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Abstract

Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum
(SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that
alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For
this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the
first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke
(CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-
B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal
microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture
model) after CS exposure is driven by hydrogen peroxide (H2O2) that derives not only from the CS gas phase but mainly
from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX
inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal)
and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through
the production of H2O2, induced post-translational modifications of SR-B1 with the consequence lost of the receptor and
this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake.
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Introduction

The scavenger receptor class B type I (SR-BI), a transmembrane

protein, mediates selective lipid uptake from hydrophobic lipoprotein

cores [1,2], and facilitates the cellular uptake of cholesterol (mainly

cholesteryl esters) by intervening in the binding of the lipoprotein

with the outer surfaces of cells, through a process in which the

cholesterol esters are internalized without the net internalization and

degradation of the lipoprotein itself although Silver et al. have shown

that in polarized liver cells SR-B1 is able to facilitate uptake of the

whole HDL particle via a transcytosis process [3].

One of the tissues where cholesterol is of great importance is

certainly the skin. The skin consists of two main layers, the inner

dermis, mainly composed of fibroblasts, vessels and nerves and

connective tissue matrix, and the outer epidermis, which contains

mainly keratinocytes. These cells progressively differentiate into

enucleate corneocytes, which are imbedded in a lipid matrix rich

in ceramides, cholesterol and free fatty acids forming the stratum

corneum (SC) (the outermost part of the epidermis).

Cholesterol represents about one-quarter of the lipid content of

the SC. It is an essential component of all cell membranes.

Cholesterol is implicated in corneocyte desquamation and

cohesion and keratinocyte differentiation. Cholesterol is also

required in keratinocytes to form lamellar bodies. Secretion of

lamellar bodies then delivers lipids, including cholesterol, to the

extracellular spaces of the SC, which mediate permeability

barrier function [4]. The ability to limit the transcutaneous

movement of water and electrolytes is required for terrestrial life.

Although the cholesterol synthesis rate is high under basal

conditions, cholesterol synthesis increases after permeability

barrier disruption [5], as do the levels of receptors that enhance

the uptake of cholesterol into the cell including the LDL receptor

and scavenger receptor class B type I [6,7]. Inhibition of

cholesterol synthesis perturbs permeability barrier function [8],

and a selective deficiency in cholesterologenesis largely accounts

for the barrier abnormality in chronologically aged epidermis

[9,10].
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Because of its critical location, the cutaneous tissue is the first

barrier against environmental insults such as UV radiation, CS,

diesel fuel exhaust, halogenated hydrocarbons, heavy metals and

O3 [11]. The skin is protected against these oxidative stressors by

an elaborate system of antioxidant substances including vitamin C,

vitamin E, uric acid, and GSH, and enzymes including superoxide

dismutase (SOD), glutathione peroxidase (GPX), and catalase

(CAT) that are depleted or inactivated, respectively, after exposure

to such stressors. The loss of the antioxidants correlates with an

increase in lipid peroxidation.

In the last 10 years, it has been shown that CS and the

oxidative compounds that derive from the combustion of

cigarettes can affect the skin [12,13]. Furthermore, several skin

diseases such as melanoma [14,15], psoriasis [16] and dermatitis

[17] have now been associated with CS exposure. The

pathological effects of cigarette smoke (CS) have been extensively

documented. CS contains over 4,600 compounds in gaseous and

particulate states that are able to induce oxidative stress to cells

and its toxic effect is mainly due to the presence of oxidants,

including H2O2 [18] and volatile electrophilic compounds

including a,b-unsaturated aldehydes. Acrolein (ACR) and 4-

hydroxy-2-nonenal (HNE), which are highly reactive and

potentially toxic, can also be generated during inflammation as

a consequence of lipid peroxidation [19,20]. These aldehydes, as

well as H2O2, are capable of affecting a variety of biochemical

processes, including transcription factor activation and gene

expression, production of inflammatory cytokines, respiratory

burst activation, and cell death [21–23]. Recently, our group was

able to demonstrate that CS exposure modulates genes involved

in cholesterol trafficking such as SR-B1 and ABCA1 in lung tissue

[24,25] and ABCA1 in skin tissue [26].

As a continuation of our previous work, the current study

explored the modulation of SR-B1 in keratinocytes after CS

exposure. Our results show that in keratinocytes, CS decreased

SR-B1 levels in an H2O2 (exogenous and endogenous)-dependent

manner. This effect is a consequence of the formation of

aldehydes-adducts and subsequent SR-B1 degradation mediated

by ubiquitination.

Methods

Cell Culture and Treatments
HaCaT cells, (a cell line gift from Dr. F. Virgili), were grown in

Dulbecco’s modified Eagle’s medium High Glucose (Lonza,

Milan, Italy), supplemented with 10% FBS, 100 U/ml penicillin,

100 mg/mL streptomycin and 2 mM L-glutamine as previously

described [27]. Cell suspension containing 10 or 16105 viable

cells/ml were used. Cells were incubated at 37uC for 24 h in 95%

air/5% CO2 until 80% confluency.

HaCaT cells were treated with either acrolein (ACR) (Aldrich,

Milwaukee, WI) or 4-hydroxy-2-nonenal (HNE) (Calbiochem, La

Jolla, CA) or glucose oxidase (GO; type II from Aspergillus niger,

15.5 U/g; Calbiochem, La Jolla, CA) or pretreated (2 h) with

PEG-catalase (PEG-CAT) or diphenyleneiodonium chloride (DPI)

or MG-132 (Calbiochem, La Jolla, CA) before CS exposure, and

then resuspended in DMEM medium supplemented with 10%

FBS. After treatments for various time periods, cells were collected

by centrifugation for the several assays described below.

CS Exposure
Prior to CS exposure of the the cells, media was aspirated and

fresh serum-free medium was added. Cells were then exposed for

50 min to CS. Control cells were exposed to filtered air for the

same duration (50 min) after changing media.

The time and the method of exposure were chosen based on our

previous work [18,25,27]. Under our experimental conditions no

significant differences in cell viability as measured by Trypan blue

exclusion was detected between control (air) and CS treated cells

(data not shown).

HaCaT cells were exposed to fresh CS in an exposure system

that generated CS by burning one UK research cigarette (12 mg

tar, 1.1 mg nicotine) using a vacuum pump to draw air through

the burning cigarette and leading the smoke stream over the cell

cultures as described previously by our group [25]. After the

exposure (air or CS), fresh media supplemented with 10% FBS

was added to the cells.

Immunocytochemistry
HaCaT cells were grown on coverslips at a density of 16105

cell/ml, and after CS exposure fixed in 4% paraformaldehyde in

PBS for 30 min at 4uC. Cells were permeabilized for 15 min at

room temperature with PBS containing 1% BSA, 0.2% Triton X-

100, and 0.02% sodium azide, then the coverslips were blocked in

PBS containing 1% BSA, 0.2% Nonidet P-40 and 0.02% sodium

azide at room temperature for 1 hr. Coverslips were then

incubated for 1 hr with primary antibody, followed by 1 hr with

secondary antibodies. Nuclei were stained with 1 mg/ml DAPI

(Molecular Probes) for 1 min after removal of secondary

antibodies. Coverslips were mounted onto glass slides using with

anti-fade mounting medium 1,4 diazabicyclooctane in glycerine

(DABCO) and examined by the Zeiss Axioplan2 light microscope

equipped with epifluorescence at 406 magnification. Negative

controls for the immunostaining experiments were performed by

omitting primary antibodies. Images were acquired and analyzed

with Axio Vision Release 4.6.3 software.

Immunohistochemistry
Human and mouse skin tissue were immersion fixed in 10%

NBF (neutral-buffered formalin) for 24 hours at room tempera-

ture. Sections (4 mm) were deparaffinized in xylene and rehydrated

in alcohol gradients. After dewaxing, sections were incubated

overnight at 4uC with anti-SRB1 (Novus Biologicals, Inc.;

Littleton, CO). Then slides were washed three times with PBS

and endogenous peroxidase was blocked with 3% hydrogen

peroxide in absolute methyl alcohol for 30 minutes at room

temperature. Finally, the slides were incubated with EnVision+
System-HRP (DAKO, Glostrup, Denmark) for 45 minutes at

room temperature. The reaction products were stained with

diaminobenzidine (DAB), counterstained with Mayer’s Hematox-

ylin and after drying were mounted with Eukitt mounting

medium.

The animal protocol n G030806 was approved by the

Istitutional Laboratory Animal Care and Use Committee of the

University of Siena, Italy. In addition the local ethics committees

approved the use of human samples, and all patients provided a

signed informed consent form.

Western blot Analysis
Total cell lysates were extracted in solubilization buffer

containing 50 mM Tris (pH 7.5), 150 mM NaCl, 10% glycerol,

1% Nonidet P-40, 1 mM EGTA, 0.1% SDS, 5 mM N-

ethylmaleamide (Sigma-Aldrich Corp.), protease and phosphatase

inhibitor cocktails (Sigma–Aldrich Corp.) as described before [25].

Cells were harvested by centrifugation and proteins concentra-

tion was determined by the method of Bradford (Biorad Protein

assay, Milan, Italy). Samples of 60 mg protein in 36 loading buffer

(65 mM Tris base, pH 7.4, 20% glycerol, 2% sodium dodecyl

sulfate, 5% b-mercaptoethanol and 1% bromophenol blue) were
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boiled for 5 min, loaded onto 10% sodium dodecyl sulphate–

polyacrylamide electrophoresis gels and separated by molecular

size. The gels were then electro-blotted onto nitrocellulose

membranes which were then blocked for 1 hr in Tris-buffered

saline, pH 7.5, containing 0.5% Tween 20 and 5% milk.

Membranes were incubated overnight at 4uC with the appropriate

primary antibody: SR-B1 (Novus Biologicals, Inc.; Littleton, CO),

b-actin (Cell Signalling; Celbio, Milan, Italy), HNE (Millipore

Corporation, Billerica, MA, USA), acrolein (gift from Prof.

Uchida), p47phox and p67phox (Millipore Corporation, Billerica,

MA, USA). The membranes were then incubated with horseradish

peroxidase-conjugated secondary antibody for 1 hr, and the

bound antibodies were detected using chemiluminescence

(BioRad, Milan, Italy).The blots were then stripped and re-probed

with b-actin (1:1000) as the loading control. Images of the bands

were digitized and the densitometry of the bands were performed

using Image-J software.

SR-B1 cellular localization
To assess the SR-B1 translocation to the plasma membrane,

cells were exposed to CS and then homogenized on ice in Tris-

HCl buffer, pH 7.4, containing 1 mM EGTA, 1 mM EDTA,

protease and phosphatase inhibitors. Cell lysates were then

separated by centrifugation (100,0006g, 30 min, 4uC). The

supernatant containing the cytosolic fraction in the pellet were

solubilized in lysis buffer containing 1% Triton X-100 followed by

homogenization with a 25-gauge needle. An equal amount of

proteins were loaded on SDS 10% PAGE and then transferred to

a nitrocellulose membrane. Western blotting was performed as

described above.

Immunogold labelling
After CS exposure, HaCaT cells (16106 cell/ml) were fixed in

4% paraformaldehyde - 0.5% glutaraldehyde in 0.1 M phosphate

buffer (PB) for 2 h at 4uC. Cells were harvested by centrifugation

and washed in PBS overnight at 4uC. Cells, after dehydration,

were infiltrated with LR-White Resin Hard Grade (TAAB

Laboratories, England, UK) - ethanol 70% (2:1) for 309 at 4uC
and then with pure LR-White Resin overnight at 4uC. Then, cells

were placed in gelatine capsules and polymerized in fresh resin at

60uC for 24 h. Ultrathin sections (60–90 nm) were cut on a

ultramicrotome (Ultratome Nova-LKB Bromma) and collected

on 200-mesh nickel grids. For the immunogold labelling

procedure, grids containing sections were immersed in a series

of droplets of each solution on a strip of Parafilm in a humid

chamber. The grids were incubated in 0.05 M tris-buffered

saline-Tween20 (TBST), pH 7.6, and free aldehyde binding was

quench using 0.1 M Glycine in PB for 209 at room temperature,

and then non-specific protein binding was blocked using 5%

Normal Goat Serum (NGS)- 1% BSA in TBST for 309 room

temperature. They were then incubated overnight at 4uC in anti-

SRB1 (1:100) in 2% NGS-TBST. After treatment with primary

antibody, grids were washed in TBST and then incubated in goat

anti-rabbit IgG conjugated to 10 nm Gold particles (BBInterna-

tional, Cardiff, UK) diluted 1:100 in 2% NGS-TBST for 2 h at

room temperature. The grids were washed again in TBST. The

grids were post-fixed on droplets of 3% glutaraldehyde in 0.06 M

cacodylate buffer for 59 and then rinse in TBST and distilled

water, stained in aqueous uranyl acetate and lead citrate. The

grids were examined and photographed using a Philips CM10

transmission electron microscope. For negative control, grids

containing sections were incubated in 2% NGS-TBST without

the primary antibody.

Protein carbonyls
Carbonyl groups in proteins were determined by OxyBlot

(Chemicon, USA). Briefly, after derivatization of carbonyl groups

to dinitrophenylhydrazone (DNP-hydrazone) by reaction with

dinitrophenylhydrazine (DNPH), the DNP-derivatized protein

samples were separated by polyacrylamide gel electrophoresis

followed by Western blotting.

Immunoprecipitation
Cell lysates containing 300 mg of protein were mixed with

Dynabeads protein G and 2 mg of polyclonal antibody against SR-

B1. Following immunoprecipitation of SR-B1, the presence of

HNE or Ubiquitin adducts was determined, after which proteins

were separated by SDS-PAGE, electrotransferred to nitrocellulose

membranes and immunoblotted with a HNE or ubiquitin

antibody.

H2O2 Measurement
Measurement of H2O2 was performed as described by Vecchio

et al. [28], according to the method of Mohanty and co-workers

[29], by monitoring the horseradish peroxidase (HRP)-catalyzed

oxidation of the probe N-acetyl-3,7- dihydroxyphenoxazine

(A6550; Molecular Probes, Eugene, OR, USA), which becomes

highly fluorescent only after oxidation by H2O2. Briefly, HaCaT

cells were washed twice with PBS and the medium was replaced

by Krebs-Ringer phosphate buffer (200 ml/well), pH 7.4, con-

taining 20 mM HEPES, 130 mM NaCl, 1.2 mM Na phosphate,

5 mM KCl, 2 mM CaCl2, 1.2 mM MgSO4 and 1 g/l glucose.

The probe A6550 and HRP were added at final concentration of

50 mM and 1 U/ml, respectively, and fluorescence was read by

a Perkin-Elmer fluorescence plate reader (Ex. 560 nm; Em.

642 nm).

Detection of mitochondrial superoxide production
Superoxide production was measured using the indicator

MitoSOX Red (Invitrogen), a mitochondrion-specific hydroethi-

dine-derivative fluorescent dye, according to the manufacturer’s

instructions. Briefly, for live cell imaging, HaCaT cells were

allowed to adhere on glass coverslips. After CS exposure, media

was removed and cells were loaded with Mitosox Red (Invitrogen)

(5 mM) in Hanks’ Balanced Salt Solution for 10 min at 37uC. Cells

were then washed and imaged on a Zeiss Axioplan2 inverted

fluorescence microscope using a Rhodamine filter (MitoSOX was

excited at 515 nm, and emitted light was measured from 520–

620 nm).

Statistical Analysis
For each of the variables tested, two-way analysis of variance

(ANOVA) was used. A significant effect was indicated by a P-

value,0.05. Data are expressed as mean 6 S.D. of triplicate

determinations obtained in 5 separate experiments.

Results

SR-B1 is expressed in human and mouse skin
To evaluate the presence of SR-B1 in cutaneous tissue

immunohistochemistry analysis was performed in samples from

murine skin and from human biopsies. As shown in Fig. 1 a strong

nuclear positivity to SR-B1 was demonstrated in normal

keratinocytes of both murine (Fig. 1A) and human skin (Fig. 1B);

in human skin, positivity was mainly detected in basal-suprabasal

keratinocytes although also dermal fibroblasts showed an evident

cytoplasmic positivity.

CS Induced SR-B1 Loss via NOX Activation
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Figure 1. SR-B1 is expressed in epidermis of mouse (A) and human (B) skin. The anti SR-B1 antibody dekorates/stains most nuclei of
keratinocytes (as the ones indicated by the arrows) in both murine and human normal skin SR-B1 immunohistochemistry, DAB, Original Magnification
6200 (human skin) and 6400 (mouse skin).
doi:10.1371/journal.pone.0033592.g001

Figure 2. Exposure to CS decreased SR-B1 protein levels in HaCaT cells. Cells were exposed to CS for 50 min and cells were
harvested at different time points (0–24 hrs). The Western blot shown in the top is representative of five experiments. Quantification of the SR-
B1 bands is shown in the bottom panel. Data are expressed in arbitrary units (averages of five different experiments, *p,0.05). b-actin was used as
loading control. Immunogold for SR-B1 confirm the decreased protein levels after CS exposure (B). IHC for SR-B1 is shown in the C panel (arrows).
doi:10.1371/journal.pone.0033592.g002
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CS exposure decreased SR-B1 levels
We first assessed whether SR-B1 levels are modulated by CS

exposure in HaCaT cells. As shown in Figure 2A, the protein

levels of SR-B1 decreased markedly upon CS exposure starting at

12 h (2-fold) and reaching an almost 4-fold decrease 24 h after CS

exposure. This effect was confirmed also by immunogold labelling

analysis. As shown in Figure 2C, the protein levels of SR-B1

decreased markedly upon CS exposure compared with the air-

exposed cells (Fig. 2B). This phenomena was not a consequence of

cell viability modification (Trypan blue exclusion assay) as no

significant differences were founded between control and treated

cells (data not shown).

CS exposure affects SR-B1 cellular localization and
membrane protein levels

Immunocytochemistry (ICC) showed that CS exposure caused

the translocation of SR-B1 from the perinuclear area to the cell

membrane resulting in an increase of SR-B1 membrane location.

This pattern changed at 6 and 12 h post CS exposure as the

perinuclear staining was almost completely lost and membrane

staining was also decreased (Fig. 3). As shown in Fig. 3A, at 24 h

SR-B1 levels were dramatically decreased in all cellular compart-

ments and membranes. To quantify and confirm the movement

and subsequent loss of SR-B1, we performed an immunoblot

analysis on the cell membrane protein extract. Fig. 3B showed the

increase in SR-B1 membrane levels (circa 3 fold after 6 hr) and the

following significant decrease at the later time points.

CS exposure induced Michael addition of aldehydes to
proteins

Many of the toxic effect of CS can be linked to the presence of

aldehydes, therefore we have evaluated the levels of acrolein

(ACR) and HNE adducts in keratinocytes exposed to CS. As

shown in Fig. 4A after CS exposure there was a significant increase

Figure 3. Cigarette Smoke exposure induces changes in SR-B1 levels and localization in human keratinocytes. Immunocytochemistry
of HaCaT cells showing localization of SR-B1 (green) before and after CS exposure for different time points. Images are merged and are representative
of at least 100 cells viewed in each experiments (n = 5). Nuclei (blue) were stained with DAPI. A) Cells overview at different time points 406; B)
Representative Western blot of proteins extracted from the membranes of cells exposed to Cigarette Smoke at different time points. The signals of
SR-B1 protein levels were determined by densitometric analysis of the scanned images (bottom panel). Data are expressed in arbitrary units and are
averages of the values for five different experiments. (*p,0.05).
doi:10.1371/journal.pone.0033592.g003
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of HNE protein adducts levels. This increase was evident

immediately after the exposure to CS exposure (3 fold) and

although this declined over time, it was still significant at 12 hrs

(almost 2 fold increase over control). Parallel results were observed

also for ACR protein adducts (Fig. 4B) even if the results were less

dramatic with a gradually decreased to the control level at

50 minutes of CS exposure. These results were also confirmed by

immunocytochemistry (ICC) as shown in Fig. 4C. Michael

addition of a,b-unsaturated aldehydes to cys, his or lys residues

adds an aldehyde function to proteins but exposure to CS could

also lead either to direct oxidative modification of proteins

including formation of carbonyls groups. Therefore, we also

examined the levels of protein carbonyls group in keratinocytes

exposed to CS by Oxyblot analysis. As shown in Fig. 4D, CS

exposure induced a significant increase in carbonyls levels (4 fold)

compared to the control.

Effect of HNE and ACR on SRB1 levels
To examine whether exogenous HNE or ACR affected SR-B1

protein levels, HaCaT cells were treated with different concen-

tration (10 to 100 uM) of either HNE or ACR. As showed in

Fig. 5A, 60 mM of HNE treatment did not affect SR-B1 expression

(the same results were seen also with concentrations from 20 to

100 mM – data not shown). Parallel results were observed when

the cells were treated with ACR. As shown in Fig. 5B, no changes

in SR-B1 levels were detected after treatment with 30 mM of ACR

(same results were obtained with doses from 10 to 70 mM – data

not shown). This unexpected result suggested that the carbonyl

formation and aldehyde adducts detected after CS exposure is a

consequence of a cellular response to CS.

CS exposure induced HNE/SR-B1 adducts
We evaluated whether the formation of HNE protein adducts in

cells exposed to CS included modification of SR-B1. As shown in

Figure 6A, after CS exposure, the levels of HNE increased

dramatically (left column) with a concomitant decrease of SR-B1

(Figure 5 central column). The co-localization (yellow) appreciable

in the right column showed the presence of HNE adducts on SR-

B1. These data suggested that CS induced a covalent modification

of SR-B1 via Michael addition of HNE. To confirm this result, we

employed antibodies against HNE–protein conjugates in combi-

nation with SR-B1 antibody in reciprocal immunoprecipitation–

Figure 4. Exposure to CS increased HNE (A) and ACR protein adducts (B) in HaCaT cells measured by Western blot and this is
confirmed also by ICC staining for HNE and ACR (C) (see arrows). CS increased carbonyl groups expression (D) in HaCaT cells. Cells were
exposed to CS for 50 min and cells were harvested at different time points (0–12 hrs). Western blot shown in the top is representative of five
experiments. Quantification of the SR-B1 bands is shown as ratio of SRB1/b-actin (bottom panel). Data are expressed as arbitrary units (averages of
five different experiments, *p,0.05; **p,0.01). b-actin was used as loading control.
doi:10.1371/journal.pone.0033592.g004
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Western blot analysis. As shown in Figure 6B, the IP experiments

showed the interaction between SR-B1 and HNE. The IP results

were less dramatic than the immunocytochemistry most likely

because SR-B1 is only one of many proteins modified by HNE as

shown in Fig. 4A.

CS exposure induced Ubiquitin/SR-B1
We next evaluated whether CS also induced an increase of SR-

B1 ubiquitination in keratinocytes [25]. Immunoprecipitation for

SR-B1 ubiquitination revealed that CS exposure increased

ubiquitinated SR-B1 in HaCaT cells after 50 min of CS exposure

(Fig. 7A). Re-probing of the membrane with anti SR-B1 antibodies

indicated that equivalent amounts of SR-B1 were immunoprecip-

itated from each sample (data not shown). These data were

confirmed using an inhibitor of the proteosome (MG132). CS

exposed cells in the presence of MG132 did not show changes in

SR-B1 levels (Fig. 7B).

H2O2 decreased SR-B1 protein levels
It has been shown that H2O2 is among the most reactive

oxidants present in the gas phase of CS [30]. The results above

suggested that aldehydes produced in the CS exposed cells rather

in the CS itself were involved in SR-B1 modification and loss.

Therefore, the possibility that H2O2 in CS or produced by cells in

response to CS exposure mediated SR-B1 modification and loss

was considered. As shown in Fig. 8A, H2O2 generated by glucose

oxidase (GO) induces a significant decrease in SR-B1 levels. The

effect was significant after 12 hrs and was even more dramatic

after 24 hr. As these results were similar to that shown by CS

exposure in Fig. 2, we hypothesized that the effect of CS on SR-B1

levels was mainly driven by H2O2. As shown in Fig. 8B the levels

of H2O2 generated by GO were around 100 mM and decreased by

50% after 3 hrs.

CS exposure increased cellular H2O2 production
To further test the hypothesis that H2O2 was responsible for the

effect of CS exposure, we analysed the production of H2O2 during

CS exposure. After 15 min of treatment, there was a significant

increase (2 fold) of H2O2 in the cells exposed to CS and H2O2 then

declined to the steady level after 30 min (Fig. 9). Of note is that when

the media without the cells was exposed to CS the level of H2O2

detected was lower then when the cells were present in the media.

This suggests that the cells contributed to the generation of H2O2.

CS exposure increased mitochondrial ROS production
Mitochondrial ROS production was evaluated in HaCaT cells

after CS exposure. The fluorescent dye Mitosox Red, which has

been suggested to detect mainly mitochondrial superoxide [31],

was used for these experiments. As shown in Figure 9B, cells

exposed to CS showed an increased of fluorescence characteristic

of mitochondrial staining, that is maintained throughout the

smoke exposure (15–50 min), whereas, control cells exposed to air

did not show this effect.

CS exposure induced translocation of the NADPH oxidase
(NOX) components, p67phox and p47phox

One possible cellular source of H2O2 is NADPH oxidase (NOX)

[32], therefore we investigated whether CS exposure induced

Figure 5. HNE (A) or ACR (B) treatment did not affect SR-B1 levels in HaCaT cells. Cells were exposed to the different treatments for 50 min
and cells were harvested at different time points (0–24 hrs). Numbers below the blot represent the ratio of SRB1/b-actin quantification.
doi:10.1371/journal.pone.0033592.g005
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activation of this enzyme. As shown in Figure 10, the membrane

levels of the cytoplasmic subunits p67phox (panel A) and p47phox

(panel B) were significantly increased after CS exposure,

demonstrating the activation of NOX. These effects were also

confirmed by immunocytochemistry (ICC) as shown in Fig. 10C.

Catalase and DPI pretreatment prevented decreased SR-
B1 levels induced by CS exposure

To confirm that the decreased level of SR-B1 after CS exposure

was mainly driven by the production of H2O2, HaCaT cells were

pretreated with PEG-catalase (PEG-CAT) and then exposed to

CS. As shown in Fig. 11, CAT pretreatment prevented the

decrease of SR-B1 levels caused by CS exposure. To support the

involvement of NOX, HaCaT cells were pretreated with DPI (a

general inhibitor of flavoproteins including NOX) and exposed to

CS. As shown in Fig. 11 (right panel), DPI pretreatment largely

prevented the decrease of SR-B1 levels induced by CS exposure.

Discussion

The results presented in this study suggested a possible

mechanism through which CS induced modification, translocation

and degradation of SR-B1 in keratinocytes.

Many of the recent studies on SR-B1 have been focused on its

interaction with HDL and on its role in mediating the selective

uptake of HDL cholesterol esters especially in steroidogenic tissues

and liver [1,2,33–35]. The physiological role of SR-B1 has been

tested in vivo and in vitro by genetic manipulation and has been

shown that mice lacking of SR-B1 have an impaired hepatic-

selective HDL cholesterol uptake, suggesting its role in hepatic

cholesterol transfer. In the last few years it has been shown that

SR-B1 plays a wider role in cell cholesterol levels and can affect

the levels of free cholesterol in the plasma membrane and

therefore influences the cell membrane structure [35,36]. In

addition, other functions of this receptor have been shown.

Although not directly connected to its ability to recognize HDL,

SR-B1 has been shown to regulate calcium permeability in

lymphocytes [35,37], and be involved in bacteria recognition

[35,38] and vitamin E tissue uptake [35,39,24]. SR-B1 has also

been shown to be expressed in several other tissues rather than

liver, including lung, ovary, testis, brain, spleen, kidney [39] and,

recently, even skin [40]. The role of SR-B1 in cutaneous tissue

could be related to its ability to regulate cholesterol trafficking as

suggested by the work Tsuruoka et al. [40] in which SR-B1 levels

decreased as the keratinocytes differentiated but increased after

insults, such as tape stripping, as the epidermis required more

Figure 6. CS induces the increase of HNE/SRB1 adducts. Immunocytochemistry of HaCaT cells showing localization of HNE-adducts (left
column, green color), SR-B1 (central column, red color) and HNE/SR-B1 adducts (right column, yellow color) before, and several time points after, CS
exposure (A). Images are merged in the right panel and the yellow color indicates overlap of the staining. These data were confirmed by
immunoprecipitation for SR-B1 (B). HaCaT cells were exposed to CS and cell lysates were immunoprecipitated using anti SR-B1. Immunoprecipitated
proteins were separated by SDS-PAGE, and then transferred to a nitrocellulose membrane and immunoblotted with anti-HNE. Western blot shown is
representative of five independent experiments.
doi:10.1371/journal.pone.0033592.g006
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lipids to restore the permeability barrier. It is quite possible that

many other functions of SR-B1 in skin may be discovered. Indeed,

it was surprising to find out that SR-B1 was heavily expressed in

the epidermis which is the less vascularized part of cutaneous tissue

and therefore less exposed to HDL particles. It has been shown

that among the insults to which the skin is exposed, CS is one of

the most toxic [41] and in addition, passive smoke (sidestream

smoke) is even more toxic than the mainstream smoke, based on its

chemical composition [42]. Environmental CS contains not only a

large amount of oxygen (reactive oxygen species: ROS) and

Figure 7. CS induces the increase of Ubiquitin/SR-B1 adducts. HaCaT cells were exposed to CS and cell lysates were immunoprecipitated
using anti SR-B1. Immunoprecipitated proteins were separated by SDS-PAGE, and then transferred to a nitrocellulose membrane and immunoblotted
with anti-Ubiquitin (A). Pretratment (2 h) with MG-132 (proteosome inhibitor) did not affect SR-B1 levels. Cells were exposed to CS for 50 min and
harvested at different time points (0–24 hrs). Western blot shown in the top is representative of five independent experiments. Quantification of the
SR-B1 bands is shown as ratio of SR-B1/b-actin (bottom panel). Data are expressed as arbitrary units (averages of five different experiments). b-actin
was used as loading control.
doi:10.1371/journal.pone.0033592.g007

Figure 8. GO treatment decreased SR-B1 levels. Cells were treated with GO for 50 min and then harvested at different time points (0–24 hrs). A)
Representative Western blot of five independent experiments is shown in the top panel. Quantification of the SRB1 bands, average of the five
independent experiments, is shown in the bottom panel. Data are expressed in arbitrary units (**p,0.01). b-actin was used as loading control. B)
Concentration of H2O2 level in cell treated with GO. Data are presented as average of triplicate measurements from each sample and expressed as
arbitrary units.
doi:10.1371/journal.pone.0033592.g008
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nitrogen (reactive nitrogen species: RNS) radical forming

substances [43], but also very reactive aldehydes such as ACR

which is known to disturb biological systems by reacting with a

variety of constitute molecules [19]. In our work we have shown

a clear increase of carbonyls and of both, ACR and HNE protein

adducts after CS exposure. This is the consequence of the high

reactivity of the a,b-unsaturated aldehydes to form covalent

bounds with amino acids residues such as lysine, histidine and

cysteine presents in the proteins [21]. After CS exposure there

was an evident HNE/SR-B1 adducts formation, showing that

SR-B1 is one of the protein target of a,b -unsaturated aldehydes.

The presence of ACR and HNE protein adducts has been

connected with both skin aging and inflammation as shown in

the work of Tanaka et al. [44] where immunohistochemical

analysis for HNE and ACR in skin were associated with actinic

elastosis.

Since treatment with the aldehydes HNE or ACR at different

concentrations did not affect the levels of SR-B1 we have

addressed the possibility that H2O2 could be the component

present in CS able to induce the modulation of SR-B1 as suggested

also in other studies [18]. In fact, CS contains both acrolein and

H2O2; however in our results we have noticed that while

exogenous ACR did not affect SR-B1 levels, H2O2 was able to

reproduce the same pattern observed after CS exposure with a

dramatic decrease of SR-B1 expression. This effect was inhibited

by catalase pretreatment therefore H2O2 was most likely the

mediator able to modify SR-B1 levels.

We have noticed that the concentration of H2O2 in CS (when

only the medium was exposed to CS) was lower than that in the

presence of cells, causing us to conclude that part of the H2O2

present in the system derived from the cells (endogenous) and

not only from the gas phase present in CS (exogenous). This was

confirmed by the detection of NOX activation, which is

involved in H2O2 production via the generation of superoxide

(O2
2). In addition, NOX has been shown to be inducible by

environmental stressors [45]. Although it has been shown that

the general flavoproteins inhibitor DPI can induce cell death

[46,47], it can be cautiously used as NOX inhibitor. In our

study, cells pre-treated with DPI showed an attenuated SR-B1

loss, suggesting that CS-induced cellular H2O2 production

played a major role in SR-B1 loss. NADPH oxidase uses

NADPH to produce superoxide anion (O2
2) and consists of

plasma membrane-bound subunits (gp91phox/Nox2 and

p22phox) and cytosolic subunits (p40phox, p47phox, p67phox,

Rac1) that assemble at the membrane to produce the active

enzyme after a stimulus [48]. Our results demonstrate that after

CS exposure, both p67phox and p47phox were increased in the

membrane-bound fraction, which is an indicator of NADPH-

oxidase activation [49]. These data are in agreement with the

study by Chamulitrat et al [50], which showed that HaCaT

express NOX subunits that have the ability to generate O2
2

when the cell membrane was isolated. Although controversial,

the use of mitosox can be use to measure the presence of

mitochondrial O2
2. Our data showed that after CS there was a

Figure 9. CS exposure increased H2O2 levels and mitochondrial superoxide production. Cells were exposed to CS for 15, 30 or 50 min.
(A) Concentration of H2O2 in the media with (close bars) or without cells (open bars). Data are presented as average of triplicate measurements from
each sample and expressed as arbitrary units. (B) Mitochondrial ROS production was evaluated by Mitosox fluorescence. Cells were loaded with
Mitosox before and after CS exposure and subjected to live cell imaging.
doi:10.1371/journal.pone.0033592.g009
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clear increased of the red dye suggesting that CS induces also

mitochondrial oxidative stress which is in agreement with

previous studies like the one from van der Toorn M et al. [51]

has shown that lipophilic components present in cigarette smoke

extract such as polycyclic aromatic hydrocarbons, phenols and

aldehydes, which does not contain ROS, are able to pass

through the membranes and subsequently disturb mitochondria

and this could fit with our data.

Of note is that when HaCaT cells were compared with

neutrophils (PMNs), keratinocytes produced 20 time less O2
2 than

the neutrophils but the Km of keratinocytes membranes (NOX)

was almost a factor of 2 higher than PMNs supporting the idea

that keratinocyte NOX generates a constitutively constant level of

O2
2 [52]. Activation of NOX in keratinocytes has been shown to

be involved in both migration and proliferation, therefore playing

a critical role in skin physiology. Interestingly, Nam et al. [53]

Figure 10. Exposure to CS increased NADPH oxidase levels in HaCaT cells. Cells were exposed to CS for 50 min and cells were
harvested at different time points (0–24 hrs). The activation of NADPH oxidase was determined by the translocation in membrane of p67phox

(A) and p47phox (B). The Western blot shown in the top is representative of five experiments. Quantification of the SR-B1 bands is shown in the bottom
panel. Data are expressed as arbitrary units (averages of five different experiments, *p,0.05). b-actin was used as loading control. These data were
confirmed by ICC for p6phox and p4phox (C).
doi:10.1371/journal.pone.0033592.g010

Figure 11. The decreased levels of SR-B1 after CS exposure was reversed by catalase (CAT) (left panel) or Diphenyleneiodonium
Chloride (DPI) (right panel). Cells pretreated with CAT or DPI were exposed to CS for 50 min and harvested at different time points (0–24 hrs).
Western blot shown is a representative of five independent experiments. Quantification of the SR-B1 bands is expressed under the blot as ratio of SR-
B1/b-actin (arbitrary units).
doi:10.1371/journal.pone.0033592.g011
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showed that enhanced cell migration was dependent on H2O2

generation mediated by NADPH oxidase but that cell migration

was not enhanced by treating the cells with H2O2 directly. This

supports the idea that more than the concentration of H2O2 is

important the source and the rate of production. Indeed, signaling

by H2O2 is very much localized phenomenon in which the

location of the source and target and the rate of production are

critical [54]. This is also applicable to the aldehydes. In fact, the

use of HNE or ACR did not affect SR-B1 levels while exposure to

CS leads to the increase of HNE and ACR (in part endogenously)

that can then form protein adducts with SR-B1. It has been

recently shown that HNE production is able to directly activate

NOX [55], therefore it is possible that the peroxidation products

induced by CS are the responsible for NOX activation also in our

system.

The role of H2O2 generated by CS in modification of receptors

has been shown in other cells [56,18]. Here, we demonstrated that

CS affected SR-B1 levels and localization in keratinocytes via the

activation of NOX with the production of H2O2, and the

subsequent formation of SR-B1/aldehyde adducts that led to the

ubiquitination and degradation of the receptor. Similar results

where also shown by our lab in epithelial lung cells although the

mechanism that contributes to the loss of SR-B1 was not clear.

Now we have shown that the decline of SR-B1 was due to the

formation of SR-B1 protein adducts and by increased ubiquitina-

tion, which led to SR-B1 degradation by the proteosome. Indeed,

the use of the proteosome inhibitor MG132 reversed the effect.

The presence of RNS in CS has been well documented [57]

and it is possible that others posttranslational modifications

(Nitrotyrosine) play a role in SR-B1 levels. The activation by CS

of NOX with the release of O2
2 and iNOS [58] with the

production of NO could lead to the formation of peroxynitrite

(ONOO2) a very reactive molecule that can oxidized sulphhy-

drils about 103 times faster than H2O2 [59] and might contribute

to SR-B1 modifications.

How does H2O2 cause the modification and loss of SR-B1?

Consistent with the data here, H2O2 appears to have caused the

production of ACR and HNE from cellular components. HNE

and ACR can be produced from lipid peroxidation while ACR

can come from the oxidation of carbohydrates as well. Regardless,

the formation of ACR and HNE adducts of SR-B1 was associated

with translocation, ubiquitination, and degradation of SR-B1. The

observation that cellular production of these a,b-unsaturated

aldehydes resulted in SR-B1 loss while exogenous addition did not,

suggests that the location of the aldehyde production was

important. It is possible that recognition of the adducted protein

by the ubiquitination apparatus of the cell required modification of

the protein on the cytosolic domains of the receptor while

modification on the external side would not have been recognized.

Thus, production of the aldehydes from lipids on the cytosolic side

of the plasma membrane local to the SR-B1 already in the

membrane or from internal cellular membranes, particularly the

endoplasmic reticulum where SR-B1 was also present prior to CS

exposure was able to modify SR-B1 in a manner that caused its

Figure 12. Possible mechanism involved in the degradation of SR-B1. Among the components present in CS there are acrolein and H2O2

that beside to react with the membrane lipids (1) are able to cross the cell membrane (2), once H2O2 is inside the cells, there will be the formation of
OH. (Fenton reaction) (3) that will react with the cytosolic membrane lipids and the formation of lipid peroxidation products such as ACR and HNE (4).
ACR and HNE can from SR-B1 adducts (5 and 6) and HNE can also activate NOX by inducing the translocation of the cytoplasmic submit to the
membrane (7). Activation of NOX lead to the increased production of O2

2 that can be dismutated (SOD) in H2O2 (8) that via Fenton reaction will
further increase the level of peroxidation (9). The formation of HNE-SR-B1 adducts is recognized by the ubiquitination apparatus of the cell (10) that
will ubiquitinate the protein that subsequent will be dregraded by the proteosome (11).
doi:10.1371/journal.pone.0033592.g012
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modification and subsequent ubiquitination and degradation

(Figure 12).

In conclusion, considering the noxious effect of CS on

cutaneous tissues, our data bring new insights on the possible

mechanism by which CS exposure leads to the loss of SR-B1

receptor, which plays a prominent role in the delivery of lipids

from the extraepidermal tissues to epidermis and thereby

contributes to the cutaneous barrier via the formation of lamellar

bodies. Although this receptor has been studied mainly for its

function to recognized HDL particles, several other functions have

been described and hypothesized therefore it is not surprising that

it would also have a prominent role in regulating skin physiology.
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