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Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary

information to conventional magnetic resonance imaging. Acquiring high resolution MRSI

is time consuming and requires complex reconstruction techniques.

Methods: In this paper, a patch-based super-resolution method is presented to increase

the spatial resolution of metabolite maps computed from MRSI. The proposed method

uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion

recovery) to regularize the super-resolution process. The accuracy of the method is

validated against conventional interpolation techniques using a phantom, as well as

simulated and in vivo acquired human brain images of multiple sclerosis subjects.

Results: The method preserves tissue contrast and structural information, and matches

well with the trend of acquired high resolution MRSI.

Conclusions: These results suggest that the method has potential for clinically relevant

neuroimaging applications.

Keywords: super-resolution, up-sampling, magnetic resonance spectroscopy imaging, patch-based, multiple

sclerosis

1. INTRODUCTION

Magnetic resonance spectroscopy imaging (MRSI) of the brain provides information on the
chemical composition of tissues and may reveal underlying metabolic changes that are not visible
on conventional magnetic resonance imaging (MRI) such as T1-weighted MRI. For example in
multiple sclerosis (MS), MRSI can show the extent of damage in normal appearing white matter
and therefore is more sensitive in detecting pathological changes compared to conventional MRI
(Filippi and Agosta, 2010; Rovira et al., 2013). Additionally, metabolite concentrations in normal
appearing brain tissue are better correlated with clinical scores than MRI lesion load (Sajja et al.,
2009).

Despite the fact that MRSI provides attractive complementary information with respect to
conventional MRI, it is still not widely used in practice. Possible reasons include (a) low signal
to noise ratio, (b) poor spatial resolution, (c) prolonged acquisition time, (d) lack of standardized
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protocols, (e) and limited quality control. Since the metabolite
concentrations are very low, a large voxel size is required in order
to capture sufficient signal, resulting in a poor spatial resolution
(typically around 1 cm3). Additionally, this results in a broad
point spread function which further causes spectral signal leakage
in the neighboring voxels. This limits the ability to differentiate
among spatial features of interest, e.g.,between different tissue
types. High spatial resolution MRSI cannot be acquired in the
clinical routine with standard acquisition sequences as it requires
a long scanning time, e.g.,in the range of tens of minutes.

Therefore, there is a need to design alternative, non-
conventional approaches to create high resolution MRSI-
based metabolic images within a limited acquisition time. The
acquisition time can be reduced by optimising the conventional
phase encoded MRSI protocol (Posse et al., 1995; Pohmann et al.,
1997; Adalsteinsson et al., 1998) or by using parallel imaging
reconstruction based techniques (Dydak et al., 2001; Lin et al.,
2007; Otazo et al., 2007; Banerjee et al., 2009) or combination
of both Dreher et al. (2011), and Posse et al. (2013) for a
detailed review. Conventional MRSI protocols contain a series of
periodic spatial and spectral encoding schemes. These could be
optimized by reading out the spatial information during spectral
acquisition. This optimized technique forms the basis of the echo
planar spectroscopic imaging (EPSI) (Posse et al., 1995) which
provides an improved spectral and spatial resolution compared
to conventional MRSI protocols for fields up to 3T. Derived
from the EPSI technique, spiral MRSI (Adalsteinsson et al., 1998;
Andronesi et al., 2012; Bogner et al., 2014) uses a spiral trajectory
in k-space, which allows faster acquisition than EPSI however
at the cost of increased complexity in the data reconstruction.
Parallel imaging reconstruction techniques are based on the
principle of acquiring multiple undersampled k-space data using
phased array coils. This undersampled data is then reconstructed
into a single image using techniques like SENSE (Pruessmann
et al., 1999) or GRAPPA (Griswold et al., 2002). Since optimized
MRSI protocols like EPSI and parallel imaging are independent
in nature, they can be combined to further reduce the acquisition
time (Dreher et al., 2011). This reduction in the acquisition time
generally comes at the cost of decreased signal to noise ratio
(SNR) in the data. In spite of advances in speeding up the MRSI
acquisition these techniques are yet not clinically feasible as the
time required to attain the spatial resolution of conventional MRI
sequences such as T1-weighted imaging still remains very high,
although approaches that combine phase-encoding and EPSI (Ma
et al., 2017) appear quite promising.

An ultra-high magnetic field strength such as 7T (used
for non-routine research) offers more SNR, but the inherent
limitations (e.g., related to specific absorption (SAR) or
B0/B1 homogeneity) have complicated high-resolution MRSI
acquisition until the recent years. Free induction decay (FID)
MRSI (Bogner et al., 2012; Považan et al., 2015; Strasser et al.,
2013) with short acquisition delays was proposed to avoid SAR-
intensive localization schemes and SNR-loss due to T2∗ decay.
The application of parallel imaging like SENSE (Zhu et al.,
2013; Kirchner et al., 2015), GRAPPA (Hangel et al., 2015), or
CAIPIRINHA (Strasser et al., 2016) allowed acceleration factors
up to 9. Combining parallel imaging with a short TR of 200ms,

the acquisition of high-resolution MRSI within a 128× 128mm2

field of view with a voxel volume of 23 µL and full slice coverage
in around 10 min was successfully demonstrated in Hangel et al.
(2016).

An alternative is to increase the MRSI resolution by super-
resolution (SR) techniques. Super resolution methods include
k-space based reconstruction methods that improve the spectral
quality of reconstructed high resolution MRSI data using high
resolution spatial features, such as edges, from other imaging
modalities, in particular T1-weighted MRI (for a detailed review
see Kasten et al., 2016). Super-resolution methods can be
categorized into two sub-groups: methods based on a linear
regression framework, or on a Bayesian framework. Linear
regression based SR methods (LRSR) assume that the acquired
data can be explained by a linear combination of a set
of independent variables. Therefore, they aim at optimising
the coefficients of these independent variables such that the
error between the predicted and the actual measurements
is minimized. One such method is spectral localization by
imaging (SLIM) (Hu et al., 1988) which assumes that the
high resolution MRSI consists of a linear combination of L
anatomical compartments that are spectrally homogeneous.
Although easy to implement, the assumption of spectral
homogeneity may not hold true. To cope with this, two
extensions have been proposed: generalized SLIM (GSLIM)
(Liang and Lauterbur, 1991) and SLIM with explicit B0
field inhomogeneity compensation (BSLIM) (Khalidov et al.,
2007). GSLIM uses spatial Fourier harmonics to absorb any
spatially dependent spectral variations and BSLIM assumes
that the spectral variations are solely due to local (static)
field inhomogeneity, therefore, requires an additional B0 map
for its correction. It has been observed that simple LRSR
methods not always result in physically plausible solutions,
therefore, an additional term commonly known as “regularizer”
is added to the optimization problem so that the reconstruction
remains well-behaved. For example, in Jacob et al. (2007),
a local B-spline basis function is added as a regularizer to
the GSLIM model to allow local intensity variations within
each compartment. In Haldar et al. (2008), a smoothness
regularization term (controlled by pre-computed anatomically
derived weight factors) has been added to penalize the local
spectral variation between neighboring voxels. The second sub-
group of methods are based on Bayesian theory and model
the reconstruction in the k-space as a likelihood function
where the anatomical information acts as prior knowledge to
estimate the optimized model parameters via the expectation-
maximization algorithm. For example in Bao and Maudsley
(2007), the likelihood function consists of a combined spectral-
spatial model where the tissue segmentations acts as prior
information in estimating additional high frequencies in k-space.
As an extension of this work, the likelihood model in Kornak
et al. (2010) also addresses the spectral fitting problems and
additionally uses prior information on the relationship between
tissue segmentation and spatial metabolite distribution. These
Bayesian based models are very complex in nature and have
many variables to be optimized that often result in locally optimal
solutions.
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Contrary to the k-space based super-resolution approaches
presented above, patch-based super-resolution (PBSR) methods
have been used to reconstruct high resolution T2 and diffusion
weighted MR images (Manjón et al., 2010a,b; Rousseau and The
Alzheimer’s Disease Neuroimaging Initiative, 2010; Coupé et al.,
2013) in the spatial domain using a high resolution T1-weighted
image as reference. PBSR methods are based on the principle of
image redundancy (ability to find similar patches in an image)
and aim at finding similar voxels [defined using self similarity or
using the high resolution image (e.g., T1-weighted image)] in the
neighborhood of the central voxel that could be used to guide
the reconstruction of the central voxel. As opposed to classical
interpolationmethods (nearest neighbor, linear interpolation and
B-splines), PBSR method provides better tissue contrast and thus
yields better image quality reconstructions.

In view of good performance of PBSR methods in upsampling
T2 and diffusion weighted MR images, we propose a multi
parametric patch-based super-resolution method that acts
directly on quantified MRSI metabolite maps from low-
resolution MRSI data. In addition to the conventionally used
high resolution T1-weighted image, a FLAIR image is also
used for lesion segmentation in multiple sclerosis subjects.
The reconstruction process is guided by the intensities of T1-
weighted and FLAIR images along with the brain segmentation,
thus providing better estimation of brain tissue boundaries. To
the best of our knowledge, a PBSR technique has never been
applied before for upsampling MRSI-based metabolic images.
We compare our method against the classical upsampling
methods (nearest neighbor, linear interpolation and B-splines) on
(a) an acetate image from a phantom, which contains different
acetate proportions in different spatial locations, (b) simulated
MS brain and quantified N-acetylaspartate images and (c) real
images of MS patients with quantified N-acetylaspartate and
myo-inositol images.

2. METHODS

The patch-based super-resolution pipeline upsamples the low
resolution quantified MRSI metabolite map using the high
resolution T1-weighted and FLAIR MR images. In the next
sections, we describe the pipeline that has three steps:
(1) a preprocessing step, including (a) MRI brain tissue
segmentation, (b) metabolite quantification, (c) super-resolution
initialization, (2) a reconstruction step that estimates the
metabolite concentration at each higher resolution MRSI voxel
using the tissue segmentations along with image intensities
of bias corrected T1-weighted and FLAIR images, (3) a
mean correction step that rectifies the estimated metabolite
concentration in every high resolution voxel by taking into
account a point spread function (PSF) and the error toward the
corresponding lower level voxel’s metabolite value. The method
iterates between step 2 and step 3 such that the corrected
metabolite concentration map from previous iteration is used
to initialize the metabolite concentration prior map for the
current iteration. The convergence of our method is detected
when the relative metabolite concentration difference between

the current and previous iteration is negligible. It takes generally
five iterations for the algorithm to converge. An overview of the
pipeline is shown in Figure 1.

2.1. Preprocessing
2.1.1. MRI Brain Tissue Segmentation
The anatomical brain MR images are segmented into gray
matter (GM), white matter (WM), cerebrospinal fluid (CSF)
and lesions using MSmetrix (Jain et al., 2015). The method
iteratively segments the T1-weighted image into GM, WM,
and CSF, segments the WM lesions on the FLAIR image as
an outlier to normal brain using Mahalanobis distance, and
performs lesion filling in the T1-weighted image to improve
tissue segmentation at next iteration. After convergence, soft
segmentations of GM, WM, and CSF are created together with
binary lesion segmentation. In addition, bias corrected T1-
weighted and FLAIR images are also produced.

2.1.2. Metabolite Quantification
The acquired MRSI data, after Fourier transformation from k-
space to the spatial domain, can be fitted in a voxel-by-voxel
fashion using a simulated metabolite basis set, matching the
acquisition parameters (e.g., echo time) of the given signals. The
fitting can be based either on time-domain MRSI signals, or after
Fourier transformation to the frequency domain. In this work we
used the SPID software1 (Van Cauter et al., 2013) and LCModel2

for metabolite quantification. The output consists of a set of
metabolite images (“metabolite maps”), as many as metabolites in
the basis set, and having the same spatial resolution as the input
MRSI grid.

2.1.3. Super-Resolution Initialization
The super-resolution pipeline is initialized by (1) upsampling the
low resolution metabolite map using linear interpolation (scale
factor of 2). This forms the starting value of the high resolution
MRSI metabolite map, (2) by aligning theMRI andMRSI images.
As the MRI and MRSI images are acquired on the same scanner
and in a sequential manner, their affine transformations are used
to project the MRI image along with the tissue segmentations
into the space of the upsampled MRSI image. The total affine
transformation that relates these two image spaces is defined as:

Totalaffine = MRSI−1
affine

.MRIaffine (1)

2.2. Patch-Based Super-Resolution
2.2.1. Background
Let y be a noise-free low resolution metabolite map and x be
the unknown corresponding high resolution metabolite image
defined over a high resolution voxel space �. Theoretically,

y = H(x) (2)

1SPID (Online; accessed 20 Oct. 2016). http://homes.esat.kuleuven.be/~biomed/
software.php
2LCModel (Online; accessed 20 Oct. 2016). http://s-provencher.com/lcmodel.
shtml
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FIGURE 1 | Schematic representation of patch-based super-resolution pipeline.

where H is a known blur and downsampling operator. In order
to reconstruct x given y, the reconstruction model is typically
formulated as an Euler Lagrange energy minimization problem:

x̂ = arg min{ ||y−H(x)||2
︸ ︷︷ ︸

least squares fitting

+ λ R(x)
︸︷︷︸

regularizer

} (3)

where the parameter λ controls the amount of regularization and
the R(x) term preserves geometry and regularity and is defined
as:

R(x) =
∑

i∈�

||xi − E(xi|ζi)||
2 (4)

E(xi|ζi) is the conditional reconstruction of xi based on voxel
intensity values in the “search volume” ζi.

We assume that the term E(xi|ζi) is consistent under strictly
stationary conditions, i.e., this stationary condition amounts
to saying that, as the resolution of the image increases, there
are many similar patches for all the details of the image.
Also, when the regions move far from each other, their
correlation decreases (Buades et al., 2005). Both assumptions are
approximately met in the case of MRSI. If E(xi|ζi) is modeled
under these assumptions, then xi � E(xi|ζi) which means R(x) �

0 (Roussas, 1990). Therefore, the two terms of the energy
functional can be decoupled and asymptotically approximated
as the reconstruction and mean correction steps of the iterative
super-resolution algorithm.
Algorithm: SR(y = low res image; x = starting value for high
res image)
while |xti − xt−1

i | > ǫ, ∀ xi ∈ x






Reconstruction : xt+1
i = E(xi|ζi), ∀ xi ∈ x

Mean correction : x̂i
t+1 = xt+1

i − (yp − H(xt+1
i )

︸ ︷︷ ︸

error

)

where p is the index of the corresponding voxel at low resolution
of which xi is a part.

2.2.2. Reconstruction
The reconstruction term, E(xi|ζi) in its general form is defined as:

E(xi|ζi) =
∑

j∈ζi

w(xi, xj)xj (5)

where the weight w(xi, xj) defines the contribution
of neighborhood voxel xj in the reconstruction of xi.
Mathematically, the general form of w(xi, xj) is defined as
Coupé et al. (2013):

w(xi, xj) =
1

Zi
e
− 1

2N

(
||N̂i−N̂j ||

hi

)2

(6)

where Zi is a normalization constant such that
∑

j∈ζi

w(xi, xj) = 1,

N̂i is the intensity vector of the local neighborhood Ni of length
N, hi is the standard deviation of neighborhood voxel intensities
in Ni. Ni is empirically defined as a cube of size 8 × 8 × 8 voxels
around the centre voxel xi. From Equation (6), we observe that if
N̂j is similar to N̂i, more weight is given to xj in the reconstruction
of xi. Since we use both high resolution MRI (T1-weighted and
FLAIR) and low resolutionMRSI, the weights are refined for both
modalities taking into account the prior information:

Refining the weights for high resolution MR images
wMRI(xi, xj) are defined such that the weights in Equation (6)
accommodate the prior knowledge on brain tissue segmentations
that were down-sampled to match the MRSI resolution:

wMRI(xi, xj) =
1

Zi.K

K
∑

k

pi,k.pj,k.e
− 1

2N

(
||N̂i−N̂j ||

hi

)2

(7)

Frontiers in Neuroscience | www.frontiersin.org 4 January 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Jain et al. Super-Resolution of MR Spectroscopic Images

where k ∈ K = {GM, WM, CSF}, p.,k denotes the probability that
the voxel belongs to a particular tissue class k.

Refining the weights for low resolution MRSI
The wMRSI(xi, xj) weights have the form (6), and the only
unknown term is hi. Assuming white noise Gaussian distribution,
hi can be calculated using the pseudo residual ǫi:

ǫi =

√

6

7
(xi −

1

6

∑

n∈N∗
i

xn) (8)

where N∗
i is the 6-neighborhood (4 in-plane and 2 out-of-plane

neighbors) of xi. Now,

h2i =
1

M

M
∑

i= 0

ǫ2i (9)

whereM is the number of voxels in ζi that have non-zero weight
in the reconstruction of xi.

After computing weights for both modalities, E(xi|ζi) is
defined similar to Rousseau and The Alzheimer’s Disease
Neuroimaging Initiative (2010):

E(xi|ζi) =
∑

j∈ζi

{

(1− α(xi))wMRI + α(xi)wMRSI

}

xj (10)

where α(xi) is a weighing term between the MRI and MRSI
weights. The choice of α(xi) is application specific. For example,
in case of non-pathological studies, the reconstruction process
could be driven by MRI only, and therefore, α(xi) can be
set to zero. In case of pathological cases like MS, MRSI is
more sensitive to pathological changes such as lesions compared

to MRI. As we focus on MS subjects in this paper, α(xi) is
defined using binary lesion segmentation which was obtained
in the preprocessing step (see Section 2.1.1). In particular, the
weight α is defined for each voxel xi such that the α(xi) = 1
implies that it is a lesion and thus the reconstruction process
is driven by MRSI only. Otherwise, it is driven by MRI
(see Equation 10).

2.2.3. Mean Correction
In the mean correction step of algorithm, the reconstructed
values are first convolved with the PSF, which is typically
a sinc function

(

sinc(πx),where x = 1
nominal voxel size

=
no of phase encoding steps

field of view

)

(De Graaf, 2013; Posse et al., 2013).

Then, the average of the PSF corrected reconstruction values
that compose the low resolution voxel yp (of which xi is part)
must be close to the corresponding original value of the low
resolution image. This corresponds to a sinc and boxcar operator
for H in Equation (2), but it could be easily replaced by a general
smoothing and downsampling operator H.

3. EXPERIMENTS AND RESULTS

3.1. Experiment 1
3.1.1. Phantom Data
A cylindrical phantom (180 mm diameter, 168 mm height) is
used, consisting of 7 small cylinders each having a diameter
of 40 mm and depth of 150 mm, going through the thickness
of the phantom as shown in Figure 2. The first cylinder was
kept empty for orientation purposes, followed by the second
cylinder having acetate (Ace) concentration of 6 mM. Then,
the Ace concentration was increased by 2 mM for each next
cylinder resulting in a concentration of 16 mM for the last

FIGURE 2 | High resolution Ace maps comparison for all methods. (A) T1-weighted image of the phantom, (B) acquired low resolution Ace map.

Reconstructed high resolution Ace map for (C) PBSR, (D) NN, (E) LIN, and (F) BS.
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cylinder. The rest of the empty space in the phantom was
filled with water. MR imaging was performed on a 3T whole
body scanner (Philips Achieva, Best, the Netherlands). The
protocol contained two sequences: 3D T1-weighted fast field
echo (FFE) sequence (TR = 6.6 ms, TE = 3.12 ms, FA = 9◦

180 × 180 mm2 FOV, 3 axial slices, 0.8 × 0.8 × 10.0 mm3

voxel resolution) and the 1H MRSI point resolved spectroscopy
(PRESS) sequence (TR= 1500 ms, TE= 120 ms, 300× 300 mm2

FOV, 3 axial slice, 10 × 10 × 10mm3 voxel resolution). MRI
individual cylinder segmentation was performed manually using
the Slicer tool (version 4.3.1)3 and the super-resolution method
was then performed at three different higher resolution voxel
sizes: 5× 5× 5mm3, 2.5× 2.5× 2.5mm3 and 1.25× 1.25× 1.25
mm3. As the phantom is homogeneous, we present in this paper
only the phantom data results at 1.25 × 1.25 × 1.25 mm3 voxel
resolution. MRSI data was quantified using the SPID software1

(Van Cauter et al., 2013) to obtain metabolite images for Ace.

3.1.2. Evaluation Criteria
We compare our method’s accuracy against three conventional
interpolation techniques: nearest neighbor, linear interpolation
and B-splines. The nearest neighborhood (NN) function assigns
the value of the new point with the closest old neighbor
value. Linear interpolation (LIN) function linearly interpolates
the new point between the old points. B-splines interpolation
(BS) function uses piecewise cubic polynomials of degree 3 to
interpolate the new point using four old points (two on each sides
of the new point).

In order to avoid the need of absolute quantification for
the phantom data, we compare ratios between the estimated
metabolite values obtained by each method in cylinders 5 and 2,
and 7 and 3, respectively, as we know that the ground truth ratio
is equal to 2.

3.1.3. Accuracy Results on Phantom Dataset
Table 1 presents the quantitative results of Ace concentration
ratio between cylinders 5 and 2, and 7 and 3 respectively, both
at low resolution (acquired at 10 × 10 × 10 mm3) and at high
resolution (reconstructed at 1.25 × 1.25 × 1.25 mm3) for all
methods. On average, PBSR and LIN seem to preserve better
median metabolite ratio compared to other methods. However,
the visual assessment for all methods (Figure 2) shows that
contrary to conventional interpolation methods, PBSR reduced
the partial volume effects considerably by incorporating tissue
segmentation information. Therefore, overall PBSR provides
better results.

3.2. Experiment 2
3.2.1. Simulated Brain Data
The BrainWeb4 phantom dataset (Cocosco et al., 1997)
represents a human brain and contains three MS brain phantom
images with mild, moderate and severe lesion volume. The
protocol contained two sequences: 3D T1-weighted SFLASH
sequence (TR = 18 ms, TE = 10 ms, FA = 30◦, 181 × 181

33D Slicer (Online; accessed 20 Oct. 2016). www.slicer.org.
4BrainWeb (Online; accessed 20 Oct. 2016). http://www.bic.mni.mcgill.ca/
brainweb.

TABLE 1 | Comparison between Ace concentration at low resolution (10 ×

10 × 10 mm3) and high resolution (1.25 × 1.25 × 1.25 mm3).

Ace ratio (median) cylinder 5
cylinder 2

cylinder 7
cylinder 3

Low resolution 2.33 1.80

High resolution

PBSR 1.86 1.89

NN 2.25 1.6

LIN 1.75 2.0

BS 1.83 1.75

Cylinders 5 and 7 have twice the Ace concentration of cylinders 2 and 3, respectively.

mm2 FOV, 217 sagittal slices, 1 × 1 × 1 mm3 voxel resolution,
1% noise level and 20% RF field inhomogeneity) and custom
simulated 3D FLAIR IR sequence (TR = 8000 ms, TE = 165
ms, TI = 1800 ms, FA = 90◦, 181 × 181 mm2 FOV, 217
sagittal slices, 1 × 1 × 1 mm3 voxel resolution, 1% noise level
and 20% RF field inhomogeneity). MRI tissue segmentation was
performed using MSmetrix (Jain et al., 2015) and these tissue
segmentations were then used to simulate a high resolution N-
acetylaspartate (NAA) map (1 × 1 × 1 mm3 voxel resolution) in
the phantom brain images. In our study, the NAA concentration
was chosen to be 30 (arbitrary units) in GM, 25 in WM and
20 in lesions. White Gaussian noise N (0, 2) is then added to
the simulated high resolution NAA map and the resulting image
was downsampled using edge preserving Chebyshev type-I filter
(n = 31) to create a low resolution NAA map (2 × 2 × 2
mm3 voxel resolution). MRI tissue segmentations were also
downsampled by a scale factor of 2 to match the NAA map’s low
resolution.

3.2.2. Evaluation Criteria
We compare our method’s accuracy against nearest neighbor,
linear interpolation and B-splines interpolation techniques. For
validating the accuracy on the simulated brain dataset, the global
image similarity is measured with the structural similarity index
(SSIM) (Wang et al., 2004) which is more compatible with the
human visual assessment and is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σx,y + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(11)

where (µx, µy) and (σx,σy) are the respective means and
standard deviations of image x and y. In our case, the metabolite
concentrations are not zero or close to zero within brain,
therefore, the stability constants c1 and c2 were set to zero.

Additionally, statistical differences in the metabolite
concentrations between the lesions and in white matter
surrounding lesions are tested using Welsh’s t-test (Welch,
1947) and the magnitude of this difference i.e., the effect size is
measured using Cohen’s d (Cohen, 1988).

3.2.3. Accuracy Results on Simulated Brain Dataset
Figures 3–5 show the respective visual results for all methods
on mild, moderate and severe MS subjects. On close inspection,
it can be seen that PBSR maintains better tissue contrast
compared to other methods. For PBSR, this contrast is also more
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FIGURE 3 | Results on simulated mild MS subject. (A) Bias corrected FLAIR image followed by (B) overlaid lesion segmentation, (C) simulated low resolution

NAA map, (D–H) the high resolution NAA maps: (D) simulated, (E) PBSR, (F) NN, (G) LIN, and (H) BS. The NAA concentration increases from red to blue.

FIGURE 4 | Results on simulated moderate MS subject. (A) Bias corrected FLAIR image followed by (B) overlaid lesion segmentation, (C) simulated low

resolution NAA map, (D–H) the high resolution NAA maps: (D) simulated, (E) PBSR, (F) NN, (G) LIN, and (H) BS. The NAA concentration increases from red to blue.
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FIGURE 5 | Results on simulated severe MS subject. (A) Bias corrected FLAIR image followed by (B) overlaid lesion segmentation, (C) simulated low resolution

NAA map, (D–H) the high resolution NAA maps: (D) simulated, (E) PBSR, (F) NN, (G) LIN and (H) BS. The NAA concentration increases from red to blue.

evident between lesions and their surrounding white matter,
both visually and quantitatively (see Table 2). Moreover, the
median value in white matter surrounding lesions for PBSR is
closest to the actual value considered for WM, 25, compared to
other methods. For lesions, the median value for all methods
is close to 20 with slightly better effect size for PBSR. SSIM
score for all methods is very high with PBSR being marginally
higher.

3.3. Experiment 3
3.3.1. Human Dataset Acquired In vivo
Five MS patients (4 females, 1 male, age 32–46) participated
in the study at the High Field MR Centre, Department
of Biomedical Imaging and Image-guided Therapy, Medical
University of Vienna, Austria. This study was carried out in
accordance with the recommendations of the “International
Conference on Harmonization of Good Clinical Practice (ICH-
GCP),” and the applicable Austrian legislation. The study was
approved by the Institutional Review Board ethical committee.
All subjects gave written informed consent in accordance with the
Declaration of Helsinki. All measurements were performed on
a 7T whole body MR scanner (Magnetom, Siemens Healthcare,
Erlangen, Germany) with a 32-channel receive coil array head
coil (Nova Medical, Wilmington, MA, USA). The protocol
contained four sequences: (1) 3D T1-weighted MPRAGE
sequence (TR = 3800ms, TE = 3.54 ms, FA = 9◦, 230 × 230
mm2 FOV, 208 axial slices, 0.7× 0.7× 0.7mm3 voxel resolution),
(2) 3D SPACE FLAIR sequence (TR = 8000 ms, TE = 272 ms,
FA = 160◦, 215 × 215 mm2 FOV, 160 axial slices, 0.8 × 0.8 ×

TABLE 2 | Quantitative measures for measuring the accuracy of all

methods on simulated brain datasets.

NWMNAA LesionsNAA p-value Effect size SSIM

MILD

PBSR 25.26 (24.93, 25.62) 20.34 (19.33, 22.72) 3.07 e-08 2.9 0.93

NN 24.06 (23.7, 24.11) 20.07 (18.86, 21.02) 1.65 e-06 2.12 0.93

LIN 23.75 (22.83, 24.27) 20.46 (19.94, 21.7) 2.39 e-07 2.31 0.92

BS 23.7 (22.5, 24.45) 20.07 (19.2, 21.02) 7.20 e-07 2.18 0.92

MODERATE

PBSR 25.26 (23.75, 25.5) 20.38 (19.56, 22.09) 1.61 e-18 1.11 0.93

NN 23.67 (21.65, 24.99) 20.1 (19.41, 21.65) 4.71 e-19 1.08 0.92

LIN 23.11 (21.04, 24.33) 20.37 (19.6, 21.66) 2.48 e-12 0.83 0.92

BS 23.37 (20.94, 24.5) 20.25 (19.53, 21.7) 8.43 e-14 0.89 0.92

SEVERE

PBSR 25.13 (22.12, 25.49) 20.47 (19.7, 21.66) 2.5 e-41 1.21 0.93

NN 22.98 (20.34, 24.83) 20.18 (19.75, 21.39) 9.54 e-36 1.11 0.92

LIN 22.94 (20.55, 24.35) 20.48 (19.77, 21.4) 1.2 e-32 1.04 0.92

BS 22.86 (20.56, 24.54) 20.28 (19.6, 21.11) 1.38 e-34 1.08 0.92

NWMNAA = NAA concentration in white matter surrounding lesions, LesionsNAA =

NAA concentration in lesions, p-value = Welsh’s t-test p-value for testing the statistical

difference between NWMNAA and LesionsNAA, effect size = the magnitude of statistical

difference, SSIM = structural similarity index. NWMNAA and LesionsNAA are reported as

median (first quartile, third quartile).

0.8 mm3 voxel resolution), (3) low resolution 1H CAIPRINHA-
accelerated phase-encoded FID-MRSI sequence (Strasser et al.,
2016) (TR = 600 ms, TE = 1.3 ms, 220 × 220 mm2 FOV, single
axial slice, 3.4 × 3.4 × 8.0mm3 voxel resolution, an acceleration
factor of 6, 5 min measurement time), and (4) high resolution 1H
CAIPRINHA-accelerated phase-encoded FID-MRSI sequence
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(TR = 200 ms, TE = 1.3 ms, 220 × 220 mm2 FOV, single axial
slice, 2.2 × 2.2 × 8.0 mm3 voxel resolution, an acceleration
factor of 4, 6 min measurement time). Both low and high
resolutionMRSI data was acquired withWET (water suppression
enhanced through T1 effects) water suppression technique. MRI
tissue segmentation was performed using MSmetrix (Jain et al.,
2015) and MRSI data was quantified using the LCModel (version
6.3-1)2 to obtain metabolite images for NAA and myo-inositol
(myo-Ins).

3.3.2. Evaluation Criteria
We compare our method’s accuracy against nearest neighbor,
linear interpolation and B-splines interpolation techniques. For
validating the accuracy on the human dataset acquired in vivo,
SSIM score is used. Also, statistical differences in the metabolite
concentrations between the lesions and their neighboring WM
tissue are tested using Welsh’s t-test and the effect size is
measured using Cohen’s d.

3.3.3. Accuracy on Human Dataset Acquired In vivo
Figures 6, 7 show the high resolution NAA and myo-Ins maps
respectively, for all methods on a representative example. In
contrast to the results on the simulated brain dataset, visually
it is very difficult to see a correlation between any method
and the acquired high resolution maps. However, quantitatively,
a contrast between lesions and surrounding white matter can
be computed (Table 3). The acquired high resolution shows a
significant contrast between lesions and their surrounding WM,
which is not seen at acquired low resolution. For NAA, this
significant contrast can only be seen in PBSR. For myo-Ins, this

significant contrast is highest for LIN followed by BS, NN and
PBSR. The average SSIM score is highest for PBSR for both NAA
and myo-Ins compared to the other methods, which have equal
average SSIM scores.

4. DISCUSSION AND CONCLUSION

In this paper, we presented a patch-based super-resolution
method for upsampling the low resolution quantified metabolite
maps. The method incorporates the high resolution spatial
information from T1-weighted and FLAIRMR images in guiding
the reconstruction process. The method iteratively estimates and
corrects for the metabolite concentration at a high resolution.
In contrast to the k-space based techniques where anatomically
derived information is used to improve the spectral quality of
high resolution MRSI data, in our case, the method reconstructs
each central voxel xi using a weighted average of voxels that
have similar tissue composition as the central voxel in the search
volume. Moreover, as MRI and MRSI have complementary
information, separate weights are defined for each modality
which are regulated with a parameter α(xi). Depending on the
application, α(xi) gives the flexibility to control the influence of
each modality in the reconstruction process. In this paper, when
α(xi) = 1, the reconstruction is guided by MRSI only resulting in
a smooth image and when α(xi) = 0, the reconstruction is guided
by MRI alone resulting in a better tissue contrast compared
to conventional interpolation techniques (see Tables 2, 3). The
reconstruction quality is affected by the potential registration
errors and the reliability of the input quantified metabolite

FIGURE 6 | Qualitative accuracy performance of all methods on human dataset acquired in vivo for NAA metabolite. (A) Bias corrected FLAIR image

followed by (B) overlaid lesion segmentation, (C) the acquired low resolution NAA map; (D–H) the high resolution NAA maps: (D) acquired, (E) PBSR, (F) NN, (G) LIN

and (H) BS. The NAA concentration increases from red to blue.
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FIGURE 7 | Qualitative accuracy performance of all methods on human dataset acquired in vivo for myo-Ins metabolite. (A) Bias corrected FLAIR image

followed by (B) overlaid lesion segmentation, (C) the acquired low resolution myo-Ins map; (D–H) the high resolution myo-Ins maps: (D) acquired, (E) PBSR, (F) NN,

(G) LIN and (H) BS. The myo-Ins concentration increases from red to blue.

map. Additionally, the method could not be expected to recover
small scale features that were not sufficiently picked up by the
low resolution measurement. On a similar note, the use of
tissue segmentations to guide the reconstruction might affect
metabolite values at tissue interfaces. In particular, through such
an effect, some hyper intense voxels are introduced near the
brain boundary, requiring further investigation. Finally, if the
difference between the image resolution ofMRI andMRSI images
is big (scale factor more than 4), then the downsampled tissue
segmentations for super-resolution process have high partial
volume effect and thus do not carry much information on
tissue type. That is why in this study, we limited the in-plane
resolution of acquired low resolution MRSI to ∼ 3.4× 3.4 mm2.
Our method can also be implemented in a multi-scale fashion.
However, validating such high resolution reconstructed image
would be a problem in case of real datasets (e.g., Experiment 3)
where acquiring such high resolution image is not possible
due to practical limitations. Indeed, multi-scale super-resolution
method can easily be tested on a simulated data, and, as our
results show better tissue contrast at the current high resolution,
we expect similar or better results at even higher resolution.
Our main aim in this paper was to validate the method on
real datasets and thus we opted not to use the multi-scale
super-resolution.

Among the methods proposed in the literature for super-
resolution, our approach has some similarities to Rousseau
and The Alzheimer’s Disease Neuroimaging Initiative (2010),
which is also based on patch-based framework. In contrast with
Rousseau and The Alzheimer’s Disease Neuroimaging Initiative
(2010), which uses a neighborhood averaging strategy to define

TABLE 3 | Results on human datasets acquired in vivo.

NWMNAA LesionsNAA p-value Effect size aSSIM

NAA

ALR 15.18 (14.47, 16.87) 15.62 (13.39, 18.02) 0.8 −0.07 NA

AHR 13.41 (12.48, 15.0) 12.99 (10.99, 14.85) 0.03 0.31 NA

PBSR 16.85 (15.99, 17.6) 15.6 (13.82, 17.27) 2.0 e-05 0.64 0.18

NN 16.23 (14.82, 17.34) 15.75 (13.62, 17.61) 0.35 0.14 0.13

LIN 16.1 (14.93, 17.26) 15.71 (13.85, 17.35) 0.38 0.13 0.13

BS 16.15 (14.79, 17.33) 15.49 (13.64, 17.5) 0.3 0.15 0.13

myo-INS

ALR 10.8 (10.09, 12.69) 11.88 (10.9, 14.48) 5.0 e-02 −0.57 NA

AHR 6.03 (4.78, 7.86) 11.48 (9.13, 13.15) 4.3 e-16 −1.63 NA

PBSR 8.07 (6.78, 9.39) 10.59 (9.89, 11.79) 3.0 e-08 −1.04 0.2

NN 9.17 (7.77, 9.98) 11.97 (10.5, 13.35) 1.9 e-09 −1.15 0.18

LIN 9.11 (7.89, 10.11) 11.98 (10.82, 13.25) 4.7 e-11 −1.27 0.18

BS 9.12 (7.86, 10.15) 11.88 (10.72, 13.35) 1.2 e-10 −1.23 0.18

NWMNAA = NAA concentration in white matter surrounding lesions, LesionsNAA = NAA

concentration in lesions, p-value = Welsh’s t-test p-value for testing the statistical

difference between NWMNAA and LesionsNAA, effect size = the magnitude of statistical

difference, aSSIM = averaged structural similarity index over 5 subjects. NWMNAA and

LesionsNAA are reported as median (first quartile, third quartile). ALR, acquired low

resolution map; AHR, acquired high resolution map.

MRI weights, we used brain tissue segmentations. In Rousseau
and The Alzheimer’s Disease Neuroimaging Initiative (2010),
α(xi) defines the correlation between high resolution and low
resolution images and is adapted in each iteration. In our case,
α(xi) is defined using binarized lesion segmentation and is fixed
throughout the process.
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One of the biggest problems that we encountered in this
study was having ideal data for method validation. Challenges
include (a) absence of high resolution ground truth data, (b)
lack of a publicly available datasets, and (c) difference between
low and high resolution acquired MRSI data. Acquiring high
resolution ground truth data in reality is not feasible because
low metabolite concentration requires large voxel size to capture
sufficient signal, and prolonged acquisition time. Although
several group studies have reported metabolite concentration in
normal and pathological cases like MS (Sajja et al., 2009; Bogner
et al., 2012), conclusions are not easily generalizable when it
comes to individual patients. Lack of a standardized acquisition
protocol for high spatial resolution MRSI hampers the creation
of publicly available datasets against which state-of-the-art
methods’ performances can be compared. Moreover, most of
the state-of-the-art super-resolution methods for MRSI improve
MRSI data using sophisticated reconstruction techniques (k-
space based), which make their reproducibility for comparison
very difficult. However, from methodological point of view, our
method requires fewer variables to be optimized simultaneously
which simplify the underlying optimization problem. For
example, in k-space based methods, the MRI spatial parameters
(e.g., bias field inhomogeneity, tissue class information) and the
MRSI spectral parameters (e.g.,metabolite amplitudes, B0 shifts,
zero-order phase and lineshape parameters) have to be optimized
simultaneously, which may result in a sub-optimal solution. In
our case, we deal with the MRI spatial parameters and MRSI
spectral parameters separately. Bias field correction and tissue
class segmentation are performed by MSmetrix (2.1.1) and the
interaction between neighborhood voxels is exploited in the
proposed super-resolution method. The spectral parameters are
estimated by state-of-the-art metabolite quantification methods
such as LCmodel or SPID.

In human MRSI data acquired in vivo, the median metabolite
concentrations acquired at low resolution are greater than
those at higher resolution (see Table 3), although the same
quantification method [LCModel]2 and parameters have been
used to quantify metabolic maps at both resolutions. This
generates a degree of uncertainty in the interpretation of the
performance analysis. This issue was not present in the simulated
data, which explains a significant decrease in the SSIM score from

simulated brain dataset’s results (see Table 2) to human dataset
acquired in vivo (seeTable 3). This decrease can also be explained
by the fact that simulated low resolution MRSI data has twice
the resolution of low resolution MRSI human dataset acquired
in vivo, resulting in a loss of structural information. Finally, it
may seem like the conventional interpolation methods provide
better results than PBSR for myo-Ins (see Table 3), however,
this is not completely true. Four out of five MS subjects in the
human dataset acquired in vivo, have low lesion load in the
acquired MRSI plane and the remaining subject has high lesion
load. If this subject is removed, none of the methods show any
statistical difference in themetabolite concentrations between the
lesions and their neighboring WM tissue for myo-Ins. However,
this statistical difference still holds true for NAA. Tuning the
parameter α(xi) may address this issue and will be explored.

In conclusion, we presented a patch-based super-resolution
approach for upsampling the low resolution quantified
metabolites maps using T1-weighted and FLAIR MR images.
The proposed method preserves tissue contrast and structural
information compared to conventional interpolation methods,
and matches well with the trend of acquired high resolution
MRSI. These results suggest that the method has potential for
clinically relevant neuroimaging applications.
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