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Metabolic reprogramming is closely related to melanoma. However, the prognostic

role of metabolism-related genes (MRGs) remains to be elucidated. We aimed to

establish a nomogram by combining MRGs signature and clinicopathological factors

to predict melanoma prognosis. Eighteen prognostic MRGs between melanoma and

normal samples were identified using The Cancer Genome Atlas (TCGA) and GSE15605.

WARS (HR = 0.881, 95% CI = 0.788–0.984, P = 0.025) and MGST1 (HR = 1.124,

95% CI = 1.007–1.255, P = 0.037) were ultimately identified as independent prognostic

MRGs with LASSO regression and multivariate Cox regression. The MRGs signature was

established according to these two genes and externally validated in the Gene Expression

Omnibus (GEO) dataset. Kaplan-Meier survival analysis indicated that patients in the

high-risk group had significantly poorer overall survival (OS) than those in the low-risk

group. Furthermore, the MRGs signature was identified as an independent prognostic

factor for melanoma survival. An MRGs nomogram based on the MRGs signature

and clinicopathological factors was developed in TCGA cohort and validated in the

GEO dataset. Calibration plots showed good consistency between the prediction of

nomogram and actual observation. The receiver operating characteristic curve and

decision curve analysis indicated that MRGs nomogram had better OS prediction and

clinical net benefit than the stage system. To our knowledge, we are the first to develop

a prognostic nomogram based on MRGs signature with better predictive power than

the current staging system, which could assist individualized prognosis prediction and

improve treatment.
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INTRODUCTION

Cutaneous melanoma (hereafter “melanoma”), a tumor most commonly observed in fair-
skin populations, is the most lethal form of skin malignancy with great heterogeneity. Its
incidence has been increasing worldwide over recent decades (1), and the prognosis of
melanoma patients is poor due to its invasiveness and metastasis (2). Numerous efforts have
been made to develop useful tools for melanoma prognosis predictions. The most frequently
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used tool is the American Joint Committee on Cancer’s staging
system for tumor-node-metastasis, but it is not satisfactory in
current clinical practice. Increasing studies show that patients
differed considerably in prognosis even at the same tumor-
node-metastasis stage due to the discrepant genetic backgrounds
(3). Therefore, it is still necessary to explore novel melanoma
prognostic biomarkers for optimal therapeutic strategies.

Metabolic reprogramming, an emerging hallmark of cancer,
allows cancer cells to survive, proliferate, and disseminate (4, 5).
In the 1920s, Otto Warburg observed that proliferating ascites
tumor cells preferentially performed glycolysis, even in oxygen-
rich circumstances (6). This seminal finding has been observed
in a wide variety of cancers and currently has been exploited
clinically using 18F-deoxyglucose positron emission tomography
(7). Mechanically, in proliferating tumor cells, glycolysis, instead
of pure mitochondrial metabolism, could provide essential
intermediates for biosynthetic pathways, such as lipid or
nucleotide synthesis (8). Emerging studies highlight the close
association between melanoma and metabolic reprogramming.
For example, 18F-deoxyglucose positron emission tomography
was applied for the detection of the early response to the B-
Raf proto-oncogene, serine/threonine kinase (BRAF) inhibitor,
vemurafenib, in BRAF-mutant melanoma patients (9). Also,
some potential drugs navigating metabolic pathways have been
exploited for melanoma in preclinical or clinical scenarios (10).
Therefore, metabolism-related genes (MRGs) are promising
therapeutic targets and prognostic predictors in melanoma.

Nomogram has become a reliable and convenient tool
in cancer prognosis predictions (11, 12). Several prognostic
nomograms have been established for predicting the prognosis
of melanoma in recent years (13–15), while global expression
pattern based on MRGs has not previously been recognized
in melanoma. In this study, we aimed to develop and validate
a novel prognostic nomogram based on MRGs signature and
clinicopathological factors for ideally predicting the prognosis of
melanoma patients.

MATERIALS AND METHODS

Acquisition of MRGs
MRGs were extracted from all 41 metabolic pathways in the
Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway
(c2.cp.kegg.v7.0.symbols.gmt) from the Gene Set Enrichment
Analysis (GSEA) website (https://www.gsea-msigdb.org/gsea/
downloads.jsp#msigdb). Finally, a total of 948 MRGs were
identified for our study.

Data Retrieval and Processing
The training cohort dataset with 460 melanoma RNA-
sequencing data and clinical information was obtained from
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/). GSE15605 and GSE54467 were derived from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). GSE15605, which included 46 primary melanoma
samples and 16 normal skin samples, was used to identify
differentially expressed genes (DEGs) using GEO2R. An adjusted
P < 0.01 and a |log2 (FC) |> 2 were considered the cutoffs for

identifying DEGs. GSE54467, which included 79 melanoma
patients, was used as the GEO validation dataset. The intersected
genes in TCGA cohort and GSE54467 dataset were extracted,
and their expressions were normalized using the “limma”
and “sva” packages using R software version 3.6.0. MRGs in
these intersected genes were used for the following univariate
Cox regression analysis. Patient clinical and pathological
characteristics in TCGA and GEO cohorts are summarized in
Supplementary Table 1.

Construction and Validation of the
Prognostic MRGs Signature
A univariate Cox regression analysis was performed to
screen out the prognosis related MRGs. Then the prognosis
related MRGs were overlapped with the DEGs to obtain
the prognostic MRGs. The least absolute shrinkage and
selection operator (LASSO) regression analysis with
tenfold cross-validation was subsequently applied by using
“glmnet” and “survival” packages (16). The independent
prognostic MRGs were generated through a multivariate
Cox regression analysis and used to construct the prognostic
MRGs signature with the following formula: Risk score =
(

β1 × expression of MRG1
)

+
(

β2× expression of MRG2
)

+

· · · +
(

βn × expression MRGn
)

. Patients were divided into
high-risk and low-risk groups according to the median risk score.
Kaplan-Meier survival analysis was performed to evaluate the
association between the prognostic MRGs signature and overall
survival (OS) in melanoma patients. Moreover, univariate and
multivariate Cox regression was used to identify the independent
prognostic factors, including age, stage, and MRGs signature.
The prognostic MRGs signature was externally validated in the
GEO dataset and calculated with the same formula and cutoff.
P < 0.05 was regarded as statistically significant.

Functional Enrichment Analysis
Gene ontology and KEGG pathway analyses were performed
for the differentially expressed MRGs using “org.Hs.eg.db,”
“clusterProfiler,” “enrichplot,” “ggplot2,” and “GOplot”
packages in R. The adjusted P < 0.05 was considered
statistically significant.

Validation of the Independent Prognostic
MRGs
Gene Expression Profiling Interactive Analysis (GEPIA) is
a web-based tool to analyze gene expression and function
based on the RNA-seq data from TCGA (one normal sample
and 460 melanoma samples) and Genotype-Tissue Expression
(GETx) (557 normal samples). The differential expression of
these independent prognostic MRGs was verified using GEPIA.
Their expression of WARS and MGST1 were validated using
clinical specimens from the Human Protein Atlas (HPA)
database (http://www.proteinatlas.org). A Kaplan-Meier survival
analysis was conducted to validate the prognostic value of the
independent prognostic MRGs using GEPIA.
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FIGURE 1 | A flowchart of the study procedure.

GSEA
GSEA was performed in java GSEA (version 4.0.3) based on the
Molecular Signatures Database version 6.2. Through comparing
the high- and low- risk groups in 460 melanoma patients from
TCGA dataset. C2 (curated gene sets), C5 (GO gene sets), and C6
(Oncogenic signature) were searched to identify enriched KEGG
pathways, biological processes, cellular components, molecular
functions, and oncogenic signatures. FDR q < 0.05, |NES| > 1
were considered statistically significant.

Construction and Validation of the
Nomogram
All the independent prognostic factors were enrolled to establish
a nomogram in TCGA training cohort. A calibration curve was
plotted to evaluate the consistency between the nomogram and
actual observation. The concordance index (C index) and the
area under the curve (AUC) in receiver operating characteristic
(ROC) curves were applied to assess the predictive accuracy.

Decision curve analysis, an approach to assess the clinical value
of models by integrating the preferences of the patients into the
analysis, was used to evaluate the clinical benefits of stages and
our nomogram to facilitate decisions about test selection and
use (17).

RESULTS

WARS and MGST1 Were the Independent
Prognostic MRGs
The whole flowchart for the study procedure is presented
in Figure 1. A total of 849 DEGs were found in GSE15605
by volcano plot (P ≤ 0.01, |log2FC| ≥ 2; Figure 2A). Using
univariate Cox regression, 207 MRGs associated with OS were
identified in TCGA training cohort (Supplementary Table 2).
Differentially expressed MRGs were the intersection of the
above two gene sets, and finally, 18 overlapping prognostic
MRGs were obtained (Figure 2B). Gene ontology functional
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FIGURE 2 | Identification of prognostic metabolism related genes (MRGs) and functional enrichment analysis. (A) Volcano plot of differentially expressed genes (DEGs)

between melanoma and normal samples of GSE15605 dataset. The red dots represent up-regulated genes, and the green dots represent down-regulated genes (adj.

P < 0.01 and |log2 (FC) | > 2). (B) Venn diagram showing the intersection of the DEGs in GSE15605 and prognosis related MRGs. (C,D) Gene ontology (GO) terms

(C) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways (D) of 18 prognostic MRGs.

enrichment and KEGG analyses were performed on the

prognostic MRGs (Figures 2C,D). Gene ontology enrichment

analysis showed that these DEGs were mainly enriched in

small molecule catabolic processes, cellular detoxification, and

detoxification. KEGG analysis revealed that the DEGs were

mainly enriched in tryptophan metabolism, metabolism of
xenobiotics by cytochrome P450, and histidine metabolism.
To avoid collinearity, the differentially expressed MRGs

were entered into a LASSO regression with ten-fold cross-

validation, and 12 candidate MRGs were ultimately selected

(Figures 3A,B). Then, multivariate Cox regression was applied
and results showed that tryptophanyl-tRNA synthetase 1 (WARS)

(HR= 0.881, 95% CI= 0.788–0.984, P= 0.025) and microsomal
glutathione S-transferase 1 (MGST1) (HR = 1.124, 95%

CI = 1.007–1.255, P = 0.037) were the independent prognostic

MRGs (Figure 3C).
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FIGURE 3 | Establishment of prognostic MRGs signature. (A) Selection of the optimal parameter in the least absolute shrinkage and selection operator (LASSO)

regression with tenfold cross-validation. (B) LASSO coefficient profiles of the candidate prognosis related MRGs. (C) Multivariate Cox regression analysis of 12

candidate prognosis related MRGs.

Verification of WARS and MGST1

Expression and Prognosis
WARS and MGST1 were highly expressed and downregulated

in GSE15605 melanoma datasets, separately (Figure 4A). The
differential expression of these two genes was further validated in

the GEPIA database (Figure 4B). Interestingly, their expressions

were independent of the status of key melanoma mutations,
including BRAF, neurofibromin 1 (NF1), and RAS mutations
and triple wild type in melanoma (Figure 4C). Moreover,
the protein level encoded by these two genes was consistent
with their gene expression using the HPA website. WARS
was strongly positive in melanoma tissue, while MGST1 was
weakly positive in normal skin tissue (Figure 4D). Kaplan-
Meier survival curves were further conducted to evaluate the
prognostic value of each gene. Though WARS and MGST1
were not associated with disease free survival (Figure S1), we
arrived at the same conclusion that WARS was a protective gene

(HR= 0.59, P < 0.001), whileMGST1 was a risk gene (HR= 1.3,
P = 0.031) for OS in melanoma (Figures 4E,F).

MRGs Signature Acts as an Independent
Prognostic Predictor
Based on WARS and MGST1, MRGs signature was established
to predict melanoma prognosis according to the formula:
MRGs signature = (−0.139 × expression of WARS) +

(0.122 × expression of MGST1). The prognostic signature for
each patient in TCGA training cohort was calculated. All patients
were divided into high-risk or the low-risk groups using the
median signature as the cutoff (−0.804). The result demonstrated
that patients with higher risk scores had worse OS than those in
the low-risk group (Figure 5A). The distributions of risk score,
survival status, and a heatmap of the gene expression profile are
presented in Figure 5B. Interestingly, in our MRGs signature,
disease free survival was also much shorter in the high-risk
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FIGURE 4 | Verification of WARS and MGST1. (A) The expression of WARS and MGST1 between melanoma and normal skin in GSE15605. N (T) = 46 and N (N) =

16. ***P < 0.001. (B) The expression of WARS and MGST1 between melanoma and normal skin using Gene Expression Profiling Interactive Analysis (GEPIA)

database. The number of sorts: N (T) = 460 and N (N) = 558. (C) The expression of WARS and MGST1 in three mutational signatures (BRAF, NF1 and RAS) and wild

types (WT) of melanoma. The number of sorts: N (T) = 147 and N (N) = 558 in BRAF mutation; N (T) = 27 and N (N) = 558 in NF1 mutation; N (T) = 91 and N (N) =

558 in RAS mutation; N (T) = 47 and N (N) = 558 in WT. (D) The representative protein expressions of WARS and MGST1 between normal and melanoma tissues in

the Human Protein Atlas database (http://www.proteinatlas.org). AOD, average optical density, calculated by integrated optical density/area. The expressions were

quantified by Image J (version 1.52a). (E,F) Kaplan-Meier curves for overall survival (OS) of WARS (E) and MGST1 (F) in melanoma patients using GEPIA. N (high) =

229, N (low) = 229. T, tumor; N, normal skin. *P < 0.05.

group (Figure S2), suggesting that the MRGs signature is a better

predictor than individual gene. To examine the robustness of the

MRGs signature, we used a GEO dataset to externally validate the

prognostic value of the model. The same signature formula and

the cutoff were applied to classify the melanoma patients into the

high-risk group (n= 38) and low-risk group (n= 41) in the GEO

validation dataset. Consistently, the results showed that patients

in the high-risk group generally had increasedMGST1, decreased
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FIGURE 5 | Construction and validation of MRGs signature in melanoma. (A–D) Kaplan-Meier analysis for OS based on the MRGs signature of melanoma patients in

TCGA training cohort (A) and GEO validation dataset (C). The distribution of risk score, survival status and expression heatmap of the two MRGs in TCGA training

cohort (B) and GEO validation dataset (D). (E,F) Cox regression analysis of MRGs signature and clinicopathological risk factors in TCGA training cohort (E) and GEO

validation dataset (F).
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WARS, and worse overall survival than those in the low-risk
group (Figures 5C,D). To determine whether MRGs signature
could act as an independent prognostic factor, MRGs signature
and clinicopathological factors including age, sex, and stage were
entered into a univariate Cox regression analysis, indicating
that the MRGs signature was significantly associated with OS
(HR = 2.673, 95% CI = 1.614–4.428, P < 0.001; Figure 5E).
A multivariate Cox regression analysis revealed that the MRGs
signature was an independent prognostic factor (HR = 3.884,
95% CI= 2.236–6.746, P < 0.001; Figure 5E). These results were
consistent in the GEOdataset (univariate Cox regression analysis:
HR= 8.255, 95% CI= 2.681–25.415, P< 0.001; multivariate Cox
regression analysis: HR = 4.143, 95% CI = 1.132–15.168, P <

0.001; Figure 5F).

GSEA for MRGs Signature
To identify the underlying molecular mechanism of the MRGs
signature, we conducted GSEA to compare the high- and low-
risk groups in 460 melanoma patients from TCGA dataset.
In the high-risk group, no GO terms, KEGG pathways or
oncologic signatures were significantly enriched. However, in
the low-risk group, 574 GO terms were significantly enriched
especially in regulation of type I interferon production, NF-
κB pathway and regulation of autophagy Figure S3A. 20
KEGG pathways highlighted that antigen processing and
presentation, apoptosis, and JAK/STAT signaling pathways were
enriched in the low-risk group Figure S3B. Moreover, 14
oncogenic signatures were significantly enriched in low-risk
group including the CAMP, MEK, P53, and other pathways
Figure S3C. These significant terms in each module were
summarized in Table S3.

Construction and Validation of MRGs
Nomogram
To construct a clinically applicable method for predicting
the prognosis of melanoma patients, independent prognostic
predictors including age, stage, and MRGs signature were
enrolled to establish a nomogram to predict the survival
probability at 3 and 5 years based on TCGA training cohort
(Figure 6A). The calibration plots (Figures 6B,C) showed an
excellent match with the ideal curve at 3- and 5-years survival
rates in TCGA training cohort. In the validation dataset, the
calibration plots also showed good agreement between the
predicted and actual outcome of 5-years OS rates (Figure 6D).
The C index of the nomogram was 0.707 in TCGA training
cohort. Moreover, the ROC curve showed a more favorable
predictive ability for the 3-years OS rates (AUC = 0.746)
as compared to MRGs signature (AUC = 0.640), age (AUC
= 0.607), and stage (AUC = 0.672; Figure 6E), as well as
for the 5-years OS rates (AUC = 0.697) as compared to
MRGs signature (AUC = 0.635), age (AUC = 0.613), and
stage (AUC = 0.592; Figure 6F). In the validation dataset,
the C index of the nomogram for predicting OS was 0.730.
The nomogram also has the largest discrimination ability
(AUC = 0.813) as compared to MRGs signature (AUC =

0.723), age (AUC = 0.637), and stage (AUC = 0.680) for 5-
years OS rates (Figure 6G). Decision curve analysis results in

both TCGA training cohort and the GEO validation dataset
suggested that our nomogram could be more beneficial than
traditional stages in predicting the survival for melanoma
patients (Figures 6H–J).

DISCUSSION

Altered metabolism is considered to be related to cancer cell
survival and growth (4, 18). Various metabolisms, such as
the glucose and glutamine metabolism of cancer cells, can
be significantly changed by tumor microenvironment across
an individual tumor (19, 20). However, the tumor can also
acclimatize itself to metabolic reprogramming, suggesting the
specificity of metabolic targets to each cancer (20). Metabolic
gene signatures have been shown to have a prognostic role
in cancers (21, 22). Melanoma is a type of tumor highly
related to metabolic reprogramming, including glycolysis,
protein/amino acid metabolism, and lipid metabolism (23).
The melanoma cells need to increase oxidative stress and
undergo metabolic changes during metastasis (24). A recent
study showed that metabolic differences among melanoma
cells conferred differences in metastatic potential, which
was due to the differences in the function of the MCT1
transporter (25). All these studies highlight the potential value
of generating a metabolism-related model for the prognosis
prediction of melanoma.

In the present study, we first identified 207 metabolism-
related genes, based on TCGA, significantly correlated
with prognosis in the univariate Cox regression analysis.
In GSE15605, which contains the largest normal samples
in the GEO database, 849 DEGs were identified by a
volcano plot. Then the intersected genes between DEGs
and prognostic MRGs were entered into a LASSO regression
and multivariate Cox regression. Ultimately, MRGs signature,
including WARS and MGST1, were obtained. According to
the median risk score of MRGs signature, 460 melanoma
patients in TCGA were divided into the high- or low-
risk group. GSEA results showed a series of signaling
pathway changes in the low-risk group including NF-κB
pathway, regulation of autophagy, apoptosis, and JAK/STAT
signaling pathways.

The role of WARS and MGST1 in melanoma has not
been reported. The WARS gene encodes tryptophanyl-tRNA
synthetase, an aminoacyl-tRNA synthetase involved in protein
synthesis and the regulation of RNA transcription and translation
(26). WARS has been reported to be an IFN-γ-inducible
enzyme, which protects indoleamine-2,3-dioxygenase expressing
cells from tryptophan catabolism and mediates high-affinity
tryptophan uptake into human cells (26, 27). Considering
that tryptophan represents a powerful immunosuppressive
mechanism hijacked by tumors for protection against immune
destruction, WARS mediated tryptophan metabolism plays an
essential role in immuno-oncology (28). WARS is dysregulated
in different cancers with paradoxical roles on tumor invasiveness
(29–34). In colorectal cancer, WARS was negatively correlated
with lymph node metastasis and tumor stage, which could be
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FIGURE 6 | Development and validation of MRGs nomogram. (A) Development of MRGs nomogram. (B–D) Calibration plots for predicting 3-years (B), 5-years (C)

OS in the TCGA training cohort and 5-years OS in the GEO validation dataset (D). (E–G) Receiver operating characteristic (ROC) curves of the MRGs nomogram,

MRGs signature, age and stage at 3-years (E) and 5-years (F) OS in the TCGA training cohort and 5-years OS in the GEO validation dataset (G). (H–J) Decision curve

analysis of the MRGs nomogram and stage at 3-years (H) and 5-years (I) prediction in the TCGA training cohort and 5-years prediction in the GEO validation

dataset (J).
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explained by its antiangiogenic properties (31). Moreover, down-
regulation ofWARS by hypoxia could be a factor responsible for
pancreatic cancer with high metastatic ability (35). However, in
oral cancer,WARS is overexpressed and positively correlates with
cancer invasiveness (32). Through bioinformatics analysis, we
identified thatWARS was a protective gene in melanoma.WARS
prevents tumor cell progression, probably by inhibiting the
neoangiogenic potential of the tumor (36). Further mechanism
studies are needed to elucidate the paradoxical roles of WARS
in tumors.

The MGST1 gene encodes Microsomal Glutathione
Transferase 1, a member of the MAPEG family (membrane
associated proteins in eicosanoid and glutathione metabolism),
which plays a well-established role in the conjugation of
electrophiles and oxidative stress protection (37). The enzyme
exhibits glutathione transferase and peroxidase activity, and
shows activity against a variety of active substrates, from lipid
peroxidation to cytostatic drugs (38). MGST1 is overexpressed
in various cancers (38, 39) and associated with drug resistance
(37). Linnerth et al. suggested that overexpression of MGST1
has been identified as an early marker in lung cancer (40).
Further, Zeng and his colleagues demonstrated MGST1
knockdown could inhibit lung adenocarcinoma cell proliferation
by inactivating the AKT/GSK-3β pathway signaling and
promote cell apoptosis by regulating the mitochondrial
apoptosis pathway related proteins (39). Moreover, MGST1
overexpression was correlated to higher metastatic potential
in human prostate cancer (41). Surprisingly MGST1 mRNA
or protein cannot be detected in neuroblastoma cells or
tissues (42). Here we reported that MGST1 is a risk factor
of melanoma and the detailed mechanism deserved further
investigations. Our study provided not only a clinical tool for
prognosis predictions but also the theoretical basis for future
research studies.

After identifying the two metabolic prognostic genes, an
MRGs signature was developed to predict the prognosis of
melanoma patients. The MRGs signature was able to stratify OS
in both training and validation cohorts and was a risk factor
independent of clinicopathologic factors. We next established a
nomogram for predicting 3- and 5-years OS based on MRGs
signature, age, and stage. The ROC analysis and calibration
plots were then applied to verify the prognostic accuracy,
showing a good predictive performance of our model. Finally, the
decision curve analyses in both training and validation datasets
indicated that our model provided more clinical net benefits.
Nomograms have been widely used in cancer management and
prediction (43, 44). Several nomograms have been established
for melanoma in recent years. Clinical and pathological features
were applied to construct a nomogram to predict sentinel lymph
node metastases in melanoma (45, 46). Nomograms were also
developed to identify the risk, recurrence, and mortality in
patients with negative sentinel lymph nodes (47, 48). There
are two studies establishing models based on long non-coding
RNA signatures to predict prognosis in melanoma patients
(15, 49). To our knowledge, we conducted the first study to
develop a nomogram to predict melanoma prognosis based on
MRGs signature and clinicopathologic factors, exhibiting higher

prognostic accuracy compared with the tumor-node-metastasis
staging system.

Despite the potential clinical benefits of our results, our
study has some limitations. We mainly focused on the
effect of MRGs on melanoma prognosis; other genes, such
as autophagy-related genes and immune-related genes, also
contribute to the development and progression of melanoma.
Additionally, our study was based on the whole population
of melanoma patients, and the application to sub-populations
still need investigated. Lastly, multicenter, large-scale prospective
clinical trials are needed for further external validation
of our nomogram.

In conclusion, a prognostic nomogram incorporating
both MRGs signature and clinicopathological features
for individual survival prediction was developed and
validated, which is superior to the tumor-node-metastasis
staging system.
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