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According to the “obesity paradox,” for severe conditions, individuals with obesity

may be associated with a higher survival rate than those who are lean. However, the

physiological basis underlying the mechanism of the obesity paradox remains unknown.

We hypothesize that the glycocalyx in obese mice is thicker and more resistant to

inflammatory stress than that in non-obese mice. In this study, we employed intravital

microscopy to elucidate the differences in the vascular endothelial glycocalyx among

three groups of mice fed diets with different fat concentrations. Male C57BL/6N mice

were divided into three diet groups: low-fat (fat: 10% kcal), medium-fat (fat: 45% kcal),

and high-fat (fat: 60% kcal) diet groups. Mice were fed the respective diet from 3 weeks

of age, and a chronic cranial window was installed at 8 weeks of age. At 9 weeks of

age, fluorescein isothiocyanate-labeled wheat germ agglutinin was injected to identify the

glycocalyx layer, and brain pial microcirculation was observed within the cranial windows.

We randomly selected arterioles of diameter 15–45µm and captured images. The mean

index of the endothelial glycocalyx was calculated using image analysis and defined

as the glycocalyx index. The glycocalyx indexes of the high-fat and medium-fat diet

groups were significantly higher than those of the low-fat diet group (p < 0.05). There

was a stronger positive correlation between vessel diameter and glycocalyx indexes in

the high-fat and medium-fat diet groups than in the low-fat diet group. The glycocalyx

indexes of the non-sepsis model in the obese groups were higher than those in the

control group for all vessel diameters, and the positive correlation was also stronger.

These findings indicate that the index of the original glycocalyx may play an important

role in the obesity paradox.

Keywords: obesity paradox, sepsis, cranial window, microvascular circulation, glycocalyx layer

INTRODUCTION

Obesity is a risk factor for the development of various diseases (1–6). The body mass index (BMI) is
used to determine obesity; thus, BMI control is important from the perspective of lifestyle-related
diseases. Studies have shown that obesity is associated with diabetes (1), impaired glucose tolerance
(2), hypertension (3, 4), hypercholesterolemia, low high-density lipoprotein cholesterol (5), and
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the development and severity of ischemic heart disease (5, 6).
However, in some serious conditions, the prognosis is better in
patients with a higher BMI (7–11). In other words, obesity is not
only a risk factor for the development of disease but also linked
to a better prognosis in patients. This phenomenon is termed the
obesity paradox.

The obesity paradox was first discussed with respect to the
survival of patients undergoing dialysis in 1999 (7). Recent
systematic reviews, meta-analyses, and a retrospective cohort
study of a large patient database have revealed that a higher
BMI appears to increase survival of patients with sepsis (8–
10). Although clinical data on the obesity paradox have been
reported for heart failure (8, 9), diabetes mellitus (10), and critical
illness mortality (11), only a few experimental studies have been
conducted, and the pathophysiological mechanism of the obesity
paradox remains unknown. Therefore, research is required to
understand the mechanisms that cause the obesity paradox.

In recent years, glycocalyx (GCX), a glycoprotein that covers
the surface of vascular endothelial cells, has been a key topic of
research in terms of the treatment of severe conditions because
it plays an important role in maintaining the integrity of the
vascular walls and preventing plasma leakage (12). Disruption of
the GCX layer on endothelial cells occurs in a variety of serious
conditions, such as ischemia-reperfusion, inflammation, sepsis,
shock, hyper/hypovolemia, hyperglycemia, and surgery (12–14).
Additionally, increased expression of disintegration markers in
GCX may be associated with increased mortality in trauma
patients (15). Furthermore, syndecan-1 (Sdc-1) and hyaluronic
acid, which are important components of GCX, are released into
the blood of patients with severe conditions due to increased
hyperpermeability and low plasma colloid osmotic pressure (16,
17).

The destruction of the blood–brain barrier is related to the
occurrence and deterioration of neurological dysfunction in
ischemic stroke; it causes edema in the brain, despite the fact that
the tight junction formed is normal, and has a negative effect
on mortality. GCX plays an essential role in brain endothelial
cell transport system and central nervous system in maintaining
the integrity of the blood–brain barrier (18). Regarding the
pathogenesis of obesity paradox, to gain a deeper understanding
of the mechanism of obesity paradox, it may be useful to measure
the degree of GCX destruction and the thickness of GCX in
the brain.

In this study, we hypothesized that the GCX in obese mice
is thicker and more resistant to inflammatory stress than that
in non-obese mice. Therefore, we used intravital microscopy
to elucidate the differences in vascular endothelial GCX among
three groups of mice fed diets with different fat concentrations.
We then clarified the in vivo functional and structural changes
according to the degree of obesity of microvascular endothelial
cells using intravital microscopy. The primary endpoint of this
study was the presence of differences in the index of the GCX
layer according to the BMI. The index is an aggregation of
fluorescence-intensity signals from several GCX components,
such as glycosaminoglycans and heparan sulfate. The secondary
endpoints were changes in the index of the GCX layer and level
of Sdc-1 (a GCX degradation marker) according to the degree

of obesity under sepsis. We also quantified serum adiponectin,
which is thought to exert anti-inflammatory effects in sepsis (19).
Adiponectin is released exclusively fromwhite adipose tissue (20)
and is the most abundant adipose-specific adipokine (19).

METHODS

Animal Obesity Model and Ethical
Statement
Male C57BL/6N mice were purchased from Japan SLC, Inc.
(Shizuoka, Japan). The mice were divided into three groups:
low-fat (L, fat: 10% kcal), medium-fat (M, fat: 45% kcal), and
high-fat (H, fat: 60% kcal) diet (D12450, D12451, D12492,
Research Diets, Inc, New Brunswick, NJ) groups. The mice
were fed the respective diet from 3 weeks of age, provided
tap water acidified with hydrochloric acid ad libitum, and
housed in individually ventilated cage systems (Super Mouse
1400TM Micro-Isolator Rack; Lab Products, Inc., Seaford, DE,
USA) with a 12-h light/dark cycle. Thereafter, a chronic cranial
window (CCW) was surgically installed at 8 weeks of age.
The body fat percentage was measured in nine mice using
veterinary computed tomography (CT) with built-in body fat
measurement software (R_mCT2, Co, Rigaku, Tokyo, Japan).
All experimental protocols were approved by the Committee for
Animal Experiments at the National Institute of Public Health
(protocol number 31-002) and were in accordance with the
guidelines and laws for animal experiments in Japan.

Chemicals and Reagents
Fluorescein isothiocyanate (FITC)-labeled wheat germ agglutinin
(WGA) from Triticum vulgaris was purchased from Sigma-
Aldrich Co. (St Louis, MO, USA). Ketamine hydrochloride,
xylazine hydrochloride, and an adiponectin enzyme-linked
immunosorbent assay (ELISA) kit were purchased from
FUJIFILMWako Pure Chemicals Industries, Ltd. (Osaka, Japan).
The mouse-soluble CD138 (Sdc-1) ELISA kit was purchased
from Diaclone SAS (Besançon, France).

CCW Preparation
To visualize micro-vessels, a CCW was used, which is less
sensitive to adipocytes than the dorsal skin chamber. To install
the CCW, a hole of diameter 5mm was drilled in the skull
of mice, and a glass slide was placed on top of the CCW and
fixed with resin (Supplementary Figure 1). During the surgical
procedure, the mice were anesthetized via an intramuscular
injection of a mixture of ketamine (90 mg/kg body weight)
and xylazine (10 mg/kg body weight). The depth of anesthesia
was assessed based on toe pinch responses. Under anesthesia, a
cranial window of diameter 5mm was made via durotomy and
centered 2-mm posterior and 2-mm lateral from the bregma.

Sepsis Model
A sepsis model was established by performing cecal ligation and
puncture (CLP) on CCWmice obtained using the above method.
The Appendix of the anesthetized mice was exposed. The apical
5-mm tip of theAppendixwas ligated, and the tip was punctured
with a 21G needle. The Appendix was replaced in the abdominal
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cavity, the peritoneum was sutured, and the abdomen was closed.
The survival rate and body weight of the CLP-treated mice were
recorded after 24 and 48 h.

Measurement of Endothelial Glycocalyx
Index
At eight weeks of age, after inserting a CCW and performing
CLP, the mice were left to stabilize for approximately 24 h and
then injected with FITC-WGA via the tail vein. After 30min,
fluorescence images were obtained for each CCW (Figure 1).
Vascular images within the CCW were observed using an all-in-
one epifluorescence microscope (model BZ-9000; Keyence Co,
Osaka, Japan) equipped with a high-sensitivity charge-coupled
device camera and a ×20 long working distance objective lens
(S PlanFL ELWD ADM 20×C, NA = 0.45; Nikon Co., Tokyo,
Japan). Fluorescence images of WGA-FITC-stained regions were
analyzed using ImageJ software (NIH, Bethesda, MD, USA). We
defined the size of the FITC-WGA-positive layer as endothelial
glycocalyx index (GCXI), which denotes the accumulation
of several GCX components, such as glycosaminoglycans
and heparan sulfate. The GCXI was measured as previously
described (21), with minor modifications. Specifically, we
selected arterioles (15–45-µm diameter) and measured the
fluorescence intensity across three lines perpendicular to the
artery walls in each CCW to compare the GCXI among the
groups (Supplementary Figure 3A). Three lines perpendicular
to the vessel wall were drawn and measured using ImageJ
software. Because the obtained fluorescence-intensity values were
not continuous data, a simple moving average of the fluorescence
intensities at three points, including before and after, was
calculated to smooth the fluorescence-intensity values at each of
the obtained coordinates using an approximation formula. The
inflection point was calculated based on the fitted curve, and
the obtained data were differentiated twice. The two inflection
points where the GCXI was measured were the inflection points
in the range that matched the peak of the fluorescence curve
on the original image and that were considered inflection
points based on GCX staining. The two inflection points were
subtracted from each other, and the value was used as the GCXI,
which was considered the level of WGA-FITC accumulation
in the endothelial GCX layer similar to that described in the
measurement methods used in previous studies (22, 23). We
defined the GCXI as the value multiplied by the length per
pixel (Supplementary Figure 3B) and corrected by the actual
distance (0.37744 µm/pixel). We calculated three independent
GCXI values for individual mice and defined the mean values as
the GCXI of the respective animals. To compare the measured
GCXI with GCX thicknesses of various vessel diameters reported
in previous studies, we also collected data on vessel diameter and
GCX thickness from previous studies (21, 22, 24–32).

Measurement of Sdc-1
After observation, blood samples were collected before and after
CLP for biochemical tests. Blood was drawn from the buccal
veins before CLP and from the heart after CLP. The blood
concentration of Sdc-1 was quantified using a CD138 ELISA kit
according to the manufacturer’s instructions. Briefly, samples,

FIGURE 1 | Images of the cerebral endothelial GCX. Cerebral endothelial GCX

was illuminated with fluorescein isothiocyanate-labeled wheat germ agglutinin

(FITC-WGA) lectin in vivo and observed through a cranial window using an

intravital microscope.

standards, and diluted biotinylated anti-mouse CD138 antibody
were added to precoated wells and incubated for 2 h at 25 ◦C.
After three washes, horseradish peroxidase (HRP)-conjugated
streptavidin was added, and the plate was incubated for 1 h
at 25 ◦C. The substrate was then added, and the color was
allowed to develop for 15–30min. The absorbance at 450 nm
was measured using a microplate reader (Bio-Rad Laboratories,
Hercules, CA, USA). The concentration of Sdc-1 was calculated
using a standard curve.

Measurement of Adiponectin
Adiponectin samples were collected using the same method as
that for Sdc-1. Adiponectin concentration in serum samples
was determined using a commercially available adiponectin
ELISA kit.

Statistical Analysis
The measured data are expressed as mean ± standard
deviation in figures and tables. The number of mice used
in each experiment is described in the respective figure
legends. Differences between survival rates were tested using
the Kaplan–Meier analysis. The one-way analysis of variance
followed by Tukey–Kramer multiple comparison test was
used to compare the variables among the groups. Statistical
significance was set at p < 0.05. Statistical tests were performed
using JMP software package (JMP 14; SAS Inc., Cary, NC,
USA). The age (weeks)/weight data of all mice are shown in
Supplementary Table 1.
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RESULTS

Obesity Model
The mean weight of mice in the L, M, and H groups at 8
weeks was 21.8 ± 1.3, 24.8 ± 1.0, and 28.3 ± 1.8 g, respectively
(Figure 2). After 6 weeks, the average weight in the M and
H groups was significantly higher than that in the L group.
The mean body fat percentage of each group, calculated by CT,
was 13.5 ± 1.7%, 22.6 ± 4.1%, and 40.0 ± 1.2%, respectively
(Figure 3). The body fat percentage of the H group was
significantly higher than that of the M and L groups, and the
body fat percentage of the M group was significantly higher than
that of the L group. The mean blood pressure of the L, M, and
H groups was 74.4 ± 7.16, 83.0 ± 8.32, and 81.8 ± 7.64 mmHg,
respectively (Table 1). The total cholesterol level in the L, M, and
H groups at 8 weeks was 96.1± 35.7, 162± 31.4, and 144± 24.2
mg/dl, respectively. The total cholesterol in the M and H groups
was significantly higher than that in the L group. The results of
blood counts and biochemical tests for each group are shown in
Supplementary Table 2.

Index of Endothelial Glycocalyx
Under normal conditions, the cerebral endothelial GCX tagged
with the FITC-WGA was imaged through a cranial window
using a microscope (Figure 1). However, in cases of sepsis caused
by CLP, clear images were difficult to obtain, and the GCXI
was not available (Supplementary Figure 2B). The average GCXI
for arterioles less than 25µm in diameter in the L group was
1.53 ± 0.23µm, whereas that in the M and H groups was
2.02 ± 0.34 and 2.09 ± 0.38µm, respectively (Figure 4A). The
average GCXI for arterioles measuring 25–35µm in diameter
in the L, M, and H groups was 1.79 ± 0.30, 2.28 ± 0.37, and
2.49 ± 0.45µm, respectively (Figure 4B). The average GCXI for
arterioles greater than 35µm in diameter was 1.81± 0.44, 2.74±
0.44, and 2.59± 0.23µm in the L, M, and H groups, respectively
(Figure 4C). For all vessel diameters, the GCXI of the H and M
groups was significantly higher than that of the L group (p <

0.05). Moreover, there was a positive correlation between vessel
diameter and GCXI in the H (r2 = 0.42) and M groups (r2 =

0.40), but not in the L group (r2 = 0.098) (Figure 4D, Table 2
and Supplementary Table 5).

CLP Model
The ratio of body weight at 24 h after CLP to that before CLP was
0.89 ± 0.026, 0.92 ± 0.019, and 0.92 ± 0.022 for the L, M, and
H groups, respectively. The body weight ratio of the H and M
groups 24 h after CLP was significantly higher than that of the L
group (p < 0.05) (Figure 5A). The ratio of body weight at 48 h
after CLP to that before CLP was 0.86± 0.043, 0.88± 0.023, and
0.89± 0.015 for the L,M, andH groups, respectively (Figure 5B).
The body weight of mice in each group before and after CLP is
shown in Supplementary Table 3. The survival rate of mice at
24 h after CLP was 58.8, 64.2, and 83.0% for the L, M, and H
groups, respectively, whereas the survival rate at 48 h was 41.1,
50.0, and 66.6%, respectively (Figure 6). There was no significant
difference in the survival rate (p= 0.17) among the three groups.

Adiponectin
The blood concentration ratio of adiponectin is expressed as
the average between groups before and after treatment rather
than comparisons between individuals. The ratio of the average
adiponectin concentration at 24 h after CLP to that before CLP
in the L, M, and H groups was 1.1, 0.9, and 1.5, respectively
(Figure 7A). Conversely, the ratio of the average concentration
of adiponectin at 48 h after CLP to that before CLP was 0.35, 1.04,
and 0.87 in the L, M, and H groups, respectively (Figure 7B). The
concentration of adiponectin in each group of mice before and
after CLP is shown in Supplementary Table 4.

Sdc-1
Under normal conditions, the blood concentration of Sdc-1 in
the L, M, and H groups was 3.0 ± 0.45, 2.8 ± 1.1, and 3.5
± 1.0 ng/ml, respectively. Under septic conditions, the blood
concentration of Sdc-1 at 24 h after CLP in the L, M, and
H groups was 12.0 ± 4.7, 22.9 ± 6.4, and 13.7 ± 4.8 ng/ml,
respectively, whereas that at 48 h after CLP was 6.1 ± 3.5, 13.1 ±
9.1, and 10.2 ± 4.0 ng/ml, respectively (Figure 8). Therefore, the
blood concentration of Sdc-1 at 24 h after CLP was significantly
higher than that before CLP in all groups. However, the blood
concentration of Sdc-1 at 48 h after CLP was not significantly
different from that before CLP in all groups. Furthermore, the
blood concentration of Sdc-1 in the M group at 24 h after CLP
was significantly higher than that in the L group at 24 h after CLP.

DISCUSSION

The functions of endothelial cells in obesity and metabolic
syndrome differ. Metabolic syndrome is a condition in which
insulin resistance leads to the development of hypertension,
hyperlipidemia, atherosclerosis, and cardiovascular disease and
is closely related to GCX disorders (33–35), especially in the early
stages (36). A previous study indicated that blood concentrations
of Sdc-1 and heparan sulfate (GCX components) are high
in patients undergoing dialysis, and the relationship between
atherosclerosis and GCX damage has also been reported (37).
In contrast, obesity can transition into metabolic syndrome in
high-risk patients; however, the normalcy of GCX in obese
individuals has not been investigated. The aim of this study
was to evaluate endothelial cell function and the physiological
function of GCX in a simple obesity model. This study
provides novel insights into the obesity paradox. Previous
studies reported that the GCX layer collapses and increases
vascular permeability in severe conditions, including sepsis
(12, 38), massive bleeding (23), acute heart failure (39), and
pneumonia (40). This can lead to interstitial edema, impaired
microcirculation, and reduced organ perfusion, resulting in
critical multiorgan failure (12). Uzawa et al. (22) reported that
the disruption of GCX in small arteries with a vessel diameter
of 20µm altered vascular permeability in the interstitial space
in the microcirculation. The disruption of GCX causes shedding
of hyaluronan and Sdc-1, and circulating glycosaminoglycans
enhance the existing inflammation by binding to a variety of
molecules and triggering the release of inflammatory mediators,
such as chemokines, from within the ESL. These may lead to
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FIGURE 2 | Weight changes in mice from each group from 3 to 8 weeks. Groups L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice, respectively.

Data were analyzed using the Tukey–Kramer honestly significant difference test. *p < 0.05, **p < 0.01.

FIGURE 3 | Computed tomography images showing a cross-section of the chest and abdomen, which were used to analyze the body fat percentage at 10 weeks for

all groups. The yellow area shows visceral fat, the orange area shows subcutaneous fat, and the green area shows fatty tissue (not all were included in the fat

percentage measured in this study). Groups L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice, respectively. Data were analyzed using Tukey–Kramer

honestly significant difference test. **p < 0.01.

TABLE 1 | Heart rate (HR), systolic blood pressure (sBP), mean blood pressure (mBP), and diastolic blood pressure (dBP) of mice in each group.

HR (bpm) sBP (mmHg) mBP (mmHg) dBP (mmHg)

L (N = 17) 666 ± 84.1 98.8 ± 6.37 74.4 ± 7.16 62.4 ± 9.27

M (N = 21) 715 ± 51.9 107 ± 9.90* 83.0 ± 8.32** 71.0 ± 9.07*

H (N = 15) 702 ± 10.7 105 ± 10.7 81.8 ± 7.64* 69.7 ± 7.53

Data represent the mean ± standard error and were analyzed using Tukey–Kramer honestly significant difference test. *p < 0.05, **p < 0.01 vs. L. Groups L, M, and H denote low-fat,

medium-fat, and high-fat diet-fed mice, respectively.
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FIGURE 4 | Groups L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice, respectively. Average endothelial glycocalyx index (GCXI) for vessel diameters

of (A) <25µm, (B) 25–35µm, and (C) >35µm in each group. Data were analyzed using Tukey–Kramer honestly significant difference test. *p < 0.05, **p < 0.01. (D)

Relationship between the GCXI and blood vessel diameter in each group in this study and from previous studies. Gray, red, and yellow markers and lines indicate L,

M, and H, respectively, and blue markers and lines indicate data from previous studies.

TABLE 2 | Thickness of the glycocalyx (GCX) measured in various vessels in previous studies.

Year Author Animal Vessel Method Vessel diameter (µm) GCX (µm)

1996 Vink et al. (37) Hamster Muscle capillary IM 5.1 0.3

2009 Potter et al. (25) Mouse Cremaster, mesenteric µ-PIV 45.0 0.5

2011 Eno E Ebong et al. (26) Hamster Muscle capillary RF/FS-TEM 5.1 0.5

2013 Lipowsky et al. (27) Rat Mesenteric IM 33.5 0.5

2012 Wan-Y Yen et al. (28) Rat Mesenteric IM 9.0 0.9

2013 Ivo Torres Filho et al. (29) Rat Cremaster IM 15.1 0.47

2013 Michele D. Savery et al. (30) Mouse Cremaster IM 20.2 0.5

2016 Ivo P. Torres Filho et al. (31) Rats Cremaster IM 15.7 0.54

2017 Jin-Hui et al. (21) Mouse Cerebral penetrating A TPLSM 30.7 1.2

2017 Jin-Hui et al. (21) Mouse Pial A TPLSM 17.3 0.9

2017 Jin-Hui et al. (21) Mouse Capillary walls TPLSM 3.5 0.4

2017 Kataoka et al. (22) Mouse Skin IM 30.0 1.0

2018 Xiaoyuan et al. (32) Mouse Cremaster, mesenteric IM 26.0 0.8

IM, intravital microscopy; µ-PIV, microparticle image velocimetry; CLSM, confocal laser scanning microscopy; TPLSM, two-photon laser scanning microscopy; RF/FS-TEM, rapid

freezing/freeze substitution transmission electron microscopy.

increased vascular permeability and impaired microcirculation
in capillaries and post-capillary vessels, resulting in various
endothelial cell disorders (41). Regarding GCX thickness and

vessel diameter, previous studies have shown that the GCX layer
tends to thicken as the vessel diameter increases (Table 2), which
was also the case for the GCXI of all groups in this study
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FIGURE 5 | Ratio of body weight in each group [ratio = body weight (A) 24 h and (B) 48 h after cecal ligation and puncture (CLP) to body weight before CLP]. Groups

L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice, respectively. Data were analyzed using Tukey–Kramer honestly significant difference test. *p <

0.05.

FIGURE 6 | Survival rate of mice in each group after cecal ligation and puncture. Groups L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice,

respectively. Circles, triangles, and squares represent the L, M, and H groups.

(Figure 4). The positive correlation between the GCXI and vessel
diameter was stronger in theM andH groups than in the L group,
suggesting that there may be a stronger tendency for the original
GCX to thicken as the vessel diameter increases in the M and H
groups. In this situation, GCX is impaired at a certain rate due to
stress from sepsis; therefore, it is likely that the intact GCX will
remain thicker in the H and M groups than in the L group. This
result may explain one aspect of the pathogenesis of the obesity
paradox. In the M and H groups, the greater the diameter of the
vessel, the thicker the GCX compared with that in the L group,
suggesting some tolerance for the phenomenon of inflammatory
stress-induced GCX shedding.

In this study, we implanted the CCW in the CLP model and
observed each group using an intravital fluorescent microscope;
however, we could not obtain clear images because of edema
resulting from inflammation. Thus, further studies are required

for a better understanding of the in vivo GCX impairment and
the obesity paradox in the pathogenesis of sepsis.

Adiponectin has GCX relevance and exerts anti-inflammatory
and beneficial effects on vascular barrier function after trauma
(19, 42). Some reports have indicated a relationship between
adiponectin concentration in the blood and the prognosis
of critical illnesses (e.g., the poor prognosis of burns and
pancreatitis is related to a decrease in adiponectin concentration)
(43, 44). However, another report suggested that adiponectin
concentration is not correlated with inflammatory markers (45).
Additionally, a poor prognosis in severe diseases may be related
to elevated adiponectin concentrations (46–49). Thus, it remains
unclear whether blood adiponectin concentrations affect the
severity or prognosis of critical conditions. At the very least,
adiponectin seems to play a role as a physiological defense
mechanism in sepsis (50). In the present study, CLP-induced
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FIGURE 7 | Ratio of average adiponectin concentration [ratio = adiponectin concentration (A) 24 h and (B) 48 h after cecal ligation and puncture (CLP) to adiponectin

concentration before CLP] in each group. Groups L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice, respectively.

FIGURE 8 | Groups L, M, and H denote low-fat, medium-fat, and high-fat diet-fed mice, respectively. L pre is the average value of the blood concentration of

syndical-1 (Sdc-1) before sepsis in Group L. L 24 h is the average value of the blood concentration of Sdc-1 24 h after sepsis in Group L. L 48 h is the average value of

the blood concentration of Sdc-1 48 h after sepsis in Group L. The other groups are defined in the same manner. Serum concentration of Sdc-1 in each group before

and after cecal ligation and puncture. Data were analyzed using Tukey–Kramer honestly significant difference test. *p < 0.05, **p < 0.01.

septic conditions promoted elevations in the adiponectin ratio in
the L and H groups after 24 h of CLP, which then decreased after
48 h, whereas the adiponectin ratio in the M group decreased
slightly after 24 h of CLP and increased slightly after 48 h.
The adiponectin ratio in the M group was stable at both 24
and 48 h. Moreover, the adiponectin concentration at 48 h was
significantly lower than that before CLP in only the L group
(Supplementary Table 4).

The mechanism of cancer metastasis due to GCX dysfunction
was recently been reported (51). Furthermore, another study

reported the relationship between various cancers, including
hepatocellular carcinoma (52), cervical carcinoma (53),
colorectal carcinoma (54), and breast carcinoma (55), and
blood levels of adiponectin (53). Additionally, blood levels
of adiponectin are reportedly related to cancer severity (56).
Adiponectin is generally considered to function in a suppressive
manner against cancer cells, and it is speculated that there is a
relationship between the blood level of adiponectin and GCX.
It is possible that a high-fat diet causes adipocytes to swell and
hypersensitize adiponectin secretion, thereby enhancing the
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induced anti-inflammatory mechanism and acting protectively
against GCX.

The blood concentration of Sdc-1 at 24 h after CLP was
significantly higher in the M group than in the L group, making
it reasonable to assume that the collapse of the GCX in the
M group was greater than that in the L group. After 48 h
of CLP, the Sdc-1 concentration did not differ significantly
between groups; however, the ratio of the blood concentration
of adiponectin at 24 and 48 h was the most stable in the M
group. The reason for this contradictory phenomenon might be
the directly proportional relationship between the vessel diameter
and the intact GCX thickness. Because the GCXI under normal
conditions was significantly thicker in groups M and H than in
group L, it is possible that even if GCX disruption was more in
groupM than in group L, there would be less damage to the actual
endothelial cells in groups M and H. However, it was difficult
to demonstrate this mechanism in this study, because we were
unable to stain GCX and measure its index in a CLP-induced
sepsis model.

Further studies using advanced image-analysis techniques,
such as observation confocal microscopy, are needed to
elucidate the relationship between adiponectin concentration
and GCX thickness. Maintaining constant secretion of
adiponectin, which has anti-inflammatory effects, may be
advantageous in conditions, such as sepsis, where inflammation
leads to increased vascular permeability. This result might
explain another aspect of the obesity paradox. In most
clinical cases, the prognosis in severe critical conditions
may actually be worse due to peripheral circulatory failure
and high insulin resistance caused by the large number
of adipocytes.

However, the present study has certain limitations. First, the
obesity model itself represents a limitation, as there is currently
no mouse-related index of obesity similar to the human BMI
(e.g., moderate obesity equals a BMI of 27–30). Therefore, it
remains unclear where the H and M groups correspond to
the human BMI scale or if an exact obesity paradox model
can be produced. The blood pressure of mice in groups M
and group H was statistically significantly higher than that in
group L. The mean blood pressure in groups M and H was
approximately 1.1 times higher than that in group L (Table 1).
Although hypertension and atherosclerosis have been reported
to be associated with GCX disruption (57), it is not clear from
our experiment to what degree hypertension affected GCX, and
the effect of blood pressure as well as BMI on GCX in humans
may be different in our study model. The second limitation is
the CCW in sepsis. Through the CCW window, we were unable
to observe the vessel wall in the M and H groups, because
there were too many fat cells. Although the vessel wall in pre-
CLP conditions could be observed in the CCWs, the CCWs
in the sepsis model exhibited strong edema; therefore, clear
images could not be obtained, and the GCXI according to vessel
diameter could not be measured. Therefore, it was not possible
to observe the in vivo effect of GCX on direct sepsis injury.
Using a multi-photon laser scanning microscope to measure the
GCXI in the obese group with sepsis might allow elucidation
of the in vivo effects of adiponectin on GCX. However, because

this equipment is expensive and given the concerns of photo-
damage to fragile brain tissue, we used an ordinary fluorescence
light microscope. Third, the accuracy of the GCX measurement
method was a limitation, as it is difficult to observe and analyze
GCX in vivo. Although GCX thickness has been measured
in various ways in previous studies, different methods of
measurement and correcting measurement errors have been
devised (Supplementary Table 5). The indirect method of GCX
measurement using fluorescent labeling of polymer dextran and
staining the vessel lumen may overestimate or underestimate the
errors due to auto-vasomotion. Moreover, measurements using
the extent of red blood cell migration as a proxy for the lumen
of blood vessels might cause similar problems. Therefore, we
performed GCX measurement using WGA-FITC in this study,
as it directly fluorescently labels GCX, which eliminates the
effect of auto-vasomotion. However, this may cause inaccuracy
in the positioning of the GCX edge. Because the fluorescence-
intensity signal from FITC-WGA included all fluorescent signals
on and in a curved luminal vessel surface area, an accurate GCX
thickness could not be obtained; however, this signal might be
an indicator of GCX presence according to the accumulation
of GCX components, such as glycosaminoglycans. In this study,
we used the GCXI as a measure of GCX size and used this
value for a relative comparison. Furthermore, measurements of
the GCXI showed a similar relationship between GCX thickness
and vessel diameter in previous studies (Table 2, Figure 4D),
where GCX measurements increased with vessel diameter. The
GCXI is calculated based on a simple measurement of the
fluorescence intensity of the total edge of the blood vessel, which
is beyond the limit of the resolution of optical microscopy and
may not precisely represent the GCX thickness. Considering
that the major variable in the size of the GCXI is the GCX
thickness, we assumed that the GCXI has a close relationship to
GCX thickness.

In conclusion, we found that the GCXI of obese groups
in the non-sepsis model was thicker than that of the low-
fat group for all vessel diameters, and that the positive
correlation was also stronger. Additionally, the circulating
blood concentration of adiponectin was stable in the medium-
fat group, although Sdc-1 at 24 h after CLP was high.
These findings suggest that the thickness of the original
GCX might play an important role in the obesity paradox
by having a beneficial effect on pathological changes in
critical conditions.
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