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Abstract: Oxidative stress has been implicated in the pathogenesis and progression of COPD. 

Both reactive oxidant species from inhaled cigarette smoke and those endogenously formed by 

infl ammatory cells constitute an increased intrapulmonary oxidant burden. Structural changes 

to essential components of the lung are caused by oxidative stress, contributing to irreversible 

damage of both parenchyma and airway walls. The antioxidant N-acetylcysteine (NAC), a 

glutathione precursor, has been applied in these patients to reduce symptoms, exacerbations, 

and the accelerated lung function decline. This article reviews the available experimental and 

clinical data on the antioxidative effects of NAC in COPD, with emphasis on the role of exhaled 

biomarkers.
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Introduction
Infl ammation and oxidative stress play an important role in the pathogenesis of many 

chronic infl ammatory lung disorders such as COPD, asthma, bronchiectasis, and 

cystic fi brosis (CF). A complex interplay between the specifi c cause of the disease, 

host characteristics, and the type and intensity of infl ammation and oxidative stress 

results in the clinical picture and likelihood of progression of that specifi c disease. 

Noninvasively obtained biomarkers of infl ammation and oxidative stress have been 

identifi ed, and, ideally, should represent the intensity of the ongoing pathological 

processes within the lungs. This review focuses on the role of oxidative stress in the 

pathogenesis of COPD and the ability of N-acetylcysteine (NAC) to attenuate this 

process. Specifi c attention is paid to the role of biomarkers that follow the course of 

the disease and the effect of antioxidant interventions.

Oxidants and antioxidants in the lungs of patients 
with COPD
Several reviews have summarised the available data on the presence and consequences 

of oxidative stress in the lungs of “healthy” smokers and smokers with COPD (Repine 

et al 1997; MacNee and Rahman 1999; Rahman and MacNee 1999; Barnes 2000; 

MacNee 2000) (see Table 1). Cigarette smoke is a major source of oxidants in the 

lungs, eg, free radicals, nitric oxide (NO), semiquinone radicals, hydroxyl radicals, and 

hydrogen peroxide (H
2
O

2
) (MacNee and Rahman 1999). Furthermore, cigarette smoke 

promotes the infl ux and activation of neutrophils and macrophages. Leukocytes from 

smokers release more oxidants like superoxide anion (O
2

–) and H
2
O

2
 than leukocytes 

from nonsmokers (Morrison et al 1999). The alveolar macrophages of smokers 

contain increased amounts of iron and release more free iron than those of nonsmokers 
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Mateos et al (1998). The presence of free iron facilitates the 

generation of very reactive hydroxyl radicals.

An important part of the pulmonary antioxidant defense 

is located in the epithelial lining fl uid (ELF). Vitamin C 

and vitamin E levels in ELF are depleted in smokers, but 

glutathione (GSH) levels are increased (Cantin et al 1987; 

Rahman and MacNee 1996; Morrison et al 1999). These 

effects depend on the time-course of exposure to tobacco 

smoke. Acute exposure markedly depletes antioxidants 

in plasma (Rahman et al 1996, 1997), intracellular 

GSH of erythocytes (Maranzana and Mehlhorn 1998), 

and GSH levels in ELF (Cantin et al 1987; Morrison 

et al 1999).

Alterations in the lung caused by 
oxidative stress
Both in vitro and in vivo experiments have demonstrated that 

oxidative stress may cause alterations in essential components 

of the lung, contributing to pathological abnormalities and 

functional changes (Table 2) (Rahman and MacNee 1996; 

Warren et al 1997).

Increased numbers of reactive oxygen species (ROS) 

have been shown to reduce the synthesis of elastin and 

collagen (Laurent et al 1983; Cantin and Crystal 1985). 

ROS may also affect the structure of components of the 

extracellular matrix, such as hyaluronate (Warren et al 

1997). Depolymerisation of the proteoglycans in the 

lung reduces the viscosity of the extracellular matrix. 

Oxidative stress may also initiate or amplify alterations 

in the airway wall. Lipid peroxidation may initiate the 

release of arachidonic acid from membrane phospholipids, 

in this way leading to release of prostaglandins and 

leukotrienes. Increased levels of ROS may also increase 

interleukin-1 (IL-1) and IL-8 production in several cell 

systems (Ghezzi et al 1991; Metinko et al 1992). Other 

effects include changes in protein structure leading to 

altered antigenicity and thus immune responses, contraction 

of smooth muscle, impairment of beta-adrenoceptor 

function, stimulation of airway secretion, pulmonary 

vascular smooth muscle relaxation or contraction, and 

activation of mast cells (Warren et al 1997). ROS may 

inactivate antiproteases such as alpha-1-proteinase 

inhibitor and secretory leukoprotease inhibitor (Abboud 

et al 1985). Changes in the alveolar epithelial cell layer 

occur both as a direct result of inhaled ROS and through 

the aforementioned alterations (Cotgreave and Moldeus 

1987). Sequestration of neutrophils may occur in the lung 

microcirculation, initiated by inhaled tobacco smoke 

(MacNee et al 1989). The increased and prolonged 

presence of these infl ammatory cells contributes to, for 

example, the cycle of locally increased ROS production 

and attraction of new infl ammatory cells. Finally, oxida-

tive stress activates the transcription factor nuclear factor 

kappa-beta (NF-kb), which switches on the genes for 

tumor necrosis factor-alpha (TNF-alpha), IL-8, and other 

infl ammatory proteins (Barnes 2000; Rahman and MacNee 

2000), in this way enhancing infl ammation.

Table 1 Indices of increased oxidative stress in COPD. 
Modifi ed after Rahman and MacNee (1999)

Biochemical marker

Elevated breath hydrogen peroxide and 8-isoprostane levels
Decreased plasma antioxidant capacity
Elevated plasma lipid peroxides (TBARs) levels
Plasma protein sulhydryl oxidation
Increased exhaled carbon monoxide
Release of ROS from peripheral blood neutrophils and alveolar 
macrophages
Increased urinary isoprostane F2-alpha-III levels

Abbreviations: TBARs, thiobarbituric acid-reactive substances.

Table 2 Alterations in components of the lung caused by 
oxidative stress. Modifi ed after Rahman and MacNee (1996), 
Warren et al (1997), and Dekhuijzen (2004)

Airway wall Contraction of airway smooth muscle
 Impairment of Beta-adrenoceptor function
 Stimulation of airway secretion
 Pulmonary vascular smooth-muscle relaxa-

tion or contraction
 Activation of mast cells

Alveolar epithelial cell layer > Permeability by detachment
 < Adherence
 > Cell lysis

Lung matrix < Elastin synthesis and fragmentation
 < Collagen synthesis and fragmentation
 Depolymerisation of proteoglycans

Antiproteases Inactivation of alpha-1-proteinase inhibitor
 Inactivation of secretory leukoprotease 

inhibitor

Pulmonary microcirculation > Permeability
 PMN sequestration
 > PMN adhesion to endothelium of arteri-

oles and venules

Transcription factors Switch-on of genes for TNF-alpha, inter-
leukin-8, other infl ammatory proteins

Abbreviations: PMN, polymorphonuclear leukocyte; TNF-alpha, tumor necrosis 
factor-alpha.
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Taken together, these data strongly suggest that oxidative 

stress is an important pathogenetic factor in the alterations in 

the lungs of patients with COPD. Attenuation of oxidative 

stress would be expected to result in reduced pulmonary dam-

age and a decrease of local infections, in this way contributing 

to attenuation of the progression of COPD. At present the 

only antioxidant widely available for the treatment in patients 

with COPD is NAC.

Antioxidant therapy with NAC in 
COPD
Antioxidant properties
NAC has direct and indirect antioxidant properties. Its free 

thiol group is capable of interacting with the electrophilic 

groups of ROS (Moldeus et al 1986; Aruoma et al 1989). 

This interaction with ROS leads to an intermediate formation 

of NAC thiol, with NAC disulfi de as a major end product 

(Cotgreave 1997). NAC also exerts an indirect antioxidant 

effect related to its role as a GSH precursor. GSH is a 

tripeptide made up of glutamic acid, cysteine, and glycine. It 

serves as a central factor in protecting against internal toxic 

agents (such as cellular aerobic respiration and metabolism 

of phagocytes) and external agents (such as NO, sulfur oxide, 

and other components of cigarette smoke, and pollution). 

The sulfydryl group of cysteine neutralises these agents. In 

vitro, NAC acts as a precursor of GSH as it can penetrate 

cells easily and is subsequently deacylated to deliver cysteine 

(Moldeus et al 1986).

Clinical pharmacology
NAC is rapidly absorbed after oral administration (Sheffner 

et al 1966; Rodenstein et al 1978; Borgstrom et al 1986). 

Maximum plasma concentration after oral administration is 

reached after 2–3 hours (Bridgeman et al 1991) and plasma 

half-life is 6.3 hours. NAC undergoes extensive hepatic 

metabolism, resulting in a low bioavailability of about 

10% of the unchanged molecule. Cysteine and GSH levels 

are increased transiently in plasma (Cotgreave et al 1987; 

Bridgeman et al 1991) and lung (Bridgeman et al 1991) after 

oral administration of NAC 600 mg once daily. In patients 

with COPD, 600 mg three times daily increased plasma GSH 

levels (Bridgeman et al 1994). With this dose, administered 

for 5 days to patients who underwent lung resection surgery, 

cysteine and GSH levels were increased by ~50% compared 

with untreated patients. These data suggest that there is a 

transient dose-dependent effect of NAC on lung cysteine 

and GSH levels.

Antioxidant and anti-infl ammatory effects
The effi cacy of NAC as a precursor of GSH synthesis 

has been studied in isolated mouse lungs (Moldeus et al 

1986). Cigarette smoke administered directly to the lung 

through the trachea caused a dose-dependent reduction 

in total pulmonary GSH. Administering NAC together 

with cigarette smoke prevented the loss of pulmonary 

GSH and abolished the effects of cigarette smoke. NAC 

reduced H
2
O

2
-induced damage to epithelial cells in vitro 

(Cotgreave and Moldeus 1987) and NF-kb activation in 

some cells (Schreck et al 1992). In addition, NAC treat-

ment reduced cigarette smoke-induced abnormalities in 

polymorphonuclear leukocyte (PMN) (Bridges 1985), 

alveolar macrophages, fi broblasts, and epithelial cells in 

vitro (Moldeus et al 1985; Voisin 1987; Linden et al 1988; 

Drost et al 1991). Treatment with NAC also attenuated 

rat secretory cell hyperplasia induced by tobacco smoke 

(Jeffery et al 1985) and prevented hypochlorous acid 

(HOCl)-mediated inactivation of alpha-1-proteinase inhibi-

tor in vitro (Borregaard 1987). In a rat model of cigarette 

smoke-induced alterations in small airways, NAC prevented 

thickening of the airway wall and improved distribution of 

ventilation (Rubio et al 2000). 

Treatment with NAC in humans alters the pulmonary 

oxidant–antioxidant imbalance. NAC 600 mg/day given 

orally increased lung lavage GSH levels (Bridgeman et al 

1991), reduced O
2

– production by alveolar macrophages 

(Linden et al 1988), and decreased bronchoalveolar lavage 

(BAL) polymorphonuclear leukocyte (PMN) chemilumi-

nescence in vitro (Jankowska et al 1993). NAC 600 mg/day 

in COPD patients also reduced sputum eosinophilic cation 

protein (ECP) concentrations and the adhesion of PMNs 

(Sadowska et al 2005). In vitro, NAC lowered adhesion of 

H. infl uenzae and S. pneumoniae to oropharyngeal epithelial 

cells (Riise et al 2000).

Effects on cigarette smoke-induced 
changes
Three studies have investigated the effects of NAC 600 mg/

day p.o. on parameters of infl ammation in BAL fl uid of 

“healthy” smokers (Bergstrand et al 1986; Eklund et al 1988; 

Linden et al 1988). NAC resulted in a tendency towards 

normalization of the cell composition with an increase in 

lymphocyte concentration (Linden et al 1988). In addition, 

improvements were observed in phagocytic activity of 

alveolar macrophages (Linden et al 1988) and an increase 

in the secretion of leukotriene B4 (Linden et al 1988). NAC 
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also reduced the stimulated production of superoxide radicals 

(Bergstrand et al 1986). Finally, markers of infl ammatory 

activity, such as eosinophil cationic protein, lactoferrin, and 

antichymotrypsin (p < 0.05) were reduced after administration 

of NAC (Eklund et al 1988).

Effects on elastase activity 
NAC treatment considerably reduced elastase activity, 

both in the bronchoalveolar cavity and in the plasma, 

which is related to its property to scavenge HOCl (Aruoma 

1989).

Modulatory effect on genes 
Redox signalling forms part of the fundamental mechanisms 

of infl ammation, such as cytokine induction, proliferation, 

apoptosis, and gene regulation for cell protection. Oxidants 

act as mediators of signal transduction, eg, activation of NF-

kb and activator protein-1 (AP-1). NAC has been shown to 

inhibit activation of NF-kb, which controls the cellular genes 

for intracellular adhesion molecules in intact cells (Schreck 

et al 1992). In addition, NAC has been shown to inhibit the 

expression of vascular cell adhesion molecule-1 in human 

endothelial cells (Marui et al 1993).

Effects on oxidative stress induced by 
viruses
Oxidant production in respiratory cells rises when they 

become infected with pathogenic viruses and this is 

accompanied by increased production of a variety of infl am-

matory mediators. NAC has been shown to have a protec-

tive role by increasing the resistance of mice to infl uenza 

virus (Streightoff et al 1966). Infl uenza virus increased 

the production of ROS in epithelial cells, and activated 

NF-kb (Knobil et al 1998). Pretreatment with NAC attenu-

ated virus-induced NF-kb and IL-8 release. Mice infected 

intranasally with infl uenza virus APR/8 showed high BAL 

levels of xanthine oxidase, TNF, and IL-6 as early as 3 days 

after infection (Akaike et al 1990). Xanthine oxidase was 

also elevated in serum and lung tissue. Administration of 

oral NAC 1 g/kg daily signifi cantly reduced the mortality 

of the infected mice (p < 0.005). Rhinoviruses also stimu-

lated increased production of H
2
O

2
 and oxidative stress of 

human respiratory epithelial cells (Biagioli et al 1999). 

Oxidative stress, in turn, caused activation of NF-kb and 

release of IL-8 and this effect was blocked by NAC in a 

dose-dependent manner.

Exhaled biomarkers of oxidative 
stress
Clinically, physicians may expect that exhaled markers 

reveal insight into the pathophysiology, have a role in the 

assessment of the severity of infl ammation–oxidative stress, 

predict lung function deterioration, and provide individual 

guidance during (pharmaco)therapy. Some biomarkers 

cannot be measured directly in exhaled air, but have to be 

measured in exhaled breath condensate (EBC), because they 

are not gaseous. The principle is to cool the exhaled air to a 

temperature around 0°C, so that the warm air condensates. 

The most common approach is to ask the subject to breathe 

tidally via a mouthpiece through a non-rebreathing valve in 

which inspiratory and expiratory air are separated. During 

expiration the exhaled air fl ows trough a condenser, which 

is cooled to 0°C by, for example, melting ice, and breath 

condensate is then collected into a collection vessel. Several 

markers can be measured in exhaled breath condensate, 

including H
2
O

2
, isoprostanes, NO metabolites, and thio-

barbituric acid-reactive substances (TBARs). 

Hydrogen peroxide
In both asthma and COPD, airway infl ammation is the 

most prominent characteristic. Activated inflammatory 

cells respond with a “respiratory burst”, which results in 

the production of ROS. Naturally occurring free radicals 

have an oxygen- or nitrogen-based unpaired electron. Clas-

sical examples are superoxide anion (O
2

–), hydroxyl radical 

(OH–), and NO. O
2

– is formed from oxygen. Reaction of 

O
2

– and H
2
O

2
 in the presence of transition metal produces 

OH. When catalyzed by neutrophil myeloperoxidase, H
2
O

2
 

and a chloride form HOCl. H
2
O

2
 acts as a central precursor. 

H
2
O

2
 levels refl ect the underlying state of oxidative stress in 

the lungs. The level of exhaled H
2
O

2
 signifi cantly depends 

on expiratory fl ow rate, indicating that the exhaled H
2
O

2
 is 

at least partially produced within the airways (Schleiss et al 

2000).

Methods of H
2
O

2
 measurement in breath condensate are 

based on the ability of H
2
O

2
 to react with suitable substrates 

leading to the release of colour, light, or fl uorescence. Two 

methods of analysis have been used most: the spectrophoto-

metrical method and the fl uorimetrical method. 

The concentration in normal individuals is almost 

undetectable and in many diseases the levels found are at the 

lower limit of detection of the assays employed. In COPD 

patients, the exhaled H
2
O

2
 shows a circadian rhythm and 
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signifi cant variability over a period of one day and several 

weeks (Jeffery 2002). The concentration of H
2
O

2
 in EBC is 

increased in stable COPD patients with a further increase 

during exacerbations (Dekhuijzen et al 1996).

Increased levels of H
2
O

2
 in EBC have been shown 

in stable COPD patients, with a further increase during 

exacerbations (Dekhuijzen et al 1996). Treatment with NAC 

600 mg once daily for 12 months reduced the concentration of 

H
2
O

2
 in EBC compared with placebo in stable COPD patients 

(FEV
1
 ~60%–70% of predicted) (Kasielski and Nowak 

2001). This effect was observed in the second 6 months of 

the treatment period. A higher dose of NAC (1.2 g once daily) 

reduced the concentration of H
2
O

2
 in EBC within 30 days, 

suggesting that there is a dose-dependent effect on this marker 

of oxidative stress (De Benedetto et al 2005).

Isoprostanes
Oxygen radicals such as O

2
 and O

2
– react with unsatu-

rated bonds of arachidonic acid, leading to the formation 

of bicycloendoperoxide intermediates. The reduction of 

these intermediates leads to the formation of isoprostanes. 

Reactive nitrogen species and polyunsaturated fatty acids 

other than arachidonic acid may also participate in the 

production of isoprostanes. Isoprostanes can be measured 

with analytic techniques such as high pressure liquid 

chromatography, gas chromatography–mass spectrometry 

or radio-immunoassay. They are stable in isolated samples 

of body fl uids and their measured values do not exhibit 

diurnal variations.

Montuschi and co-workers (Montuschi et al 2000) showed 

signifi cantly higher 8-isoprostane levels in COPD patients 

than in healthy subjects and found no difference between 

current smokers and ex-smokers, indicating that in COPD, 

exhaled 8-isoprostane is derived largely from oxidative stress 

from airway infl ammation rather than from cigarette smok-

ing. There was no relation between 8-isoprostane and age, 

sex, FEV
1
, and history of smoking.

NO metabolites
NO is a highly reactive molecule with a relatively short 

half-life in vivo. It can be oxidized or complexed with 

other biomolecules. The stable oxidation end products of 

NO metabolism are nitrite (NO
2
–) and nitrate (NO

3
–). NO 

can undergo a reaction with superoxide anion (O
2

–) to form 

peroxynitrite (ONOO–). Peroxynitrite reacts with tyrosine 

residues in proteins to form the stable product nitrotyrosine. 

NO and NO metabolites can also react with thiols (the major 

enzymatic antioxidants) to produce S-nitrosothiols. The 

concentration of nitrite can be assessed by a fl uorimetric 

assay. Incubation of samples with nitrate reductase allows 

the nitrate to be converted to nitrite, which can be measured 

subsequently. 

Recently, Corradi and co-workers compared nitrosothiols 

levels in EBC of healthy subjects (smoker and nonsmokers), 

asthma patients (mild and severe), COPD patients, and pa-

tients with CF (Corradi et al 2001). Levels of nitrosothiols 

were elevated in COPD patients compared with nonsmoking 

controls.

TBARs
TBARs are also a product of lipid peroxidation; they are 

volatile and may be present in expired breath. They are low-

molecular-weight compounds formed by the decomposition 

of certain primary and secondary lipid peroxidation products. 

At a low pH and elevated temperature, the lipid peroxidation 

products participate in a nucleophilic addition reaction with 

thiobarbituric acid, generating a red fl uorescent complex. 

They can be measured colorimetrically or fl uorimetrically.

In a cross-sectional study the concentration of TBARs 

was elevated in stable COPD patients compared with healthy 

subjects. TBARs and H
2
O

2
 concentration were elevated in 

asthma patients compared with both healthy control subjects 

and COPD patients. A signifi cant positive correlation was 

found between H
2
O

2
 concentration and TBARs concentration 

(Nowak et al 1999).

Effects of NAC on lung function and 
exacerbations
Lung function
In an open, observational survey in Sweden, the decline in 

FEV
1
 in COPD patients who took NAC for 2 years was less 

than in a reference group on usual care (Lundbäck et al 1992). 

This favorable effect was particularly apparent in COPD pa-

tients over 50 years of age (yearly decline of 30 mL in FEV
1
) 

compared with the reference group (yearly decline of 54 mL 

in FEV
1
). After 5 years, the loss of FEV

1
 in the NAC group 

was less than in the reference group (Lundbäck B 1993, pers 

comm). Clearly, it should be noted that the nature of the study 

design precludes fi rm conclusions on the effect of NAC on 

lung function decline in COPD.

Recently, the Bronchitis Randomized on NAC Cost-

Utility Study (BRONCUS) trial was conducted, testing the 
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hypothesis that treatment with the antioxidant NAC would 

reduce the rate of lung function decline, reduce yearly exac-

erbation rate, and improve outcome variables (Decramer et al 

2005). Patients with COPD (n = 523) were randomized in a 

multicenter, placebo-controlled study of NAC administered 

orally in a dose of 600 mg once daily. Patients were followed 

for 3 years. The rate of decline in FEV
1
 or vital capacity (VC) 

was not different in the 256 patients in the NAC group and 

the 267 patients in the placebo group. Secondary analysis 

in patients completing the trial showed that after 3 years, 

functional residual capacity (FRC) was decreased (– 0·374 L) 

in the NAC group, while it was slightly increased (+ 0·008 L) 

in the placebo group (p = 0·008).

Exacerbations
In a recent systematic review by Stey et al (2000), data on 

prevention of exacerbation, improvement of symptoms, 

and adverse effects were extracted from original reports 

(Figure 1). The relative benefi t and number-needed-to-treat 

were calculated for both individual trials and combined data. 

In 9 studies, 351 of 723 (48.5%) patients receiving NAC had 

no exacerbation compared with 229 of 733 (31.2%) patients 

receiving placebo: relative benefi t 1.56 (95% confi dence 

interval [CI] 1.37–1.77), number-needed-to-treat 5.8 (95% 

CI 4.5–8.1). There was no evidence of any effect of study 

period (12–24 weeks) or cumulative dose of NAC on effi cacy. 

In 5 trials, 286 of 466 (61.4%) patients receiving NAC 

reported improvement of their symptoms compared with 160 

of 462 (34.6%) patients receiving placebo: relative benefi t 

1.78 (95% CI 1.54–2.05), number-needed-to-treat 3.7 (95% 

CI 3.0–4.9). These fi ndings are in line with the outcomes of 

two previous meta-analyses using a less precise selection 

of these studies (Grandjean et al 2000; Poole and Black 

2001) and confi rm that NAC has a clinically signifi cant 

effect on the number and impact of exacerbations. Again, 

it should be stressed that patients included in these studies 

were not characterised as detailed, as currently would be 

demanded according to, eg, the GOLD guidelines (Pauwels 

et al 2001).

In the abovementioned BRONCUS trial, NAC did not 

infl uence the yearly exacerbation rate, but the hazard ratio for 

an exacerbation decreased signifi cantly by 22% in patients 

treated with NAC and not taking inhaled corticosteroids 

(p = 0·040) (Decramer et al 2005).

These effects may be explained in part by the protective 

effect of NAC on viral infections. The effects of NAC on 

infl uenza and infl uenza-like episodes have been studied 

in 262 patients suffering from nonrespiratory chronic 

degenerative diseases (De Flora et al 1997). Compared with 

placebo, NAC 600 mg twice daily for 6 months signifi cantly 

decreased both the frequency and severity of infl uenza-like 

episodes. Local and systemic symptoms were also signifi -

cantly reduced in the group receiving NAC. Although the 

seroconversion towards infl uenza virus was similar in the 

two groups, only 25% of the virus-infected subjects treated 

with NAC developed the symptomatic form of the condition 

compared with 79% of the placebo group.

Is NAC 600 mg once daily the right 
dose in patients with COPD?
It may be questioned if NAC 600 mg once daily is the right 

dose for an optimal effect in patients with COPD. The 

abovementioned studies on exhaled biomarkers indicate 

that NAC in a dose of 1200 mg daily is superior in reducing 

oxidative stress, measured by the concentration of exhaled 

H
2
O

2
. A recent study compared NAC 1200 mg daily, 600 mg 

daily, and placebo on markers of systemic infl ammation and 

symptoms in patients with COPD GOLD II-III (Zuin et al 

2005). NAC 1200 mg daily signifi cantly reduced C-reactive 

protein and IL-8 levels compared with NAC 600 mg daily 

and placebo. Both dosages were well tolerated.

Another indication that NAC in a higher dose might 

be more effective is provided by the recent data on the 

IFIGENIA study in patients with idiopathic pulmonary 

fi brosis (IPF) (Demedts et al 2005). This was a phase III, 
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Figure 1 Absence of any exacerbation with oral N-acetylcysteine (NAC) or 
placebo (P) in patients with COPD and/or chronic bronchitis. Each symbol 
represents one trial. Symbol sizes are proportional to trial sizes. Arrows are 
weighted means. -------- = line of equality. Source: Stey et al. 2000. The effect 
of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. 
Eur Respir J, 16:253–62. Copyright © 2000. Reproduced with permission of the 
European Respiratory Society Journals Ltd.
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double-blind, randomised, placebo-controlled study that 

assessed the effectiveness over 1 year of high-dose NAC 

(1800 mg daily) on top of the recommended standard therapy 

of prednisone–azathioprine in 155 IPF patients. The IPF diag-

nosis was confi rmed by independent histology and radiology 

expert committees.

This study showed that NAC, on top of prednisone–

azathioprine, had a signifi cant and clinically relevant effect on 

VC and diffusion capacity (DLCO test) at 6 and 12 months. 

NAC was well tolerated and no differences in side-effects 

were observed between the two groups.

Conclusions
Oxidative stress is considered to be an important part of the 

infl ammatory response to both environmental and internal 

signals. Transcription factors like NF-kb and AP-1 are acti-

vated by oxidative stress and in turn amplify the infl ammatory 

response to noxious stimuli. In this way, both oxidative stress 

and infl ammation are involved in the complex pathophysiol-

ogy of COPD, both in terms of pathogenesis and progression 

of the disease.

In vitro and in vivo data show that NAC protects the 

lungs against toxic agents by increasing pulmonary defence 

mechanisms through its direct antioxidant properties and 

its indirect role as a precursor of GSH synthesis. Indeed, 

reductions in exhaled biomarkers like H
2
O

2
 by NAC have 

been demonstrated in intervention studies with NAC.

In patients with COPD, treatment with NAC in a dose 

of 600 mg once daily reduces the risk of exacerbations and 

improves symptoms compared with placebo. The BRONCUS 

trial showed that this is especially the case in those COPD 

patients not using inhaled corticosteroids.

The partial activity of NAC in the BRONCUS trial might 

be explained by the relatively low dose administered (ie, 

600 mg once daily). Data on exhaled biomarkers and markers 

of systemic infl ammation, as well as the recent IFIGENIA 

study, indicate that higher dosages such as 600 mg twice daily 

should be administered in patients with COPD.
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