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Abstract
Background  There is evidence of increased risk of cognitive disability due to short 
sleep duration and adverse Social Determinants of Health (SDoH). To determine 
whether spatial associations (correlation between spatially distributed variables within 
a given geographic area) exist between neighborhoods with short sleep duration 
and cognitive disability across the United States (US) after adjusting for other factors. 
We conducted a spatial analysis using a spatial lag model at the neighborhood-level 
with the census tract as unit-of-analysis within each state in the US. We aggregated 
our results nationally using a weighted analysis to adjust for the number of census 
tracts per state. This study used Centers for Disease Control and Prevention (CDC) 
data on short sleep duration, cognitive disability and other health factors. We used 
2021–2022 neighborhood-level data from the CDC and US Census Bureau adjusting 
for social determinants of health (SDoH) and demographics, excluding Florida due 
to inconsistencies in data availability. Our exposure variable was self-reported short 
sleep defined by the CDC (“sleep less than 7 hours per 24 hour period”). Our outcome 
was self-reported cognitive disability defined by the CDC (“difficulty concentrating, 
remembering, or making decision”). We adjusted for other factors including ‘health 
outcomes’, ‘preventive practices’, and the CDC’s Social Vulnerability Index.

Results  The spatial analysis revealed a significant association between short sleep 
duration and an increased risk of cognitive disability across the US (estimate range 
[0.29; 1.27], p < 0.005) after adjustment. Notably, six Western states (New Mexico, Alaska, 
Arizona, Nevada, Idaho, and Oregon) were at increased risk of cognitive disability due 
to short sleep duration and this pattern was significant (p = 0.007).

Conclusions  Our study highlights the importance of short sleep duration as a 
significant predictor of cognitive disability across the US after adjusting for other 
confounders. The association between short sleep and cognitive disability was 
especially strong in the Western region of the US providing a deeper understanding of 
how geographic context and local factors can shape health outcomes.
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​​Background
Cognitive disability (CD), often characterized by difficulty with memory, attention, deci-
sion-making, and other cognitive functions, is a growing concern, particularly among 
older adults [1]. Numerous studies have linked CD to a variety of risk factors, includ-
ing aging, genetic predisposition, and chronic health conditions such as hypertension, 
diabetes, and cardiovascular disease [1, 2]. In recent years, attention has increasingly 
turned to lifestyle factors, particularly sleep duration, as contributors to cognitive health 
[3]. The pattern of CD in the United States (US) shows significant variation, particularly 
among minority racial and ethnic groups such as Black and Hispanic individuals [4]. 
This disparity is influenced by several factors, including socioeconomic status, access to 
healthcare, and chronic stress [5, 6]. Garcia et al. found that older Black and Hispanic 
adults are more likely to be cognitively impaired than older White counterparts. Educa-
tional disadvantages contribute significantly to those disparities [7].

Increased CD risk has been linked to short sleep duration– less than 7  h within a 
24-hour day [8]– and other conditions such as obesity, diabetes, hypertension, heart dis-
ease, stroke, and depression [9, 10, 11]. Socioeconomic factors were key determinants 
of inadequate sleep as reported by about one-third of US adults in a 2014 survey [12]. 
Pronounced sleep duration disparities have persisted over decades, particularly among 
Blacks and Hispanics compared to Whites [13, 14, 15]. Geography significance is high-
lighted in recent studies showing inadequate sleep most prevalent in the US Southeast 
and Appalachian regions [12, 16].

While research has explored the link between short sleep and CD, as well as the role 
of social determinants of health (SDoH) in each, little is known about how SDoH and 
geographic factors interact to influence this relationship. There are several gaps in the 
previous literature that limit our understanding of how short sleep duration and CD are 
connected in depth in the context of SDoH. One key issue is the heterogeneity of study 
designs, which makes it difficult to compare results across studies or conduct meta-anal-
yses. Differences in sample sizes, methods of assessing sleep and cognitive function, and 
failure to adequately control for confounders such as comorbidities, lifestyle factors, and 
socioeconomic status further complicate the big picture [17, 18]. Additionally, studies 
often focus on specific populations or regions, limiting the generalizability of their find-
ings. For example, some studies have found associations between short sleep and CD in 
specific ethnic groups or specific regions, but these results may not apply universally [19, 
20].

This study aims to fill these gaps by investigating the relationship between short sleep 
duration and CD across the entire US, adjusting for other health conditions and key 
SDoH factors, which can confound this relationship. Using a nationwide dataset from 
the Centers for Disease Control and Prevention (CDC) [21] and the US Census Bureau, 
[22] we conducted spatial analysis including Moran’s I and autocorrelation regression 
modeling to assess the effects of short sleep on CD at the neighborhood-level, adjusted 
for several potential confounders. Additionally, weighting our analysis by the number of 
census tracts per state to compare regions across the US was used to examine regional 
variations in the impact of short sleep on CD. Understanding these dynamics will help 
guide public health interventions aimed at reducing sleep disparities and mitigating 
the risk of CD, particularly in vulnerable populations. Ultimately, these findings could 
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contribute to healthier aging across diverse communities by addressing the broader 
social and environmental factors that influence CD.

Methods
Datasets

We used the CDC Population Level Analysis and Community Estimates (CDC PLACES) 
[21] and the CDC Social Vulnerability Index (CDC SVI) [22] at the census-tract levels. 
CD was assessed via self-report using the item: “Because of a physical, mental, or emo-
tional condition, do you have serious difficulty concentrating, remembering, or making 
decisions?” (Yes/No). Sleep duration was measured with the question: “How many hours 
of sleep do you get on average in a 24-hour period?”, with responses of < 7 h classified 
as ‘short sleep duration’. The number of hours of sleep was recorded as a whole number 
(rounding up for ≥ 30 min and rounding down for < 30 min). The rounding rule that was 
applied is consistent with the methodology used by the CDC in the Behavioral Risk Fac-
tor Surveillance System (BRFSS), which is a primary data source for the CDC PLACES 
data [23].

The selection of health, socioeconomic, and demographic covariates was guided by 
existing literature on the bidirectional associations between short sleep duration and 
various chronic conditions such as hypertension, diabetes, depression, and obesity [9]. 
In addition, socioeconomic and demographic factors—such as income, education, race/
ethnicity, and housing quality—are known to influence both cognitive health and sleep 
issues [24, 25]. We retrieved health condition estimates from the CDC PLACES, [21] 
selecting only those measures with the least amount of missing data across the US for 
comprehensive coverage.

Among the 84,414 census-tracts in the US, 68,172 (80.76%) census tracts had CDC 
PLACES information [26]. We included all census tracts with CDC PLACES informa-
tion. The 2010 geographic shapefiles of census tracts for 50 US states including District 
of Columbia (DC) were downloaded from the US Census Bureau’s Cartographic Bound-
ary Files and used to map and visualize the census tract-level data [27]. We used CDC 
PLACES accessed via Github, [28] and sf package (version 1.0–18) [29] in R (version 
4.3.3.).

Additional detail is in our Additional Method.

Spatial analysis

Moran’s i and spatial autocorrelation

We first used Moran’s I test to determine if there was any spatial correlation in each state 
using census-tract level data. We did this for CD and sleep only (without controlling for 
any health/socioeconomic factors). Moran’s I test requires a spatial interaction matrix, 
and to create this matrix, we used the adjacency of tracts (which we will calculate also 
for the next step) as identified via neighboring polygons based on shared boundaries. 
The spatial interaction matrix was calculated from an existing matrix (w). Then, the 
transpose (t(w)) was added and we subtracted the element-wise product of w and t(w).

Spatial weight matrix construction

Spdep (version 1.3-6) [30] and spatialreg (version 1.3-5) [31] packages in R were used 
to create a spatial adjacency matrix using neighborhood information derived from 



Page 4 of 14Te et al. BioData Mining           (2025) 18:41 

shapefiles. We used contiguity-based spatial weights rather than distance-based weights 
because our spatial units of analysis were census tracts, which vary in size and shape 
across states. Contiguity-based weights allow for a consistent definition of neighbor-
hood structure, especially in heterogeneous geographic areas. This approach is com-
monly used in public health spatial analyses to capture both direct and corner-based 
tract interactions [26]. This constructs a spatial weight matrix based on contiguity using 
poly2nb() with queen contiguity, which defines neighboring census tracts as those that 
share either a border or a vertex. The adjacency of tracts was determined by identifying 
neighboring polygons based on shared boundaries. We converted the neighborhood list 
to a spatial weights object using nb2listw(). We set true for zero policy option to account 
for census tracts that have no neighbors, ensuring that all tracts were included in the 
model.

Spatial analysis model specification

The spatial lag models were constructed separately for each state; therefore, we con-
ducted a model for each state. These models incorporated lagged values of neighbor-
ing tracts’ CD as the outcome and short sleep duration as a main predictor, adjusting 
for covariates from the CDC PLACES in prevalence of health outcomes, prevention 
practices, health risk behaviors, disabilities, health statuses, and community factors; 
and from the CDC SVI for socioeconomic and income, education, employment, hous-
ing quality, transportation access, and racial/ethnic composition factors within each 
state. The coefficients, p-values, and confidence intervals (CI) were extracted from these 
models.

State-level weighted forest plot

We weighted our analysis by the number of census-tracts per state to generate a state-
level weighted result. The mean estimates for each state were incorporated into forest 
plot visualizations. The weighted estimates were also summarized at the national level 
by computing a mean estimate across all states.

Choropleth-like visualization

We visualized the relationship between CD and short sleep duration along with vari-
ous health and socioeconomic variables across US states using choropleth and heatmap 
techniques. We plotted estimates and CIs for the state with the highest estimate (highest 
risk of CD) and the state with the lowest estimate displaying all health conditions and 
socio-economic factors using ggplot2 package (version 3.5.1) [32] in R.

Explore relationship per region in state by state-level weighted analysis meta-analysis

We grouped states into four US Census Bureau regions: Northeast (9 states), Midwest 
(12 states), South (17 states), and West (13 states) [33]. We selected states with model 
estimates showing > 100% increase in risk of CD (those with strong associations) after 
adjustment from our adjusted spatial analysis models to determine if those states were 
disproportionality in certain regions in the US. We used the Fisher’s exact test to deter-
mine statistical significance.
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Results
Overview of dataset and variables

Dataset overview

We included all US census tracts (84,414) and then removed those without data from 
CDC PLACES (maximum number of census tracts with CDC PLACES is 72,337), Cen-
sus Bureau and CDC SVI resulting in a final set of 57,404 census tracts from across the 
US. These represent the most densely populated areas in the US. In Table  1, Califor-
nia has the most census tracts (6,809), followed by New York (4,311); while Wyoming 
(103) and Alaska (143) have the fewest. The South and Midwest have higher percent-
ages of CD, with Mississippi reporting the highest median (interquartile range [IQR]) at 
19.4%(IQR = 16.6%, 22.9%), followed by Louisiana at 18.9% (IQR = 15.4%,22.2%); in con-
trast, Hawaii has the lowest median at 9.7% (IQR = 8.1%,11.1%), followed by Nebraska 
at 10.3% (IQR = 9.0%,12.1%). Hawaii has the highest median of short sleep duration at 
39.85% (IQR = 37.6%, 42.2%), followed closely by West Virginia at 39.75% (IQR = 37.9%, 
42.2%); while South Dakota has the lowest medians at 27.9% (IQR = 26.6%, 29.4%), and 
Minnesota at 28.0% (IQR = 25.8%, 29.8%).

Exclusion

Florida and Puerto Rico were excluded from the analysis due to inconsistencies in 
data availability. They did not fully participate in the CDC PLACES program, resulting 
in missing or incomplete data for key variables (e.g. there is complete missingness of 
stroke, sleep, and so on for the state of Florida).24 Therefore, to maintain the integrity of 
the analysis, our analysis covered 49 states in the US, and DC.

Spatial analysis results for the US

We conducted a spatial analysis to examine the association between CD and short 
sleep duration adjusting for other covariates. The results (Fig. 1(A)) revealed a signifi-
cant association between short sleep duration and an increased risk of CD across the 
US. The estimate values (i.e. regression coefficient) ranged from 0.29 to 1.27 (p < 0.05) 
in all 50 models, after controlling for other variables. In this spatial analysis, the coef-
ficient represents the direction and strength of the relationship between short sleep 
and CD. For instance, an estimate of 1.26 in Nevada indicates a 1.26-fold increase in 
the risk of CD with a one-unit increase in short sleep, or a 126% increase in risk. The 
strongest relationship between short sleep and CD were observed in three states includ-
ing New Mexico (NM) with estimate of 1.26 (95%CI = 1.19, 1.34), Alaska with estimate 
of 1.16 (95%CI = 1.04, 1.28), and Nevada with estimate of 1.11 (95%CI = 1.04, 1.18). On 
the other hand, the lowest estimate values were found in Vermont with estimate of 0.29 
(95%CI = 0.20; 0.39), Hawaii with estimate of 0.36 (95%CI = 0.25; 0.46), and Maryland 
with estimate of 0.41(95%CI = 0.39; 0.44), indicating that in these states, the relationships 
between short sleep and CD in these states were much weaker. The detailed estimates 
for all covariates are provided in Additional Table.

Interactive maps of CD and short sleep duration in the US

Among the 49 states and DC, NM and Vermont were selected to illustrate the highest 
and lowest associations between CD and short sleep duration, as established through 
spatial analysis. Figure  2 presents interactive maps of CD (Fig.  2A) and short sleep 
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duration (Fig.  2B) for these two states. The darker, more red areas in both maps rep-
resent higher percentages of CD (Fig. 2A) or short sleep (Fig. 2B). In Fig. 2A for NM, 
nearly all of the dark red areas in the CD map indicating high percentage of CD align 
with areas of high short sleep on the map. This strong overlap reflects the robust associa-
tion between the two conditions in NM. In contrast, Fig. 2B for Vermont shows a less 
consistent alignment. Areas with high CD do not always coincide with regions of high 
short sleep, and several areas with elevated percentage of short sleep do not always align 
with those having high CD, that suggests a weaker relationship between the two vari-
ables in Vermont.

Explore relationship per region and state

In Fig. 3, among the 49 states and DC, 8 states exhibited an increase of 100% or more in 
the risk of CD associated with short sleep duration. Of the 8 states with a risk increase 
of 100% or more, the majority were in the Western US (Alaska, Oregon, Idaho, Nevada, 
Arizona, and NM), with South Dakota from the Midwest and Kentucky from the South 
as the only exceptions. This finding was statistically significant (p = 0.007).

Analysis weighted by census tract numbers per state

The observed effect remained by weighting analysis by the number of census tracts 
per state to compare regions across the US. The estimate values (i.e. coefficient values) 

Fig. 1  Spatial Model Association with Cognitive Disability adjusting for Short Sleep Duration, Health/Prevention 
and SoDH/SVI. SoDH: Social Determinants of Health; SVI: Social Vulnerability Index Positive estimates indicate an 
increase in risk of Cognitive Disability (outcome). Negative estimates indicate an inverse association, meaning they 
are associated with a decrease in risk of Cognitive Disability (outcome). Definitions of each variable were described 
in the supplemental material
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Fig. 3  Percentage of States in Each Geographic Region with > 100% increase in risk of Cognitive Disability (*: 
results obtained from the spatial analysis model adjusting for other confounders)

 

Fig. 2  Interactive Maps of Cognitive Disability and Short Sleep Duration in New Mexico and Vermont (The darker, 
more red areas in both maps represent higher percentages of CD (Figure 2A) or short sleep (Figure 2B))
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calculated by the analysis weighted by census tract numbers per state, demonstrate a 
clear geographical gradient in the relationship between short sleep duration and CD. 
From Fig. 4, it is evident that some states exhibit a considerably higher increased risk 
of CD due to short sleep duration, with NM and Arizona, for example, showing par-
ticularly high estimate (well above 1.0), reflecting an increased risk of more than 100%. 
This contrasts with states like Vermont and Michigan, where the association between 
short sleep duration and CD is weaker, with estimates closer to 0.3, suggesting a lower 
increased risk.

Discussion
Our cross-sectional spatial analysis at the census-tract level revealed significant asso-
ciations between short sleep duration and CD across the US. We controlled for com-
mon confounder variables reported in many other studies on the relationship between 
CD and short sleep at the patient-level [34–35]. We found that the estimate value (i.e., 
regression coefficient) of short sleep duration on CD after adjusting for other confound-
ers ranged from 0.29 (95%CI = 0.20; 0.39) to 1.27 (95%CI = 1.19, 1.34) in 50 US state 
models in the four regions. Regions with short sleep duration had substantially higher 
CD risk, consistent with literature that links short sleep duration to an increased CD 

Fig. 4  Forest Plot from Analysis Weighted By Census Tract Numbers Per State
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risk [10- 18, 32–33]. Our unique contribution was adjusting for spatial correlation and 
other confounder SDoH variables that modulate the relationship between CD and sleep. 
Those patterns remained strong in the analysis weighted by census-tract numbers and 
stayed consistently robust across the separate state-level models (excluding Florida and 
Puerto Rico).

Eight states had CD risk increases of 100% or more associated with short sleep. Six 
states in the West region (Alaska, Oregon, Idaho, Nevada, Arizona, and New Mexico) 
had the strongest increase in CD risk associated with short sleep. This highlights the 
importance of addressing individual health behaviors and broader social and contribut-
ing factors such as sleep health, particularly in regions at higher risk for CD.

SDoH includes socioeconomic status, race and ethnicity, education, and geographi-
cal location, all of which contribute to disparities in sleep patterns, cognitive health, 
and other health outcomes [34, 36]. For example, lower-income or marginalized racial 
groups often face higher levels of chronic stress, fewer resources, and greater barriers 
to healthcare access, all of which can negatively affect sleep duration [36]. Therefore, 
when addressing health disparities, geographic differences in health outcomes highlight 
the importance of understanding how SDoH and geographic patterns affect potential 
impacts of short sleep on CD. The spatial lag model was selected for this analysis because 
it captures the direct influence of neighboring regions on the outcome variable [37] —an 
essential feature when examining the spatial relationship between short sleep duration 
and CD. By incorporating a spatially lagged dependent variable, the model accounts for 
potential spillover effects, where outcomes in one region may be influenced by those in 
adjacent areas. The spatial lag model is better in situations where the outcome is influ-
enced by its neighbors [38]. This characteristic makes the spatial lag model more suitable 
than alternatives such as the spatial error model (SEM), which addresses spatial autocor-
relation in the residuals rather than in the outcome itself [39]. Consequently, the spa-
tial lag model provides a more accurate representation of regional patterns and helps 
mitigate the risk of biased coefficient estimates and underestimated standard errors. 
While geographically weighted regression (GWR) allows for spatially varying relation-
ships and can provide localized insights, it is computationally intensive and complex to 
implement, especially for large datasets [40]. Given these considerations, we selected the 
spatial lag model as the most appropriate approach for our study.

Our findings on geographic variability align with publications linking short sleep 
to CD. Ciciora et al [41]. identified short sleep (less than 7  h as a major predictor of 
Alzheimer’s Disease and Related Dementias (ADRD) at the county level, reinforcing the 
critical role of sleep and CD. Ciciora’s study used eXtreme Gradient Boosting to rank 
predictors of ADRD in 3,155 counties. Our assessment of spatial analysis incorporated 
into geographic variability provides more granular understanding, and our adjustment 
for several covariates offers more nuance of the short sleep-CD relationship. Ciciora 
also found that having less than a high school diploma ranked with top ADRD predic-
tors with a mean absolute SHapley Additive exPlanations (SHAP) values of 0.169%. We 
did not find “less than high school diploma” among the top predictors, but we did find 
that it increased risk of CD, with a highest estimate of 0.61 (95%CI, 0.57, 0.67) in Alaska 
and lowest estimate of 0.072 (95%CI, 0.067, 0.077) in Texas. Our finding supports our 
hypothesis that educational attainment can protect against dementia. Reports including 
the Framingham Heart Study, [42] Lancet Commission, [43] and a systemic review by 
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Meng and D’Ercy [44] found that education in early life or at least a high school diploma 
could decrease dementia incidence worldwide. We adjusted for no high school diploma 
in our final geospatial model by considering education as a potential confounder in our 
spatial analysis, which strengthened our findings’ robustness and precision.

We found that the West had more states having strong associations between short 
sleep duration and CD, even though it was not the region with the highest levels of inad-
equate sleep or CD [16]. Causes of the increased risk of CD from short sleep in the West 
are not immediately clear from our study. While the Midwest and South had higher 
overall prevalence of CD, this does not necessarily translate to a stronger association 
between short sleep duration and CD. This apparent discrepancy may reflect regional 
differences in the distribution of sleep disorders, healthcare access, or reporting prac-
tices. Additionally, because our spatial models were adjusted for a range of health and 
socioeconomic covariates, the observed associations may also be influenced by regional 
variations in these factors, potentially moderating or attenuating the sleep-CD rela-
tionship in certain areas. This regional pattern warrants further investigation. Future 
research could benefit from exploring different factors such as temperature, noise index, 
in greater detail.

Our study has several strengths. It provides a unique contribution by conducting a 
detailed geospatial analysis at the census tract level, offering a granular view of the geo-
graphic variability in the relationship between short sleep duration and CD across the 
entire US. Additionally, by adjusting for multiple covariates, including several known 
potential confounders, we were able to provide a nuanced interpretation of the short 
sleep-CD relationship. The large sample size, covering the entire US, strengthens the 
generalizability of our findings and provides more robust estimates of risk. Furthermore, 
the state-level weighted analysis, which accounts for the number of census tracts in each 
state, improves the precision of our results, and offers a novel way to visualize how short 
sleep duration affects CD across different regions of the US.

Still our study has several limitations. The cross-sectional design restricts causality 
establishment and recall bias of short sleep self-reporting may also affect data accuracy. 
We adjusted for 18 covariates, but there may still be unmeasured confounders—such as 
genetic factors or individual sleep quality—that could influence the relationship. Lack of 
longitudinal data prevents assessment of how sleep duration changes over time might 
impact CD, and while our census-tract level data provides fine-grained analysis, it does 
not account for other potential neighborhood-level factors such as environmental influ-
ences. Further research could benefit from a longitudinal approach to better assess cau-
sality and explore how changes in sleep duration over time may contribute to CD onset 
and progression. Using more objective measures of sleep duration such as actigraphy or 
polysomnography could provide more accurate data to address recall bias.

Conclusion
We align with the literature on sleep in CD, but are among the first to examine it across 
the US. Our strongest associations were in the West, a novel regional insight. We 
emphasize the critical need to consider sleep health as an important protector of indi-
vidual behaviors and broader social determinants of cognitive health disparities, particu-
larly in regions at higher risk for CD. Future studies should adopt longitudinal designs to 
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clarify causal pathways and evaluate how temporal changes in sleep duration influence 
the development and progression of CD.
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