β-propeller), and class V where the units appear as separate domains on a string.

Further, class V the repeat units are longer than in the other classes.

The solenoid structures (subclasses III.1, III.2 III.3) dominate Class III [13], and these pro-

teins contain a wide range of repeated units (from 4 to 38), Fig 1. The length of the individual

unit is also quite variable (from 10 to 50 residues) [14], with β-solenoids having significantly

shorter repeats compared with α and α/β solenoid [13].

Members of class IV are constrained in variability by the closed fold. Indeed, despite ten

subclasses of different units, the number of units varies between 3 and 16, and proteins with

more than ten repeat units are rare. Even in this class, the length of the repeats units varies

between 10 to 50 residues [13]. Finally, class V proteins are made up of the extended repeat

units, often longer than 40 residues [14]. Each unit folds into proper domains, and they only

have few inter-unit contacts.

Many repeat protein families lack a resolved structure. For these protein families, residue-

residue contact prediction is the best method to obtain structural information [15]. Contact

prediction methods use residue-residue co-evolution from multiple sequence alignment and

identify the residues’ evolutionary constraints imposed by the tertiary protein structure [16].

Nevertheless, repeat proteins are a difficult target for contact prediction; the internal symmetry

introduces artefacts in the contact map at a distance corresponding to the repeated units [17].

Here, we benchmark the deep-learning-based contacts prediction programs PconsC4 [18]

trRosetta [19], DeepMetaPsicov [20] against the GaussDCA [21] on a comprehensive dataset

generated from RepeatsDB [14]. The predicted contacts were then used as constraints to gen-

erate protein models. The model quality was evaluated, combining the quality assessment

scores from Pcons [22] and QmeanDisCo [23] through a random forest regression. Based on

the benchmark, we propose models for the protein structures of PFAM protein families miss-

ing resolved structures.

Results and discussion

General contact prediction analysis in repeat proteins

To assess the quality of the contacts predictions among repeat protein classes, we generate a

dataset of proteins using the reviewed entries of RepeatsDB [14] and then clustered at 40%

sequence identity. For each repeats region in the dataset, we also extracted a representative

PLOS COMPUTATIONAL BIOLOGY Modelling of repeat proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008798 April 15, 2021 2 / 20

Funding: This project has received funding from

the European Union’s Horizon 2020 research and

innovation programme under the Marie

Skłodowska-Curie grant agreement No 823886. AE

is funded by grants from the Swedish Natural

Science Research Council (Vetenskapsrådet) No

VR-NT 2016-03798. SNIC provided computational

resources under grant agreement No SNIC 2020/5-

300. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist

https://doi.org/10.1371/journal.pcbi.1008798


Fig 1. Repeats proteins classification. Representation of the repeats classes and subclasses as classified in repeatsDB

2.0 [14].

https://doi.org/10.1371/journal.pcbi.1008798.g001
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repeat unit and a pair of repeats, obtaining in this way three datasets: i) a single unit datasets;

ii) a double unit datasets; iii) complete repeat region datasets.

For all the three sets, multiple sequence alignments (MSA) and secondary structure predic-

tions were generated. Subsequently using the MSA as input for trRosetta, PconsC4, DeepMe-

taPsicov, and GaussDCA contacts were predicted for each family. The performance of the

contact predictions was then evaluated for each subclass separately. As expected, the most

recent method, trRosetta outperforms an older deep learning method as PconsC4 and a simple

DCA method as GaussDCA, but even ifcompared with the more recent, DeepMetaPsicov

trRosetta shows a consistent improvement among all but two classes, Fig 2. In general for

all the methods the predictions for the full-length regions give better results than when split-

ting the proteins into smaller units, Figs 3 and S1. In class V however, which is composed

of entire domains, forming repeats of the “beads on a string” type, the splitting in units some-

times helps to reach better contact predictions for PconsC4, DeepMetaPsicov, and GaussDCA

S1 Fig.

Here, it should be remembered that trRosetta, PconsC4 and DeepMetaPsicov, in addition

to other information, use DCA predictions as an input and then learn to recognise specific pat-

terns [18]. Therefore, artefacts present in the DCA predictions might propagate into these

methods. In Fig 4, selected contact maps are shown as examples. The GaussDCA predictions

contain periodic artefacts of wrong predictions (red dots) forming diagonal lines, occurring

between equivalent positions in the repeat unit. PconsC4, DeepMetaPsicov, trRosetta appear

efficient in removing the artefacts seen in GaussDCA. Here, it can be noted that there is only

limited overlap between our repeat protein set and the training set of PconsC4 and DeepMe-

taPsicov, 25 out of 2856 and 29 out of 3456 proteins are identical respectively. Further, the

accuracy for the shared proteins does not show a higher precision than the other proteins,

Fig 2. The precision of contact predictions. Positive Predictive Value (PPV) for the GaussDCA (red), Pconsc4 (Blue), DeepMetaPsicov (green), and trRosetta

(orange).

https://doi.org/10.1371/journal.pcbi.1008798.g002
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S2 Fig. trRosetta instead has a much bigger training set of 15,051 proteins [19]. To our best

knowledge, the IDs of the proteins are not available and in this case, we can not test the perfor-

mance for the shared proteins. However, the high general consistency shown by trRosetta in

our benchmark makes us confident that the results can be generalised, and that it is not

strongly affected by a potential overlap with the training set.

It is well known that the prediction quality is directly correlated with the number of

sequences in the starting MSA for DCA methods [18]. Here, this trend is also observed, with

trRosetta always showing the best performance Fig 5.

Differences among repeat classes in contacts prediction

Fig 2 shows variations in the fraction of correctly predicted contacts among different protein

repeat classes and subclasses in all the methods. To clarify the origin of these differences, we

investigated, more in-depth, the source of the predicted contacts. One central aspect that

affects the difficulty of prediction is the pattern of the contacts [24]. In general, contacts that

are parts of larger interaction areas or close in the sequence are predicted more accurately.

Therefore, we compared the intra-unit and inter-unit contacts predicted by DeepMetaPsicov

and trRosetta, Fig 6. Here, we obtained the number of predicted intra and inter-unit contacts

from the PDB structures and selected the same number of predicted intra- and inter-units con-

tacts. The PPV was finally calculated using the number of correctly predicted contacts divided

by the number of contacts.

On average the intra-units contacts are predicted with higher accuracy than the inter-unit

contacts in both DeepMetaPsicov and trRosetta, with trRosetta slightly over perform DeepMe-

taPsicov in both.

Fig 3. The precision of contact predictions of trRosetta for the three datasets. Results are shown for the three datasets, in blue the single unit dataset, in red the

double units dataset, and in green complete region dataset.

https://doi.org/10.1371/journal.pcbi.1008798.g003
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Protein model generation

For PconsC4 and DeepMetaPsicov, protein models were generated using CONFOLD [25]

using the contact predictions from the respective method and combining it with secondary

Fig 4. GaussDCA, PconsC4, DeepMetaPsicov, and trRosetta contact maps. Contact map for predictions obtained with GaussDCA, PconsC4,

DeepMetaPsicov and trRosetta. In grey, the real contacts from the structure, in green, the corrected predicted contacts, and the falsely predicted contacts

in red.

https://doi.org/10.1371/journal.pcbi.1008798.g004
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structure predictions from PSIPRED. For trRosetta instead, pyRosetta [26] was used for the

protein model folding with the predicted distances and angles as input as described in Yang

et al. [19]. Here, no secondary structure predictions were used.

In Fig 7, we compare the TM-score between the models of the corresponding PDB protein

structure. Here, the trRosetta pipeline outperforms the other two methods in all classes but has

to be noted that the use of distances and angles instead of contacts is the main responsible for

the difference in performance with DeepMetaPsicov that when compared on the contacts pre-

diction precision show slightly inferior performance. In total with trRosetta 732 models out of

815 (89.8%) are predicted with at least a TM-score of 0.5.

Quality assessment of the models

To evaluate the quality of the models obtained by trRosetta, we compare the TM-scores of the

models with the quality assessment scores from Pcons [22] and QmeanDisCo [23]. Due to the

general high quality of the models both the quality assessment methods fail to rank a signifi-

cant number of models properly, Fig 8A and 8B.

To improve the quality estimation, we developed a Random Forest Regression method

using multiple inputs (Pcons, QmeanDisCo, protein length). Five-fold cross-validation was

performed on the complete region dataset. The method obtained an average accuracy of

83.6%, and an average absolute error of 0.09 TM-score, see Fig 9A. The Random Forest

Regression predicts the TM-score better than Pcons and QmeanDisCo alone, Fig 9B. We

found that nine features were helpful for the prediction of the TM-score, S3 Fig. The most

important features are the Pcons score, the local QmeanDisCo score, and protein length.

Modelling of repeat protein families without known structures

We selected 48 PFAM repeat-families without resolved structure and fed them through the

trRosetta structure prediction pipeline.

Among the models, 41 out of 48 (85%) are predicted with a TM-score higher than 0.5,

Table 1. For twelve of these families, we could identify a template with a GMQE score [27]

higher than 0.4 using Swissmodel [28]. In these cases, homology models were generated for

comparison with the contact based models. We compared the similarity of the contact-based

Fig 5. The relation between Precision and the effective number of sequences in the MSA. Positively Predicted

Value for trRosetta in orange, GaussDCA in red, PconsC4 in Blue and DeepMetaPsicov in green on the Neff value (the

effective number of sequences length weighted with the length of the protein). The single dots correspond to each

protein in the datasets, and the line is the running average on (n = 50).

https://doi.org/10.1371/journal.pcbi.1008798.g005
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Fig 6. Predicted contacts analysis. a) Examples of inter- and intra- unit contacts. b) In red, the PPV for intra-units

contacts in blue PPV for inter-units contacts predicted by DeepMetaPsicov. The lines are the respective running

average of the PPV over the ratio of inter-unit contacts on the total of the protein contacts. c) In red, the PPV for intra-

units contacts in blue PPV for inter-units contacts predicted by trRosetta. The lines are the respective running average

of the PPV over the ratio of inter-unit contacts on the total of the protein contacts.

https://doi.org/10.1371/journal.pcbi.1008798.g006
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and homology-based models with the predicted TM-score for the contact-based model. For

four families (LVIVD, LRR_3, WD40_alt, LGFP) the models obtained by homology agree with

the predicted TM-score, the difference between the TM-scores is below 0.1, i.e. the estimated

TM-score agrees with what would be estimated if the homology model was identical to an

experimental structure. However, for the other six families, there is an overestimation of the

quality (RHS_repeat, DCAF15_WD40, DUF4116, Phage_fiber_2, RTTN_N, MORN 2) and for

other two an underestimation (DUF5122, FG-GAP_2), see Table 1.

Fig 7. Protein model quality. TM-score for the subfamilies; Models from trRosetta in orange, PconsC4 in blue and DeepMetaPsicov in green.

https://doi.org/10.1371/journal.pcbi.1008798.g007

Fig 8. TM-score versus QA methods. a) TM-score versus Pcons-score for complete region models generated with trRosetta. b) TM-score versus QmeanDisCo score

for full region models created from trRosetta contacts.

https://doi.org/10.1371/journal.pcbi.1008798.g008
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Fig 10 shows the overlap between the contact and the homology models. Two trRosetta

models differ significantly from the homology models: Phage_fiber_2 (PF03406) where the

template as a partially disordered extended structure while the trRosetta model is packed and

DUF4116 (PF13475) in which the trRosetta model is folded as an α-solenoid while the homol-

ogy model in a longer helical bundle.

Fig 9. a) Real TM-score versus Random Forest Predicted TM-score for complete region models generated with trRosetta. b) Pearson correlation coefficient between

the TM-score and the QA methods.

https://doi.org/10.1371/journal.pcbi.1008798.g009
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Table 1. The models of the PFAM families with predicted TM-score. In the columns: the family name, the PFAM ID, the Uniprot ID of the sequence used for the

modelling, the predicted TM-score, the best template PDB ID, the Swismodel GMQE score, the identity between the target/template alignment, the TM-score between the

contact-based model and the homology model.

PFAM family PFAM ID Representative protein
Uniprot ID

TM
prediction

Template PDB
ID

GMQE Identity TM-score between The contact model and
Homology model

Nebulin PF00880 A0A094KVK3 0.483185 6b40_A 0.12 18.60% -

SWM_repeat PF13753 A0A0B0HSH2 0.45394 2ra1_A 0.21 20.72% -

Plasmod_MYXSPDY PF07981 A0A0L7M9B8 0.592519 - - - -

C_tripleX PF02363 A0A1A9WU23 0.440582 4xbm_A 0.28 29.08% -

RHS_repeat PF05593 A0A1G0MXS8 0.789065 6fay_A 0.7 28.10% 0.51
Plasmodium repeat

MYXSPDY
PF00839 A0A1I7SWM5 0.585336 0.02 9.09% -

LVIVD PF08309 A0A1V1NWB1 0.793165 4jsn_B 0.5 12.50% 0.78

DUF5122 PF17164 A0A1Z4C3E9 0.685674 2ymu_A 0.46 19.50% 0.82

Bacterial tandem repeat

domain

PF17660 A0A252E8A5 0.74885 4qp0_A 0.17 13.70% -

SprB PF13573 A0A257INW4 0.602068 2c26_A 0.31 16.36%

Lustrin_cystein PF14625 A0A2A2LSA2 0.521748 6nan_A 0.13 20.63% -

SPW PF03779 A0A2A3HD64 0.687938 - - - -

Chlorovi_GP_rpt PF06598 A7RAI0 0.627261 - - - -

CRAM_rpt PF07016 A7S4G3 0.667426 4aea9_A 0.39 17.65% -

Dicty_CTDC PF00526 D3BR65 0.566775 4u8u_N 0.17 19.23% -

RtxA PF07634 D3UXB8 0.744867 5vgz_A 0.03 20.51% -

YTV PF07639 D5SU36 0.591834 -

LRR_3 PF07725 D7MCA5 0.697779 2omx_A 0.59 18.97% 0.71

Ice_nucleation PF00818 F3GDU0 0.714233 - - - -

LSPR PF06049 G1RYA9 0.571161 - - - -

UCH-protein repeats PF13446 G1XIQ8 0.611722 2h5x_C 0.08 22.45% -

WD40_alt PF00400 G3VIY2 0.718139 5obm_A 0.59 22,78% 0.71

Lipoprotein_15 PF03640 I3BT02 0.449038 4yx7_A 0.02 16%

SSURE PF11966 J1S4N0 0.509385 - - - -

LGFP PF08310 L8TNF3 0.779499 6sx4_A 0.76 32.21% 0.85

zf-C2H2_3rep PF18868 O64827 0.588789 1z9v_A 0.04 12.12%

DCAF15_WD40 PF14939 Q29AL9 0.677563 6pai_B 0.67 29.69% 0.56

SVS_QK PF10578 Q6P6X2 0.605577 - - - -

DUF2963 PF11178 Q6YQH3 0.804535 5e9t_D 0.32 24.24%

Plasmo_rep PF12135 Q7RTC2 0.637834 4nee_C 0.07 23.08%

Curlin PF07012 Q8EIH3 0.669206 - - - -

MORN 2 PF07661 Q8RH85 0.71293 1h3i_A 0.68 27.87% 0.52

OGFr_III PF04680 Q9NZT2 0.679499 5xme_A 0.21 16.09%

HNH_repeat PF18780 R2SEH8 0.648563 2xsj_C 0.24 14.67%

ChW PF07538 R5P8A5 0.674395 - - - -

WG_beta_rep PF14903 R6YH89 0.681589 2ki4_A 0.06 7.41%

DUF4116 PF13475 R7MCC4 0.688163 5lu2_A 0.41 7.81% 0.33

PHINT_rpt PF14882 S6TLB9 0.460735 5lnk_Q 0.03 13.51%

Chlam_PMP PF02415 S7J9T7 0.674383 2m7o_A 0.13 25%

Xin PF08043 T0NQR8 0.680028 1ixv_A 0.1 8.33%

WXXGXW PF12779 U2FCE1 0.731013 - - - -

SBBP PF06739 U5QIU9 0.724106 6i3b_A 0.38 24.45%
Ish1 PF10281 U7Q0S5 0.433415 1jjr_A 0.1 15.73%

(Continued)
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Other 36 families do not have suitable templates, and, therefore, we cannot compare their

trRosetta models with a homology-based model. However, the quality assessment shows high

scores for the vast majority of the models.

Here we describe a few interesting models in more details, and all the models are available

at https://figshare.com/articles/dataset/Repeats_Proteins_contact_prediction_based_

modelling_datasets/9995618. We do encourage others to investigate the other models in

details.

SPW family (PF03779)

According to the PFAM database [29], the SPW family is present in Bacteria and Archaea, and

each protein consists of one or two repeat units. Some members also contain an additional

domain, either a Vitamin K epoxide reductase (PF07884) or a NAD-dependent epimerase/

dehydratase (PF01370). Each repeat unit is formed by two transmembrane alpha-helices and is

characterised by an SPW motif [30]. According to our model, the repeated motif is buried in

the membrane symmetrically located close to the extracellular side, Fig 11B. PFAM architec-

tures show many proteins with only a single SPW motif however a more careful analysis of

these sequences shows that in many cases they contain a second degenerate SPW unit with the

proline residue conserved (S4 Fig).

The Tryptophan is on the outer side of the protein, facing the bilayer, while the proline is

on the inner side of the protein, promoting the formation of a kink in the transmembrane

helix [31]. The protein contains a ser-pro motif, rare among TM-proteins and most likely

increases the bending effect of proline significantly due to their hydrogen bond pattern [32].

Curlin repeats family (PF07012)

Here, the trRosetta model has a higher predicted TM score (Table 1) and agrees better with

information from the available literature [37]. Curlin is predicted to have a β-solenoid struc-

ture, see Fig 11C. DeBenedictis et al. presented ab-initio models for two members of the Curlin

repeat family, CsgA and CsgB [37]. The structure of their best models is visually in agreement

with our model (a direct comparison is difficult as the coordinates are not available for their

models). Our model is also in agreement with the partial structure of the repeat units of CsgA

published by Perov et al. [38]. This model contains two parallel β-sheets with individual units

situated perpendicular to the fibril axis (corresponding PDB IDs are 6G8C, 6G8D, 6G8E).

UCH-protein (PF13446)

Our model (Fig 11D) suggests that this repeat region is a Class V.1 α-beads, with four helical

domains separated by a flexible linker.

UCH-protein repeats family is a repeat domain found in Ubiquitin carboxyl-terminal

hydrolase. Despite UCH-proteins being widespread among eukaryotes, the repeated domain is

Table 1. (Continued)

PFAM family PFAM ID Representative protein
Uniprot ID

TM
prediction

Template PDB
ID

GMQE Identity TM-score between The contact model and
Homology model

Phage_fiber_2 PF03406 V5CQL0 0.540125 5iv5_A 0.58 22.43% 0.21

FG-GAP_2 PF14312 W4LGN0 0.640251 5ffg_A 0.56 23.04% 0.82

CXCXC PF03128 W5N853 0.865153 1vgh_A 0.36 26.47%

RTTN_N PF14726 W5P499 0.6874 4plr_A 0.58 16.28% 0.58

WDCP PF15390 W5Q8K9 0.427924 5nnz_A 0.09 12.58%

https://doi.org/10.1371/journal.pcbi.1008798.t001
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present only in yeasts in a variable number of units. According to PFAM [29], the UCH-pro-

tein repeats could be involved in the formation of a complex of UCH with Rsp5 and Rup1.

Xin repeat (PF08043)

Xin repeats is a motif with a variable number of units, known for binding and stabilising F-

actin [33]. In mouse and chicken is located in the adherens junction complex [33]. In humans

Xin-repeat proteins are involved in the developmental and adaptive remodelling of the actin

cytoskeleton [34] behaving as a scaffold protein showing multiple interacting partners: I) inter-

act with the EVH1 domain of Mena/VASP/EVL [34]. II) Interact with the SH3 domain of

Nebuline and Nebulette, despite the binding site is located in a disordered region [35] III)

interact with Aciculin [36].

In our model Fig 11E, Xin-repeats result folded as an α-solenoid. This clarifies the fold of

Xin-repeats proteins formed by an α-solenoid N-terminus and a long disordered C-terminal

region.

Conclusion

Here, we performed a comprehensive coevolution analysis on repeat protein families, and we

show that trRosetta contact-predictions method overcomes the traditional difficulties of pre-

views Deep Learning and DCA methods for this class of proteins. We investigated the model-

ling of repeat units, and we developed a novel quality assessment method for repats proteins.

Finally, we tested the pipeline on PFAM families without protein structures showing its useful-

ness in providing new structural information.

This paper summarises the extraordinary improvement of the structure prediction method

in the past few years and shows that it is now possible to predict the structure of 85% of PFAM

repeat families satisfactorily.

Materials and methods

Datasets generation

The repeat protein dataset was generated starting from the 3585 reviewed entries in RepeatsDB

[14,39]. The proteins of class I and II were removed, and then the dataset was homology reduced

using CD-HIT [40] at 40% identity resulting in 815 repeat regions. From this “complete region

dataset” two other datasets were generated. First, a “single unit” dataset with one repeat unit

from each family, and secondly a “double unit” dataset with two. In the two derived datasets, the

representative units were selected, avoiding or at least minimising, the presence of insertions.

The non-resolved repeats protein family dataset was generated, collecting all the repeat pro-

teins families with missing structural information present in PFAM [29] as of May 2019 and

removing domains with a significant overlap with the disorder prediction. It results in 48 protein

families. The representative sequence for each family of repeat was chosen for matching these cri-

teria: 1) select the most common architecture; 2) Include when possible at least three repeat units.

Multiple sequence alignment (MSA)

The multiple sequence alignments (MSA) were carried out using HHblits [41] using an E-

value cutoff of 0.001 against the Uniclust30_2017_04 database [42]. The number of effective

Fig 10. Comparison between the contact-based model and homology modelling. The superposition between the contact-

based model (red) and the homology model (blue) and respective TM-score.

https://doi.org/10.1371/journal.pcbi.1008798.g010
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Fig 11. Selected models. The different protein units are coloured in red and blue. a) SPW, b) SPW in red the “SPW”

motif c) Curlin d) UCH-protein are shown and e) Xin repeat.

https://doi.org/10.1371/journal.pcbi.1008798.g011
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sequences of the alignment, expressed as Neff-score, was calculated by HHblits and used for

subsequent analysis. More detail about the Neff calculation can be found at https://github.

com/soedinglab/hh-suite/wiki [41].

Contact prediction and models generation

For DeepMetaPsicov and PconsC4 the protein models were generated following the Pcons-

Fold2 protocol [43]. The secondary structure of the repeat regions was predicted by PSIpred

[44]. Protein contacts were predicted using DeepMetaPsicov [45], or PconsC4 [18] and

together with the secondary structure predictions used as input to Confold [25]. The modelling

used the top scoring 1.5 L contacts (where L is the length of the modelled regions).

The Rosetta models were obtained running trRosetta locally [19] and use the predicted dis-

tances and angles as input for pyRosetta [26].

Contacts analysis

A protein contact was defined as two residues having a beta carbon distance equal to or lower

than 8Å in the PDB structure and farther than five residues in the sequence. Using this defini-

tion, we assess the number of correctly predicted contacts the Positively Predicted Value

(PPV) taking into account the top-scoring 1.5 L contacts.

Since trRosetta predicted distances instead of contacts between the residues we sum the

probabilities for the distance bin equal or shorter than 8 Å as in Greener et al. [20] in order to

compare them with the contacts predicted with the other methods.

In the intra/inter-unit contacts analysis, the predicted contacts of each protein were divided

into i) intra-unit contacts, if between residues inside the same unit; ii) inter-units if the resi-

dues are in different repeat units. The units mapping was taken from the RepeatsDB database

[14]. In this analysis, we calculate the number of intra- and inter-unit contacts in the PDB

structure, and then we selected the same number of predicted intra- and inter-units contacts.

The PPV was then calculated as the fraction of correct predictions.

Template search and homology modelling

The template search and the homology models were generated from the representative

sequences using the default options from Swissmodel [28].

Protein models analysis

The model quality, expressed in TM-score, was assessed using a random forest regression

model using the python module Sklearn. The random forest regression was optimized to

include 240 estimators and a maximum depth of 60. The models from the trRosetta “complete

region” benchmark set were used as a training set. The label of the training set was the TM-

score of each model [46]. To ensure that the protein structure and the model were aligned cor-

rectly, the TMalign option -I was used, providing a local alignment of the two sequences.

For training, five cross-validation sets were generated. Several inputs were used for the ran-

dom forest, described briefly below and in Table 1. The Confold and QmeanDisco inputs were

obtained from analysing the first ranked model. Pcons was run using the option -d using all

the models in the stage2 folder generated by Confold. Among the different sets of features

tried, we select nine features that all improve the prediction of the random forest regression,

see S3 Fig.
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Supporting information

S1 Fig. The precision of contact predictions. Positive Predictive Value (PPV) for the

GaussDCA (red), Pconsc4 (Blue), and DeepMetaPsicov (green). For all three methods results

are shown for the three datasets, in light colour the single unit dataset, in intermediate colour

the double units dataset, and in the darker colour the complete region dataset.

(TIF)

S2 Fig. Performance expressed in PPV for the set of proteins contained in the training set

of the contact predictions methods. In light green, the Deep Meta Psicov (DMP) average pre-

cision for the proteins of the benchmark set not overlapping with the DMP training set, in

dark green the DMP average precision for the proteins benchmark set present in the DMP

training set, in light blue the PconsC4 average precision for the proteins of the benchmark set

not overlapping with the PconsC4 training set, in dark blue the PconsC4 average precision for

the proteins benchmark set present as well in the PconsC4 training set.

(TIF)

S3 Fig. Random Forest model features importance. The features used in the random forest

model are listed according to their relative importance.

(TIF)

S4 Fig. Amino Acid frequency of the single domain architecture sequences. From the logo

is possible to recognize two SPW domains, one of them degenerated (in particular the first Ser-

ine in the second motif) that is not recognized by PFAM.

(TIFF)
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