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Dynamic resilience is a novel concept that aims to quantify how individuals are coping

while operating in dynamic and complex task environments. A recently developed

dynamic resilience measure, derived through autoregressive modeling, offers an avenue

toward dynamic resilience classification that may yield valuable information about working

personnel for industries such as defense and elite sport. However, this measure classifies

dynamic resilience based upon in-task performance rather than self-regulating cognitive

structures; thereby, lacking any supported self-regulating cognitive links to the dynamic

resilience framework. Vagally mediated heart rate variability (vmHRV) parameters are

potential physiological measures that may offer an opportunity to link self-regulating

cognitive structures to dynamic resilience given their supported connection to the

self-regulation of stress. This study examines if dynamic resilience classifications reveal

significant differences in vagal reactivity between higher, moderate and lower dynamic

resilience groups, as participants engage in a dynamic, decision-making task. An

amended Three Rs paradigm was implemented that examined vagal reactivity across six

concurrent vmHRV reactivity segments consisting of lower and higher task load. Overall,

the results supported significant differences between higher and moderate dynamic

resilience groups’ vagal reactivity but rejected significant differences between the lower

dynamic resilience group. Additionally, differences in vagal reactivity across vmHRV

reactivity segments within an amended Three Rs paradigm were partially supported.

Together, these findings offer support toward linking dynamic resilience to temporal

self-regulating cognitive structures that play a role in mediating physiological adaptations

during task engagement.

Keywords: heart rate variability, dynamic resilience, cognitive assessment, physiological markers, human

performance psychology

1. INTRODUCTION

Resilience profiling is common practice when recruiting for occupations working within dynamic
operational environments; for example, elite sporting and Defense domains (Park et al., 2017;
Hill et al., 2018a). While theoretically divisive, resilience is often conceived as a stable trait that
promotes one’s ability to adapt positively in the face of adversity (Rutter, 2006; Cicchetti, 2010;
Southwick et al., 2014; Vella and Pai, 2019). However, discussions targeting the construct value of
trait resilience in the human performance domain have challenged its applicability; as its causal
chain approach (i.e., a causal variable that determines behavioral outcomes) fails to capture the
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dynamic process of resilience under load (Hill et al., 2018a). This
inspired the conception of the dynamic resilience theoretical
framework, in which its proposed methods aim to capture and
profile the process of resilience as it unfolds (Hill et al., 2018b;
Crameri et al., 2020b). While this has currently been achieved
by tracking objective performance outputs, previous research
has called for more holistic methods toward profiling dynamic
resilience that comprises examining psychophysiological
relationships between dynamic resilience and physiological
adaptations to in-task stress (Crameri et al., 2020a,b). In
particular, whether attributes of dynamic resilience mediate
cardiac vagal activity during task stress (Crameri et al., 2020a).

Traditionally, previous research directed at profiling
resilience in human performance areas predominantly focused
on personality traits and health initiatives that mitigate
susceptibility to psychopathological effects of stress (Bartone,
1999; Bowles et al., 2010). Resilience, and other construct-related
concepts (e.g., hardiness and grit), are quantified through latent
psychometric self-reporting measures that enquired about
protective factors (e.g., health, social-outlets, stress perceptions)
believed to mediate one’s overall resilience (Bartone, 1999;
Windle et al., 2011). From a health perspective, resilience
measures, such as the popular Connor-Davidson Resilience
Scale (Connor and Davidson, 2003), have demonstrated
value in their application; as inverse relationships have
been empirically supported between trait resilience and
susceptibility to psychopathological outcomes (Nezhad and
Besharat, 2010). Susceptibility to psychopathological outcomes
is linked to poor self-regulation (i.e., emotional-regulation and
attentional-regulation), in which the individual may become
over aroused and unable to cope with in-coming stressors
(Koenig, 2020; Langer et al., 2020). Hence, characteristics of
self-regulation have been examined to evaluate if it is mediated
by one’s trait resilience (Hu et al., 2015; Armstrong et al., 2018).
Across various domain, empirical findings suggest that those
possessing higher trait resilience often exhibit more efficient
self-regulation tendencies toward stressors than those possessing
lower trait resilience (Souza et al., 2013; Hildebrandt et al., 2016;
Lü et al., 2016; Hourani et al., 2020; Perna et al., 2020).

As trait resilience measures do not capture the temporal
process of resilience as it unfolds, it fails to evaluate in-situation
coping (Hill et al., 2018a,b). Instead, the link between trait
resilience and performance is a global inference that predicts
future long-term success (Bryan et al., 2019). This is evident in
research demonstrating that higher trait resilience enhances the
likelihood of completing military training, academic pursuits,
and achieving athletic success (Nezhad and Besharat, 2010;
Skomorovsky and Stevens, 2013; Eskreis-Winkler et al., 2014).
While valuable for recruitment purposes, it does not account for
acute changes in psychological statuses due to temporal factors
such as burnout effects, and environmental and social factors
(Hill et al., 2018a). Furthermore, trait resilience measures are
administered via subjective self-reporting methods. This leaves
these measures susceptible to bias responses, as individuals
may manipulate resilience profiling due to intrinsic motivation
and peer-pressures (Walker et al., 2017). To overcome these
limitations, Hill et al. (2018a,b) offered an alternative resilience

framework that sought to assess resilience through more
objective, in-situational methods. Titled dynamic resilience,
Hill et al. (2018a) defined it as “the dynamic process by
which a biopsychosocial system returns to the previous level
of functioning, following a perturbation caused by a stressor”
(p. 367). Its conceptual framework adopts dynamic system
principles in which resilience is conceived as a malleable dynamic
process built upon the complex interactions between protective,
environmental, and task factors over time. Together, these factors
interact with the history of the task and generate psychological
momentum that enhance or diminish one’s dynamic resilience to
cope with in-situational task stress.

Guidelines for dynamic resilience measurement offered
potential progress through first-process autoregressive [AR(1)]
modeling (Hill et al., 2018a). Based upon the critical slowing
down literature (Dai et al., 2012; Dakos et al., 2012; van de
Leemput et al., 2014), it is postulated that tracking behavior
across a time series, via AR(1) modeling, may reveal temporal
aspects of individuals’ recovering from task induced load and
stress. This could potentially lead to the identification of
performance “tipping point” in which individuals’ can no longer
sustain optimal task performance (Hill et al., 2018b). Research
evaluating the feasibility of AR(1) modeling has empirically
supported its application for dynamic resilience measurement
(Crameri et al., 2020b). More specifically, AR(1) modeling
of individuals’ task performance facilitated the tracking of
individuals’ dynamic resilience, in which dynamic resilience
could be quantified and further classified by examining the
autocorrelational patterns across higher and lower load sections
of a task. The groups appeared to represent the phasic decline
of group members’ dynamic resilience over the task time period.
Thereby, demonstrating a potentially sensitive in-situation
measure of dynamic resilience for human performance profiling.
However, while potentially useful for human performance
domains, the dynamic resilience measure does not present
support for cognitive structures typically associated with trait
resilience. Instead, the measure may be more reflective of
temporal task proficiency as it is derived from task performance.
Given this, it is still unclear if cognitive structures related to the
self-regulation of stress is associated with dynamic resilience.

1.1. Physiological Manifestations of Stress
The occurrence of stress activates complex neural activity
purposed with orienteering the human toward adaptive
responses (Charmandari et al., 2005). The primary neural
systems responsible for the response to stress include the
prefrontal cortex, the hippocampus and amygdala of the limbic
system, and the hypothalamus (Baumann and Turpin, 2010).
Together, these neural systems, along with the spinal cord, make
up part of the central nervous system (CNS) that sends signals
to the peripheral nervous system to promote allostasis within
the human (Kirschbaum et al., 1999; Charmandari et al., 2005;
McEwen, 2005; Stephens and Wand, 2012). The peripheral
nervous system reflects the nerves and ganglia throughout the
body, and facilitates the process of relaying messages from
the CNS to the body. Upon the occurrence of a stressor, the
peripheral nervous system activates the functioning of the
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autonomic nervous system and the hypothalamic–pituitary–
adrenal (HPA) axis of the endocrine system (Kirschbaum et al.,
1999; Charmandari et al., 2005; McEwen, 2005; Stephens and
Wand, 2012). These systems are interconnected and activated
involuntarily, with each system comprising distinct functions
toward a coordinate adaptive response to stress (Rotenberg and
McGrath, 2016). The ANS acts as the first-responder to stress
through quick physiological adaptations that prepares the human
for adaptive responses to potential cognitive and environmental
challenges or threats (Tsigos and Chrousos, 2002; Seery, 2011).
The ANS regulates physiological responses to stress via two
subsystems, the sympathetic nervous system (SNS) and the
parasympathetic nervous system (PNS) (de Looff et al., 2018).

Early beliefs of the SNS and PNS relationship were viewed
as antagonistic, in which the SNS would act as the excitatory
and the PNS as the inhibitory function of the ANS (Moses
et al., 2007). This view was founded upon the understanding
of the role that the SNS plays during fight/flight responses; in
which SNS activity generates physiological adaptations such as
increases in heart rate (HR), dilation of pupils and metabolic
rate, while decreasing digestive and urinary functions (Martini
et al., 2018). Meanwhile, the PNS inhibits SNS activity during
rest and digest situations, in which visceral activity is stimulated
and the physical adaptations of the SNS are reversed (e.g.,
decreases in HR and increases in digestive functioning) (Kim
et al., 2018). More recent advancements in neuroanatomy and
physiology have demonstrated that the antagonistic view of the
SNS and PNS is oversimplified, and that the relationship between
the subsystems are far more complex (Herring et al., 2019;
Benarroch, 2020). While some physiological adaptations arise via
an excitatory/inhibitory relationship between the SNS and PNS,
other physiological adaptations are mediated via collaborative
stimulation of both the SNS and PNS, or independently through
just one of the subsystems (Martini et al., 2018; Benarroch, 2020).
To this end, the subsystems facilitate the ANS to adaptively
respond to stress and return to physiological homeostasis once
the source of the stress has been resolved (Herring et al., 2019;
Tobaldini et al., 2020).

Profiling the efficiency of an individual’s ANS has offered
invaluable insights into self-regulation when enduring various
types of stressors (Hjortskov et al., 2004; McDuff et al., 2014;
An et al., 2020; Perna et al., 2020). To achieve this, the PNS is
predominantly examined over the SNS as it plays a primary role
in regulating physiological adaptations when facing both physical
and psychological stressors (Thayer et al., 2009). PNS activity
can be indexed through cardiac vagal tone, which reflects the
interaction between the PNS and the vagus nerve (Porges, 1995).
The vagus nerve serves an important purpose for self-regulation
as it provides the functional and structural link connecting the
brain to the heart (Laborde et al., 2017). Utilizing this connection,
the PNS stimulates the vagus nerve to release acetylcholine
neurotransmitters that promote tonic inhibitory control of the
heart in efforts to sustain homeostatic levels (Thayer et al., 2009;
Kim et al., 2018). The efficiency of this process is often derived
through the measurement of vagally-mediated HRV (vmHRV)
parameters in which higher levels of vmHRV parameters are
linked to superior self-regulation and cognitive performance

outcomes (Malik et al., 1996; Berntson et al., 1997; Appelhans and
Luecken, 2006; Thayer et al., 2009; Pendleton et al., 2016; Shaffer
and Ginsberg, 2017).

Theoretically, the neurovisceral integration (NVI)
model offers a functional framework connecting vmHRV,
self-regulation and cognitive performance (Thayer and Lane,
2000; Thayer et al., 2009; Laborde et al., 2017; Smith et al.,
2017). In short (see Thayer et al., 2009; Smith et al., 2017 for
detailed descriptions), the NVI model is founded upon the
role of the central autonomic network (CAN); a component of
the CNS that comprises different brain structures within the
prefrontal cortex and exerts control over internal-regulation
(Laborde et al., 2018). The CAN integrates visceralmotor,
neuroendocrine, and behavior response with emotion, attention,
and cognitive executive functioning for goal-directed behaviors
and adaptability (Benarroch, 1993; Thayer and Lane, 2000; Smith
et al., 2020). This is facilitated through vagal feedback loops,
that provides an anatomical pathway connecting the CNS and
the ANS (Koenig, 2020). The afferent vagal loop facilitates the
retrieval of status updates regarding sensory organ functioning
and environmental demands to the CAN, while the efferent vagal
loop enable the CAN to respond and innervate organs to meet
demands. The CAN output delivered via the efferent vagal loop
is predominantly mediated by preganglionic sympathetic and
parasympathetic neurons (Thayer et al., 2009). The interaction
of these neurons with the sino-atrial node of the heart creates
the variable cardiac rhythm, linking the CAN output directly
with HRV. As the CNS receives a high quantity of afferent
information from sensory organs and the environment, the NVI
model postulates that vmHRV reflects the functioning status
of the CNS-ANS integration (Smith et al., 2017). In particular,
cardiac vagal control, indexed by vmHRV, is likely reflective of
inhibitory control processes within the prefrontal cortex that
promote self-regulation and cognitive performance (Thayer and
Lane, 2000; Smith et al., 2017).

vmHRV measures are derived from time domain and
frequency domain analyses (Laborde et al., 2017; Shaffer and
Ginsberg, 2017). Early guidelines for HRV parameters offered
various directions toward standardizing practices for HRV
application and interpretability (Malik et al., 1996; Berntson
et al., 1997). However, more recent reviews of the HRV literature
have highlighted the inconsistencies of various HRV parameters
across research; ultimately disputing the validity of some HRV
parameters as indexes of sympathetic and parasympathetic
activity (Hayano and Yuda, 2019). Of the most common
and well-received vmHRV parameters to index PNS activity
comprises the root mean square of successive differences between
normal heartbeats (rMSSD) and the percentage of adjacent NN
intervals that differ from each other bymore than 50ms (pNN50)
of the time domain and the high frequency band (HF-HRV) of
the frequency domain (Malik et al., 1996; Berntson et al., 1997;
Laborde et al., 2017). The three HRV parameters are correlated,
with the difference being that HF-HRV is highly influenced
by individuals’ respiratory cycles and that rMSSD and pNN50
are associated with the short-term, rapid changes in HR (Stein
et al., 1994; DeGiorgio et al., 2010; Shaffer et al., 2014; Shaffer
and Ginsberg, 2017). Together, these three vmHRV parameters
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are widely implemented within psychophysiological research
examining the effects of resilience on the self-regulation of stress
(Thompson et al., 2015; Spangler et al., 2018; Flatt et al., 2020).

Vagal reactivity studies detail an approach toward profiling
individual’s vagal response to stress (Laborde et al., 2018).
Vagal reactivity refers to the process in which the PNS
withdraws cardiac vagal control during encounters with stressors
(Jentsch and Wolf, 2020). In other words, it reflects the
phasic vagal changes that occur from rest to stress. Laborde
et al. (2017) proposed a “Three Rs: Rest, Reactivity and
Recovery” experimental paradigm to profile the cardiac vagal
reactivity process. This experimental paradigm comprises the
measurement of vmHRV during three phases: a resting baseline
phase, a challenging or stressful phase, and a resting recovery
phase (Laborde et al., 2018). Cardiac vagal reactivity is evaluated
via the phasic differences in cardiac vagal control withdrawal,
indexed by vmHRV. Small decreases or increases in vmHRV
during the reactivity phase and the recovery phase indicates
greater self-regulation, whereas moderate to large decreases in
vmHRV reflects poorer self-regulation. However, as Hottenrott
et al. (2019) points out in their commentary of the Three Rs
paradigm, this experimental design applies to single global events
(i.e., rest, task, recovery), and not the temporal components
within the task. Hence, to align the Three Rs paradigm with
the dynamic resilience framework, amendments to the rest,
reactivity, recovery segments will be required; with an emphasis
on capturing how individuals physiologically react to sudden
difficulties and setbacks as they progress through a task.

To summarize, dynamic resilience presents a relatively
new model of resilience that may hold valued sensitivity in
human performance evaluation. However, while Crameri et al.
(2020b)’s dynamic resilience measure has revealed sensitivity in
classifying individuals into dynamic resilience groups based on
in-task performance, further research needs to be conducted
to identify if dynamic resilience characteristics links to self-
regulating cognitive structures that play a role in mediating
physiological adaptations during task engagement. To address
this, this paper aims to evaluate the application of the dynamic
resilience measure on vmHRV. This is due to the proposed
link vmHRV offers toward indexing emotional-regulation and
attentional-regulation via cardiac vagal control (Thayer et al.,
2009). Achieving this goal will be sought through the evaluation
of vagal reactivity, in which an amended Three Rs paradigm will
be implemented for compatibility with the dynamic resilience
framework. Hence, two research questions have driven the efforts
of the current paper.

1. What vagal reactivity differences, if any, from the vmHRV
parameters (rMSSD, pNN50, HF-HRV) emerge in the
dynamic resilience level of individuals undertaking a dynamic
decision-making task?

2. What temporal characteristics of task stress are the vmHRV
reactivity parameters (rMSSD, pNN50, HF-HRV) sensitive to
between the dynamic resilience groups for an amended Three
Rs paradigm of a dynamic decision-making task?

Together, it is hypothesized that higher dynamic resilience
groups will exhibit smaller vagal reactivity (i.e., small decreases

in vmHRV reactivity scores), derived from vmHRV parameters
(rMSSD, pNN50, HF-HRV), than lower dynamic resilience
groups. Furthermore, it is hypothesized that higher dynamic
resilience groups will exhibit smaller vmHRV reactivity during
reactivity periods, and higher vagal stability (i.e., increases in
vmHRV reactivity scores) following reactivity periods compared
to lower dynamic resilience groups (Laborde et al., 2018).

2. MATERIALS AND METHODS

2.1. Participants
Human ethics approval for the current study was granted by
the Human research ethics committee, Faculty of Science and
Built Environment, Deakin University, Australia. Participants
were recruited via soft (e.g., social media) and hard (e.g.,
paper-flyers) copy advertisement. Potential participants were
notified of the exclusion criteria, such as age restrictions (18–
60), right hand dominant (to reduce systematic errors), being
physically healthy (e.g., no known cardiovascular disease), and no
psychopathological disorders; for example, (e.g., post-traumatic
stress disorder) (Walker et al., 2019). In total, 60 eligible right-
handed participants (37 male and 23 female), aged between 20
and 58 years (M = 30.57, S.D= 9.25), were recruited to participate
in the current experiment. Following assessment of data quality,
14 participants were removed from the aggregated analyses. This
concluded a total of 46 participants (31 males and 15 females),
aged between 20 and 58 (M = 30.61, S.D= 9.51) for the analyses.

2.2. The Multi-Attribute Task Battery II
(MATB-II)
The MATB-II, depicted in Figure 1, was used as the task
environment in the experiment (Santiago-Espada et al., 2011).
The MATB-II is a computer-based task, popularized within the
human factors research community, to assess human cognitive
performance (Kennedy and Parker, 2017). The task interface
presents four subtasks that target different cognitive functions of
the user (e,g., sustained attention, executive functioning, auditory
processing) (Santiago-Espada et al., 2011). The subtask interfaces
were designed to present an aviation-familiar setting purposed
with inducing stress within pilots and crew members within
aviation sectors (Kennedy and Parker, 2017; Nixon and Charles,
2017). However, its applicability for other complex working
domains has been supported, as the frequent, uncontrollable
and unpredictable stressors imposed throughout tasks elicit
similar responses across various domains (Kennedy and Parker,
2017). Furthermore, the subtasks are simple to learn and
require short training periods; with task load and complexity
adjustable through manipulations of temporal and spatial
characteristics (Mortazavi et al., 2019). The MATB-II also
facilitates flexible programming that allows for the subtasks
to be presented simultaneously, alternatively, or singularly
(Santiago-Espada et al., 2011).

The MATB-II’s resource management (RESMAN) subtask
was implemented to measure the dynamic resilience of
users’ executive functioning during a dynamic task. The
RESMAN subtask was selected as it offers a dynamic,
complex, and unpredictable task environment that targets
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FIGURE 1 | MATB-II user interface. RESMAN task located within red boundaries.

the dynamic decision-making functions of one’s executive
functioning through requirements of strategizing, scheduling
and executing actions (Buehler, 2018). This is achieved by
presenting a generalized fuel management task in which
individuals mustmanage the numeric “fuel” levels of two primary
tanks. During the task, the primary tanks consume fuel leading
to depleted fuel tanks. Users overcome depleting fuel tanks by
transferring fuel from secondary tanks to the primary tanks
via connecting pumps. However, over the course of the task,
connecting pumps may fail and become temporally disabled,
and preventing fuel transfer between tanks. In these situations,
the user must then strategize the best way to overcome pump
failures and redirect fuel to other tanks to counteract depletion
in the primary tanks’ fuel level. Lastly, the RESMAN subtask’s
performance output is formatted as a time series, thereby offering
compatibility with the dynamic resilience framework.

As depicted in Figure 1, the task’s interface presents six tanks
connected by eight pumps. Each tank has specific roles and
parameters within the task. Tanks “A” and “B” are primary tanks,
in which individuals must manage to ensure that the fuel level
is always as close to 2,500 units as possible. Tanks “C” and “D”
are the finite supply tanks that have connecting pumps to supply

additional fuel to the primary tanks. However, as tanks “C” and
“D” only have a finite amount of “fuel,” the tanks are susceptible
to becoming empty if mismanaged; leading to insufficient “fuel”
levels to replenish fuel level depletions in the primary tanks.
Lastly, tanks “E” and “F” are secondary tanks that have infinite
quantities of fuel. Tanks “E” and “F” have pumps connecting to
both the primary tanks and finite secondary tanks, which can be
activated to replenish fuel depletion in fuel-needy tanks. Fuel is
represented as the green component in the tanks and is further
expressed via the numeric value overlaid across the tank graphics.
All pumps have a one-directional fuel transfer as each pump have
varied units of flow rate that determines how quick the “fuel” can
be transferred between tanks. Flow rates are predetermined, in
which the individual operator cannot alter.

2.3. Task Manipulations
The task manipulations of the phase conditions were identical
to those presented by Crameri et al. (2020b). Together, these
task manipulations were designed to acquire data suitable for
dynamic resilience evaluation. Brief details of the task’s temporal
properties and difficulty manipulations are presented as follows.
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FIGURE 2 | Experimental design detailing the temporal properties and task difficulty of the six phase conditions.

As depicted in Figure 2, each 30 min experimental trial
consisted of six phase conditions, which imposed different task
difficulty on the participants. This comprised:

• 6-min resting baseline (no task)
• 12-min working baseline (low task difficulty)
• 2-min stress period 1 (high task difficulty)
• 4-min recovery-to-working period 1 (low task difficulty)
• 2-min stress period 2 (high task difficulty)
• 4-min recovery-to-working period 2 (low task difficulty).

Two task difficulty levels were imposed within the experimental
trial. Low level task difficulty, designed by Wang et al. (2017)
MATB-II RESMAN level 3 configuration, was implemented to
impose 3 simultaneous pump failures for 160 s of fail time
over five minutes. High level task difficulty was configured upon
Dynamic Adaptability Theory (Hancock and Warm, 1989), in
which the failure of four simultaneous pumps occurred and
alternated between various combinations of pumps failures every
five to nine seconds.

The temporal sequence of the phases was designed to simulate
a dynamic working environment in which the user would
experience recurrent stress-inducing events. In accord with
dynamic resilience theory, the history of task performance plays
a prominent role in moderating the status of one’s dynamic
resilience (Hill et al., 2018b). Hence, the intention for the
working baseline was to provide a period to build a history
of task performance and induce a standardized mental set
across participants (Walker et al., 2019). The high task difficulty
stress periods were purposed with evoking experiences of task
stress and failures for participants to overcome. Meanwhile, the
low task difficulty recovery-to-work periods were designed to
reduce task difficulty to working baseline conditions and evaluate
how participants recovered and continued performing following
stress periods.

2.4. Amended Three Rs Paradigm
An amended Three Rs paradigm was implemented toward
compatibility with the dynamic resilience framework. Laborde
et al. (2017)’s Three Rs paradigm was amended two-fold,
(1) redefine rest and recovery phase parameters, and (2)
the repetition of the Three Rs sequence. Firstly, the rest
and recovery phase parameters were redefined to reflect how
individuals’ respond and recover to task stressors while working
within an on-going task. This was achieved by applying
a common workload (i.e., low difficulty) between the two
phases. Furthermore, to better represent this paradigm for
temporal, multi-event experimental designs, we retitled “rest”
to “readiness” to reflect one’s willingness to perform and

preparedness to experience potential stressors. Secondly, the
repetition of the sequence (i.e., Readiness-Reactivity-Recovery-
Readiness-Reactivity-Recovery) provides an avenue toward
psychophysiological assessments of how vmHRV reactivity
interacts throughout the history of the task. The amended
Three Rs paradigm overlaid the experimental design and set the
following segments to acquire vmHRV:

• 2 min pre-task (no task) taken fromminutes 2–4 of the resting
baseline

• 2 min readiness period 1 (low task difficulty) taken from
minutes 10–12 of the working baseline

• 2 min reactivity period 1 (high task difficulty) taken from
minutes 12–14 of stress period 1

• 2 min recovery period 1 (low task difficulty) taken from
minutes 14–16 of recovery-to-working period 1

• 2 min readiness period 2 (low task difficulty) taken from
minutes 16–18 of recovery-to-working period 1

• 2 min reactivity period 2 (high task difficulty) taken from
minutes 18–20 of stress period 2

• 2 min recovery period 2 (low task difficulty) taken from
minutes 20–22 of recovery-to-working period 2.

Accordingly, this produced seven, two-minutes segments for
each vmHRV parameter. While traditional vmHRV guidelines
suggest five-minute minimum vmHRV segments, shorter
recordings of 60 s have been validated (Malik et al., 1996; Smith
et al., 2013). Therefore, the two-minute segments of vmHRV
parameters were used to calculate vmHRV reactivity scores.

2.5. EQ02 Lifemonitor
The EQ02 LifeMonitor (Equivital, Cambridgeshire, England) was
used as the hardware device to capture individuals’ ECG data.
The EQ02 lifemonitor is accurate and validated tool for ECG
and HRV research, albeit its proneness for higher artifact load
(Akintola et al., 2016). The EQ02 Lifemonitor consists of a sensor
electronics module (SEM) and a sensor belt. The sensor belt
presents as a vest that comprises two sensors that fit across the
midsection of the user’s torso. The SEM acquires data at 256
Hz. To export the acquired logged data, the SEM is connected
to a PC via remote USB connectivity and using its software,
Equivital Manager (Version 2.5.3.130, Equivital, Cambridgeshire,
England), the logged data can be exported and formatted into
comma separated values (csv) files for further analysis.

2.6. Experimental Protocol
Upon arrival, eligible voluntary participants were provided with
a plain language statement and consent forms to be signed to
provide consent to participate. A demographics was presented to
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participants to complete. Once completed, MATB-II RESMAN
instruction manuals were provided to participants, detailing the
task’s operation instructions and objectives. As the simplicity
of the MATB-II RESMAN task does not require long training
periods, approximately 10 min training period was allocated
for participants to familiarize themselves with the RESMAN
task. During the training period, participants were monitored
for competency and encouraged to ask questions if unclear on
the task instructions and mechanics. Upon the conclusion of
the training period, participants were fitted with physiological
measuring equipment. This included the Equivital vest; and
also an electroencephalography (EEG) and finger-based galvanic
skin response (GSR) sensor, and headphones that produced an
acoustic startle for research not presented in this paper (see
Crameri et al., 2020a for the findings on electrodermal activity
and dynamic resilience). Once fitted with the physiological
measurement equipment, a 6min resting baseline was conducted.
During the resting baseline, participants were directed to sit and
relax with their eyes open and to avoid talking and moving. After
the physiological parameters were acquired during the resting
baseline, participants commenced the 24 min experimental trial.
Upon finishing the trial, participants were assisted in removing
the physiological measurement equipment, had any further
questions about the experiment answered, and directed to leave
the experiment area.

2.7. Dynamic Resilience Groups-Based on
Performance Quantification
Participants’ dynamic resilience was derived from the RESMAN
subtask’s performance via (Crameri et al., 2020b)’s proposed
measure. Task performance was calculated by converting the two
primary tanks’ fuel units (tanki) into the total percentage error
from the optimal fuel level,

Ei(t) = abs(xi(t)− Targeti)/Targeti × 100 (1)

where Ei(t) is the % error of tanki at time point t. xi(t) is the
fuel level of tanki at time t. Targeti=1,2 = 2,500, is the optimal
fuel level, and abs is the absolute value function. The overall
performance errors at each time point, t, PE(t), was calculated via,

PE(t) =
1

n
×

∑
Ei(t) (2)

where n is the number of tanks, and lower PE(t) values reflect less
error and, therefore, higher performance. Crameri et al. (2020b)’s
dynamic resilience equation was calculated by firstly conducting
a first-order autoregressive [AR(1)] modeling on the time points
of the performance metric PE(t). The performance was recorded
at each 15 s interval. A window length of 10-points (150 s) was
used, with the window moving 1-point (15 s) at each iteration.

Dynamic resilience scores for the kth stress-recovery period
(RkAR) was derived as,

RkAR = SPkAR − RPkAR (3)

Where SPkAR is the maximum AR(1) value during the kth stress

period, and RPkAR is the minimum AR(1) value during the kth

recovery period. For the current study, k = 1, 2, thus, participants
produce two dynamic resilience values for each stress-recovery
block, with higher scores reflecting higher dynamic resilience.
To classify participants into dynamic resilience groups (e.g.,
lower, moderate, higher), the participants’ R1AR and R2AR scores
were paired and evaluated via a K-means cluster analysis
(Crameri et al., 2020b).

2.8. vmHRV Processing
Raw electrocardiogram (ECG) data was exported from the
Equivital into csv data files, and processed in MATLAB. Raw
ECG data for each participant was inspected for signal quality
and those deemed faulty or extremely noisy were excluded from
further analyses. The data was then segmented into respective
experimental conditions shown in Figure 2. For the working
baseline, data recorded between the 4th and 8th min were only
considered, as this would likely reduce the likelihood of practice
and boredom effects in the data. For each segment the following
processing pipeline was adopted.

The QRS complexes of the ECG recording were detected using
the Pan-Tompkins QRS detection algorithm (Pan and Tompkins,
1985). The RR intervals were calculated by taking the time
differences between two successive R-peaks. The derived RR-
series comprising of the RR intervals was examined and corrected
for any missed and/or extra beats using a quotient filter (Bartels
et al., 2017; Hettiarachchi et al., 2019). This yielded the inter-
beat-interval (IBI) series which is used for the vmHRV metric
calculation in millisecond (ms) units.

The vmHRV data used in this study was calculated following
the guidelines given in the Task force of the European society
of cardiology and the North American society of pacing and
electrophysiology (Malik et al., 1996; Berntson et al., 1997),
using the time domain method and the frequency domain
methods. Prior to frequency domain analysis, the IBI series was
interpolated and then re-sampled using a sampling frequency of 4
Hz (Bartels et al., 2017) and a linear detrend was applied using the
mean. The HF-HRV frequency domain parameter was evaluated
using the power spectral density, which was calculated by using
a Fast Fourier Transformation in this study. HF-HRV comprises
the total spectral power of all RR intervals between 0.15 and 0.4
Hz. Meanwhile, the time domain method analyses the IBIs and
capture the variation in time occurring between the beats. The
time domain vmHRV parameters included in the study comprise
the rMSSD and the pNN50.

vmHRV reactivity scores were calculated between each
successive vmHRV segment. vmHRV reactivity was calculated
via residualized change scores between each successive vmHRV
segment as a means of controlling for individual difference in
baseline vmHRV (Manuck et al., 1989; Howard et al., 2017).
This approach toward measuring vmHRV stress reactivity is
applied to overcome issues regarding the law of initial values
phenomenon (Larkin, 2006). In the context of physiological
responses, this phenomenon details how differences in resting
levels of physiological systems will influence the magnitude of
an emotional stimulus to the respective physiological system
under review. For example, statistically less vmHRV reactivity
may be exhibited in individuals possessing lower resting vmHRV
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FIGURE 3 | Dynamic resilience groups formed via K-means three clustering of RkAR (k = 1, 2) scores. (X denotes group centroid).

between task conditions than individuals with lower vmHRV due
to physiological ceiling effects that limit significant physiological
changes (Larkin, 2006; Diller et al., 2011). Hence, postulating
that resting vmHRV is a predictor of vmHRV reactivity and
will affect results if it is not controlled for. To remove this
effect, the residualized change scores are calculated by regressing
a vmHRV segment on the successive vmHRV segment (e.g.,
readiness period 1 regressed on reactivity period 1) (Diller et al.,
2011). Ultimately, producing six segments of vmHRV reactivity
scores, in which negative scores reflect elevated vagal reactivity
and positive scores reflect vagal stability.

2.9. Statistical Analysis
Repeated measures mixed analysis of variance (ANOVA) were
used to analyse the effects of within subject factor experimental
condition (six segments) and between subject factor resilience
groups (three groups: Lower, Moderate, and Higher) on the
time domain and frequency domain HRV parameters. The
assumptions for parametric testing were evaluated prior to
each analysis. Outliers were identified via the inspection of
the studentized residuals of each HRV metric. Outliers were
identified as those that were outside the boundaries of ±3, to
which one outlier was located and removed.

Shapiro-Wilks tests of normality was conducted on for each
HRV metric across each condition by each group. A natural log
transformation was applied to HF-HRV (denoted lnHF-HRV),
rMSSD (denoted lnrMSSD), and pNN50 (denoted lnpNN50)
data sets to reduce skewness prior to calculating residualized
change scores. A Levene’s test of homogeneity of variance
revealed equal variance for lnHF across all HRV metrics of
dynamic resilience groups across conditions (p < 0.05).
Homogeneity of covariance was supported by Box’s test of

equality of covariance matrices (p > 0.05) for lnHF-HRV but
not lnrMSSD (p < 0.019) and lnpNN50 (p = 0.001); however, as
homogeneity of variance was not violated for these HRV metrics
violations of this assumption was relaxed. Lastly, Mauchly’s
test of sphericity was inspected for violations in sphericity. A
Greenhouse-Geisser correction was applied when violations were
verified (p < 0.05).

3. RESULTS

3.1. Dynamic Resilience Groups
To classify participants into different dynamic resilience groups,
a K-means cluster analysis was conducted. Participants’ R1AR and
R2AR scores were paired for analysis. As depicted in Figure 3, the
analysis revealed 3 distinguishable groups. Clusters for Group 1
produced the smallest group (n = 14), with participants’ ages
ranging between 26 and 58 (M = 35.50, S.D = 11.40), with
6 males and 8 females. Group 1’s R1AR scores clustered between
0.34 and 0.74 and between 0.58 and 1.17 in R2AR. Twenty-five
participants (17 males and 8 females), aged between 20 and 56
(M = 29.88, S.D = 8.53) were clustered into Group 2. Group 2’s
R1AR scores and R2AR ranged between 0.77 and 1.58, and 0.29 and
0.84, respectively. Lastly, Group 3 comprised 21 participants (14
males and 7 females), aged between 20 and 33 (M = 28.10, S.D =

7.50). R1AR and R2AR ranged between 0.78 and 1.51, and 0.99 and
1.66, respectively.

In evaluating the R1AR and R2AR scores for the different groups,
it appears that participants were clustered into groups based upon
their dynamic resilience decay over the trial. More specifically,
participants in Group 1 appears to be those that possessed the
lowest dynamic resilience over the trial, with decays in dynamic
resilience occurring during stress-recovery block 1. Participants
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TABLE 1 | Mean (SD) values of lnrMSSD, lnpNN50, lnHF for each vmHRV segment across the three dynamic resilience groups [Low (n = 9), Medium (N = 18), and High

(n = 18)].

Group Segment

Readiness 1 Reactivity 1 Recovery 1 Readiness 2 Reactivity 2 Recovery 2

lnrMSSD

Lower −0.056 0.151 −0.009 −0.095 0.064 −0.072

(0.131) (0.375) (0.267) (0.250) (0.210) (0.120)

Moderate −0.091 −0.048 0.026 −0.102 0.034 −0.016

(0.365) (0.217) (0.346) (0.292) (0.225) (0.173)

Higher 0.119 −0.027 −0.021 0.149 −0.066 0.053

(0.288) (0.273) (0.294) (0.282) (0.221) (0.201)

lnpNN50

Lower −0.115 0.149 0.144 0.482 −0.111 0.019

(1.615) (1.667) (1.648) (1.237) (1.300) (1.041)

Moderate −0.065 −0.3167 0.053 −0.472 0.361 −0.473

(1.555) (1.349) (1.158) (1.137) (1.530) (1.531)

Higher 0.122 0.242 −0.125 0.231 −0.306 0.464

(0.667) (1.009) (0.934) (0.548) (0.884) (0.385)

lnHF

Lower −0.126 0.164 −0.029 −0.154 0.178 −0.093

(0.170) (0.369) (0.201) (0.292) (0.212) (0.136)

Moderate −0.046 −0.059 0.038 −0.082 −0.016 −0.010

(0.224) (0.254) (0.316) (0.258) (0.207) (0.181)

Higher 0.110 −0.023 −0.023 0.159 −0.073 0.057

(0.252) (0.291) (0.264) (0.318) (0.258) (0.259)

in Group 2 appear to represent those who exhibited higher
dynamic resilience during stress-recovery block 1, yet exhibited
dynamic resilience decaying in stress-recovery block 2; thereby,
in the context of the groups could be considered those that
possessedmoderate dynamic resilience for the task. Lastly, Group
3’s participants appear to represent those that possessed higher
dynamic resilience throughout the trial, as these participants
exhibited relatively higher dynamic resilience during both stress
block 1 and stress block 2.

Given the distinct groups created by the cluster analysis,
participants were analyzed in the context of their respective
group. Following the omission of participants with noisy ECG
signals and the identified outlier, the lower dynamic resilience
group comprised nine participants; moderate dynamic resilience
group included 18 participants; and the higher dynamic resilience
group comprised 18 participants. As recommended by Guo
et al. (2013), a specialized repeated measures statistical power
software, GLIMMPSE (https://glimmpse.samplesizeshop.org/),
was employed to ensure sufficient statistical power was present
for the following analyses. The software tool calculated a
statistical power of 0.960, thereby enhancing confidence toward
the mitigation of Type II errors.

3.2. vmHRV Reactivity Between Dynamic
Resilience Groups
Table 1 and Figure 4 presents the variation of the vmHRV
reactivity score of each parameters, lnrMSSD, lnpNN50, and

lnHF-HRV between each dynamic resilience group across the six
HRV reactivity segments.

A 3 (Dynamic resilience group [Lower dynamic resilience
group, Moderate dynamic resilience group, Higher dynamic
resilience group]) x 6 (vmHRV reactivity segment [Readiness1,
Reactivity1, Recovery1, Readiness2, Reactivity2, Recovery2])
mixed ANOVA was conducted on lnrMSSD reactivity scores,
lnpNN50 reactivity scores, and lnHF-HRV reactivity scores.
No statistically significant interaction was supported between
dynamic resilience group and vmHRV reactivity segment for
lnrMSSD reactivity scores [F(7.611,159.840) = 1.773, p =

0.09, η2 = 0.078]. A main effect for dynamic resilience
group was supported [F(2,42) = 3.562, p = 0.037, η2 =

0.145]; yet, a main effect for vmHRV reactivity segment was
not supported [F(3.806,159.840) = 0.128, p = 0.986, η2 =

0.003]. A post-hoc analysis with Bonferroni correction revealed
that the higher dynamic resilience group exhibited statistically
significantly smaller lnrMSSD reactivity scores across the
vmHRV reactivity segments than the moderate dynamic
resilience group (M =-0.067, p = 0.011).

No statistically significant interaction was supported between
dynamic resilience group and vmHRV reactivity segment for
lnpNN50 reactivity [F(6.011,126.226) = 1.506, p = 0.181, η2 =

0.067]. Additionally, no main effects for dynamic resilience
groups [F(2,42) = 0.950, p = 0.395, η2 = 0.043] and vmHRV
reactivity segments [F(3.005,126.226) = 0.044, p = 0.988, η2 =

0.001] were supported.
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FIGURE 4 | Aggregated vmHRV reactivity scores between dynamic resilience group across vmHRV reactivity segments. (A) lnrMSSD; (B) lnpNN50; (C) lnHF-HRV.

A statistically significant interaction was supported between
dynamic resilience group and vmHRV reactivity segment on
lnHF-HRV reactivity [F(7.205,151.300) = 2.589, p = 0.014, η2 =

0.110]. Simple main effects for dynamic resilience groups across
each phase, of which statistical differences were supported in
Readiness 1 [F(2,42) = 3.881, p = 0.028, η2 = 0.156] and
Readiness 2 [F(2,42) = 4.709, p = 0.014, η2 = 0.183]. Post-
hoc analyses with Bonferroni correction revealed statistically
significant lnHF-HRV reactivity between the lower dynamic
resilience group and the higher dynamic resilience group in
Readiness 1 (p = 0.046) and Readiness 2 (p = 0.034).Meanwhile,
post hoc analyses with Bonferroni correction revealed statistically
significant lnHF-HRV reactivity between the moderate dynamic
resilience group and the higher dynamic resilience group in
Readiness 2 (p = 0.049). No simple main effects were supported
for vmHRV reactivity segments across groups (p > 0.05).

4. DISCUSSION

The current study’s objective was to examine if distinct vagal
reactivity emerges based upon dynamic resilience classification
within an on-going, dynamic decision-making task. Additionally,

the current study also sought to examine if an amended Three
Rs paradigm offered value in evaluating vagal reactivity across
temporal characteristics of a dynamic decision-making task
between dynamic resilience groups. Firstly, this was achieved
by measuring and classifying participants’ dynamic resilience
via a dynamic decision-making task that presented two stress
and recovery-to-working periods (Hill et al., 2018a; Crameri
et al., 2020b). Classification of participants’ dynamic resilience
revealed three dynamic resilience groups that appeared to
be representative of the stage in which participants’ dynamic
resilience diminished (i.e., during stress block 1, stress block
2, or not at all) (Crameri et al., 2020b). Cardiac vagal control
was derived through three vmHRV parameters that comprised,
rMSSD, pNN50, and HF-HRV (Malik et al., 1996; Berntson et al.,
1997; Laborde et al., 2017). To assess vagal reactivity between
task conditions and promote compatibility within the dynamic
resilience framework, vmHRV segments were created through
an amended Three Rs paradigm. This paradigm overlayed
the dynamic resilience paradigm and produced seven vmHRV
segments to which six vmHRV reactivity score were calculated.
An aggregated analysis of each groups’ vmHRV reactivity score
across each vmHRV parameter was conducted to identify if
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significant interactions or differences existed between the groups
and the vmHRV reactivity segments. It was hypothesized that
higher dynamic resilience groups would exhibit smaller vagal
reactivity (i.e., small decreases in vmHRV reactivity scores),
derived from vmHRV parameters (rMSSD, pNN50, HF-HRV),
than lower dynamic resilience groups. Furthermore, it was
hypothesized that higher dynamic resilience groups would
exhibit smaller vmHRV reactivity during reactivity periods,
and higher vagal stability (i.e., increases in vmHRV reactivity
scores) following reactivity periods compared to lower dynamic
resilience groups (Laborde et al., 2018). Overall, the findings
partially supported the hypotheses as statistically significant
differences were supported in lnrMSSD and lnHF-HRV reactivity
scores but not lnpNN50 reactivity scores between dynamic
resilience groups; and the higher dynamic resilience group
exhibited statistically higher vagal stability than the moderate
dynamic resilience group following the reactivity period.

Prior to interpreting the results, the context in which
vmHRV reactivity scores are assessed is important; as different
interpretations may be present for similar patterns of vmHRV
reactivity scores. For example, while larger negative vmHRV
reactivity scores is widely accepted as a physiological adaptation
of self-regulation toward threatening and challenging tasks
(Hjortskov et al., 2004; Seery, 2011; Laborde et al., 2017, 2018),
reasons for positive vmHRV reactivity scores are two-fold. Firstly,
positive vmHRV reactivity scores could indicate the individual
has overcome task stress and has returned to a comfortable
working state (Laborde et al., 2018). Conversely, positive vmHRV
reactivity scores may be a response to “giving up” on the task
due to difficulty. Depending on the nature of the task and the
ramifications that comes with yielding, individuals may vary in
their physiological adaptive response. If conceding from a task
that had high ramification for failure, individuals may become
overstimulated from stressful task events due to contributing
somatic anxiety symptoms in which large decrease in vmHRV
reactivity scores are exhibited (Taylor et al., 2009; Thompson
et al., 2015). Alternately, if there are no consequences for “giving
up” (e.g., participating in a laboratory study), vmHRV reactivity
scores may exhibit increases in which the stressful task events
no longer elicit an effect as the individual has no emotional
investment in the outcome.

Supporting their close parametric relationship, similar
patterns of lnrMSSD and lnHF-HRV reactivity scores were
exhibited between dynamic resilience groups across the vmHRV
reactivity segments. In the context of dynamic resilience during
the first stress block, vmHRV reactivity scores during reactivity
1 and recovery 1 revealed elevated vagal reactivity in the
higher dynamic resilience group. Vagal reactivity during these
vmHRV reactivity segments were relatively small and may
reflect positive self-regulation of higher workload during the
stress period, and self-regulatory recovery processes during
recovery 1 (Laborde et al., 2018). Meanwhile, despite recording
higher performance, the moderate dynamic resilience group
exhibited high vagal reactivity during the reactivity 1 vmHRV
segment. This may signal a large investment of self-regulatory
resources toward overcoming the more challenging task event,
that may have been a contributor to the performance decline

in the following stress block. However, during recovery 1, the
moderate dynamic resilience group exhibited vagal stability,
potentially indicating an initial relief to the reduced workload.
The lower dynamic resilience group appeared to relax during
this stress period, as their vmHRV parameter reactivity score
increased. Given the context of this trend in which the lower
dynamic resilience group exhibited poorer performance during
stress period 1, this vmHRV reactivity pattern was possibly due
to task disengagement or withdrawal of emotional investment
as a consequence of the task difficulty being too high. However,
during the recovery 1, the lower dynamic resilience group
exhibited small elevated vagal reactivity that may suggest their
re-engagement into the task.

During the second stress block, large vmHRV reactivity score
differences emerged between higher and moderate dynamic
resilience groups. In particular, the moderate dynamic resilience
group exhibited high vagal reactivity, whereas the higher
dynamic resilience group appeared to exhibit vagal stability in
which vmHRV reactivity scores dramatically increased. In the
context of the respective groups’ performance, the moderate
dynamic resilience group’s pattern of vagal reactivity may reveal
indications of decaying self-regulatory processes that have arisen
due to the residual effects of previous stressful task events
(Laborde et al., 2018). Conversely, the higher dynamic resilience
group appears to exhibit vagal stability in which they may
have habituated to the task difficulty and no longer require
the physiological adaptations to successfully undertake the task
(Lü et al., 2016; Howard et al., 2017). lnrMSSD and lnHF-
HRV reactivity scores during reactivity 2 revealed different
vagal outcomes for the moderate dynamic resilience group.
lnrMSSD reactivity scores were positive, thereby suggesting
that the moderate dynamic resilience group experienced vagal
stability; as opposed to small negative lnHF-HRV reactivity
scores. Nevertheless, this may indicate levels of disengagement
or withdrawal of emotional investment from the task due to the
increased workload in which the moderate dynamic resilience
group can no longer cope with.

Meanwhile, the higher dynamic resilience group exhibited
high vagal reactivity during the reactivity 2. While appearing to
habituate to the task difficulty during the readiness 2 vmHRV
reactivity segment, the higher dynamic resilience group did not
exhibit habituating effects during the second stress block as
there was larger elevated vagal reactivity in reactivity 2 than
reactivity 1. This may highlight the temporal effects of an on-
going task in which the role of task history and current task
status (i.e., performance level) influences habituation. Following
reactivity 2, the higher dynamic resilience group vagally stabilized
during recovery 2 indicating relief from lower task load. Finally,
the lower dynamic resilience group exhibited a similar vmHRV
reactivity pattern to the first stress block, in which vagal reactivity
was present during readiness 2 and recovery 2, and vagally
stabilizing during reactivity 2. Again, this is likely due to
disengagement with the task during higher task load, and re-
engagement during lower task load.

Statistically, analyses partially supported the hypothesis that
the higher dynamic resilience groups would exhibit smaller
vagal reactivity than the lower dynamic resilience groups; as
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lnrMSSD reactivity scores were overall significantly lower in
the higher dynamic resilience group when compared to the
moderate dynamic resilience group across vmHRV reactivity
segments. According to the NVI model, this may suggest
that higher dynamic resilience may be a product of enhanced
temporal processing of the CAN (Thayer et al., 2009; Smith
et al., 2020). In particular, dynamic resilience within a dynamic
decision-making task may index the efficiency of temporal
executive functions, in which the individual will possess superior
strategizing and scheduling toward executing optimal courses
of action. Additionally, dynamic resilience may also provide
an index of temporal characteristics of emotional-regulation
that facilitate the regulation of stressful or challenging events
(Seery, 2011; Smith et al., 2017). However, neither higher or
moderate dynamic resilience groups’ vmHRV reactivity scores
were statistically different from the lower dynamic resilience
group; yet this was potentially due to task disengagement.

While analyses of lnrMSSD reactivity scores supported global
difference between higher and moderate dynamic resilience
groups, a significant interaction was supported in the analysis
of lnHF-HRV reactivity scores between dynamic resilience
groups across vmHRV reactivity segments. Further analyses
of simple main effects revealed that higher dynamic resilience
promoted vmHRV stability during readiness 2; thereby partially
supporting the hypothesis that higher dynamic resilience groups
would exhibit higher vagal stability following reactivity periods
compared to lower dynamic resilience groups. This finding
may further explain why the higher dynamic resilience group
overcame the proceeding stress period as opposed to the
vagally reactive moderate dynamic resilience group. Firstly, as
aforementioned, higher dynamic resilience may have promoted
habituation to task difficulty in which the individuals no longer
exhibit vmHRV reactivity. According to an extended theory of
the NVI model titled, the vagal tank theory (Laborde et al.,
2018), inhibiting vmHRV reactivity may temporally enhance the
higher dynamic resilient individuals’ capacity of physiological
resources that are called upon for self-regulation during stressful
or challenging events. Hence, as the moderate dynamic resilience
group did not habituate to the task during readiness 2, their
vagal expenditure limited that availability of future physiological
resources and, consequently, led to respective group members
being overwhelmed by the task difficulty during reactivity 2.

As a point forward for operationalizing, the dynamic resilience
concept and measure is still in its early infancy and requires a
plethora of empirical research to validate its value across various
human factors and human performance domains. Dynamic
resilience was developed for human performance purposes,
with the primary aim directed at predicting the on-set of
irreversible performance declines (Hill et al., 2018a,b). The
construct itself should not be conceived as a stable personal
attribute like trait resilience, but a malleable cognitive process
that may simultaneously change across various tasks and
settings. However, the integrity of dynamic resilience cognitive
framework is quite thin, as Hill et al. (2018b)’s proposed
methodological avenues for dynamic resilience appear to be
more reflective of task proficiency than cognitive processes.
Clearly, task proficiency will contribute to the build of dynamic

resilience as training and experience will mitigate the expenditure
of cognitive and physical resources during task engagement,
as well as when overcoming task stressors. As for cognitive
contributors, the current study presents a potential avenue
via the CAN. The significant link between vmHRV, cognitive
performance and dynamic resilience classifications support a
potential CAN-dynamic resilience interaction. The findings
suggest that dynamic resilience may, at least partially, index the
temporal processes of the CAN during executive functioning
tasks. Hence, suggesting dynamic resilience may be built upon
task proficiency and the efficiency of CAN functioning.

4.1. Methodological Considerations
The current experimental design aimed to impose recurring
stress-recovery periods in the pursuit of measuring dynamic
resilience. However, as observed in the current study, it was
susceptible to participant disengagement with the task due to
boredom or more likely task difficulty. This appears to be evident
in the lower dynamic resilience group as their vmHRV reactivity
patterns did not follow the trends of the other groups. Hence,
experimental designs need to consider methods to enhance
anxiety to task failures in order to more accurately capture
physiological measures of lower dynamic resilience individuals
or groups. This is one of the primary limitations of the task
stress imposed in laboratory environments as it will never
simulate the fidelity of task stress imposed in ecological task
environments. This is largely due to the ramification for failure
being predominantly absent in laboratory studies compared to
the ramification for failure in operational task environments
where personnel may be at risk of job security/selection, loss
of equipment, and in extreme situations, loss of life. However,
laboratory studies will always be of value given their relative
low cost, flexibility in testing non-experts, and the capability
to directly target cognitive functions of interest. Given this,
potential considerations for laboratory studies to generate “buy
in” from participants may be through competition, as lower
HRV is found in competing athletes with higher cognitive
and somatic anxiety psychometric scores (Fortes et al., 2017).
Furthermore, teamwork may also generate more ecological
physiological measurements as social desirability to succeed and
not be seen as a weak linkmay increase “buy in” from participants
and produce somatic anxiety responses during task failures.
Ultimately, through human-interaction participants may be
more inclined to commit to the experiment and reduce the gap
between laboratory and ecological settings.

Further methodological consideration pertains to the
number of confounding variables that must be accounted for
when conducting vmHRV research (Laborde et al., 2017).
In particular, during the experiment, participants wore
physiological equipment and experienced acoustic startle
stimuli for purposes not related to the current research (see
Crameri et al., 2020a). There is a possibility that the additional
physiological equipment and external factors contributed to
task disengagements and dynamic resilience declines due to
physical discomfort. Moreover, the acoustic startle stimuli are
unlikely to affect vmHRV as the task effects are more likely
to mask physiological startle responses (Walker et al., 2019).
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Furthermore, large quantities of demographics pertaining
to participants’ physiology and lifestyle factors are desired
to provide adequate descriptions of the sample examined.
While this current study did not capture a large battery
of specific physiological and lifestyle factors, it did record
age, sex, and asked required participants to be physically
and psychologically healthy. Furthermore, the use of the
residualized change scores calculation controlled for the
individual differences between participants, thereby mitigating
their internal effects (Diller et al., 2011; Howard et al., 2017).
Nevertheless, specific cardiac screening measures should be
considered in future research.

5. FUTURE RESEARCH AND CONCLUSION

To conclude, the finding support differences in vagal reactivity
between dynamic resilience groups, albeit only in dynamic
resilience groups hypothesized to be engaged throughout the
task. It appears that higher dynamic resilience reflects more
efficient functioning of the CAN, in which these individuals’
exhibit less vmHRV reactivity during higher stress periods and
greater vmHRV stability during recovery periods. This pattern of
vmHRV activity may allow higher dynamic resilience individuals
to conserve physiological resources toward prolonged coping
within an on-going, complex task environment. Lastly, the
significant interaction within the lnHF-HRV reactivity parameter
partially supported the implementation of an amended Three
Rs paradigm to evaluate if vagal reactivity can be temporally
evaluated within a dynamic decision-making task between
dynamic resilience groups.

According to the existing literature, this study provides a
pilot effort toward pairing vmHRV to dynamic resilience. The
empirical support of vmHRV and dynamic resilience offers a
step forward as previous efforts to link physiological measures,
such as skin conductance levels, to dynamic resilience were
deemed insensitive (Crameri et al., 2020a). Hence, this research
presents several avenues for future research to further ground
the dynamic resilience theory.Given the empirical support
linking trait resilience to self-regulation and dynamic resilience
to temporal self-regulation and performance outcomes, these
collective characteristics of resilience are likely to influence the
neurobiological response to stress (Thayer et al., 2009; Laborde
et al., 2018). Therefore, one path comprises examining if the
convergence of trait resilience and dynamic resilience measures
further distinguishes vmHRV and enhances the resilience profile
toward greater markers of self-regulation and performance.
A further research path could examine classifications and
performance trajectory via machine learning methods. By testing
combinations of performance and physiological measures for
predictive power of dynamic resilience and performance, future

dynamic resilience assessments can be enhanced and automated
to provide quick accurate information of working personnel for
industry organizations. Lastly, dynamic resilience theory and
metrics could be examined as part of a more global cognitive
performance theory and assessments such as Cognitive Readiness
constructs (Grier, 2012; O’Neil et al., 2014; Crameri et al.,
2019) or Cognitive Fitness assessments (Aidman, 2020). This
would be most suitable at the operational and tactical levels
of cognitive readiness, and either the cognitive gym, advanced
cognitive training, or mission-ready training of the cognitive
fitness framework depending on the training or monitoring
objectives; for example, fatigue tolerance assessments (Aidman
et al., 2018; Crameri et al., 2019; Aidman, 2020). Ultimately,
through the aforementioned future research paths, dynamic
resilience may become a valued component of operational
performance predictions.
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