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Abstract

Breast cancer is a disease of genomic alterations, of which the
panorama of somatic mutations and how these relate to subtypes
and therapy response is incompletely understood. Within SCAN-B
(ClinicalTrials.gov: NCT02306096), a prospective study elucidating
the transcriptomic profiles for thousands of breast cancers, we
developed a RNA-seq pipeline for detection of SNVs/indels and pro-
filed a real-world cohort of 3,217 breast tumors. We describe the
mutational landscape of primary breast cancer viewed through the
transcriptome of a large population-based cohort and relate it to
patient survival. We demonstrate that RNA-seq can be used to call
mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the
status of molecular pathways and mutational burden, and identify
potentially druggable mutations in 86.8% of tumors. To make this
rich dataset available for the research community, we developed
an open source web application, the SCAN-B MutationExplorer
(http://oncogenomics.bmc.lu.se/MutationExplorer). These results
add another dimension to the use of RNA-seq as a clinical tool,
where both gene expression- and mutation-based biomarkers can
be interrogated in real-time within 1 week of tumor sampling.
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Introduction

Mutations in the cancer genome, including single nucleotide variants

(SNVs) and small insertions and deletions (indels), can shed light on

cancer biology, tumor evolution and susceptibility or resistance to

therapeutic agents (The Cancer Genome Atlas, 2012; Bose et al,

2013; Robinson et al, 2013). Mutations can now even be used to

track circulating tumor DNA in the blood of patients (Garcia-Murillas

et al, 2015; Förnvik et al, 2019). In recent years, the characterization

of the mutational landscape of breast cancer has been performed

primarily on the DNA level (The Cancer Genome Atlas, 2012; Cheng

et al, 2015; Ciriello et al, 2015). Adoption of massively parallel RNA

sequencing (RNA-seq) as a clinical tool has been slower, despite

several complementary advantages over DNA-seq. In addition to

gene and isoform expression profiling and detection of de novo tran-

scripts such as fusion genes, RNA-seq can approximate classical

DNA-seq capabilities in the detection of SNVs, indels, as well as

structural variants (Ma et al, 2018) and coarse copy number

(preprint: Talevich & Shain, 2018). This makes RNA-seq an excellent

tool for biomarker development (Brueffer et al, 2018) and potential

clinical deployment (Byron et al, 2016; Cie�slik & Chinnaiyan, 2018).

For these reasons, among others, in 2010, the Sweden

Cancerome Analysis Network–Breast (SCAN-B) initiative (Clinica

lTrials.gov ID NCT02306096) selected RNA-seq as the primary

analytic tool (Saal et al, 2015; Rydén et al, 2018). SCAN-B is a

prospective real-world and population-based multicenter study with

the aim of developing, validating, and clinically implementing novel

biomarkers. To this end, SCAN-B collects tumor tissue and blood

samples from enrolled patients with a diagnosis of primary breast

cancer (BC). To date, over 15,000 patients have been enrolled, and

messenger RNA (mRNA) sequencing is performed on patient tumors

within 1 week of surgery. All patients are treated uniformly accord-

ing to the Swedish national standard of care regimen.

Expression profiling is an excellent tool to develop gene signatures

for established and novel biomarkers (Sotiriou et al, 2006; Roepman

et al, 2009; Brueffer et al, 2018), and many such signatures can be

applied to a single RNA-seq dataset. However, for the detection of

SNVs and indels from RNA-seq data, there are several challenges.
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Unlike DNA-seq, where whole-genome or targeted sequencing reads

are distributed approximately uniformly and in proportion to DNA

copy number, the abundance of reads in RNA-seq is proportional to

the expression of each gene or locus. Consequently, only variants in

expressed transcripts of sufficient level can be detected. In cancer,

this means that variants in oncogenes can likely be detected, whereas

those in tumor suppressor genes, e.g., TP53, BRCA1, or BRCA2, are

more likely to be missed. For example, mutations inducing premature

stop codons can lead to nonsense-mediated decay, causing loss of

expression and subsequently false-negative calls. The transcriptome

is also more complex and challenging than the genome. RNA struc-

tures, such as alternative splicing, add computational challenges to

alignment, and RNA editing can contribute to false-positive variant

calls. Finally, there is the lack of benchmark datasets for RNA-seq, as

are available for DNA from the Genome in a Bottle consortium and

others (Zook et al, 2016; Li et al, 2018).

The aim of this study was to optimize RNA-seq somatic mutation

calling through comparison to matched targeted DNA-seq, discern

the mutational landscape of the early breast cancer transcriptome

across a large cohort of 3,217 treatment-naı̈ve SCAN-B cases with

sufficient follow-up time, and to make the resulting vast dataset

available for exploration by the wider research community. To

demonstrate the power of the methodology and dataset, we assessed

the impact of mutations in important breast cancer driver genes and

pathways, as well as tumor mutational burden (TMB) on patient

overall survival (OS).

Results

An outline of the study design, which comprised DNA sequencing

and RNA sequencing of 275 samples from the ABiM cohort, and

RNA sequencing of 3,217 samples from the SCAN-B cohort, is

shown in Fig 1.

Variant filter performance

Mutation calling in the 275 sample ABiM cohort resulted in 3,478

somatic post-filter mutations from the matched tumor/normal

targeted capture DNA, and 1,459 variants from tumor RNA-seq in

the DNA capture regions (Table 1 and Fig EV1A). Comparing these

DNA and RNA variants resulted in 1,132 mutations that were

present both in DNA and RNA in the capture regions and whose

frequencies were generally in line with previous studies such as The

Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas, 2012)

(Fig EV1B). Of the 1,459 RNA-seq variants, 884 (60.6%) were iden-

tified as somatic in DNA, 248 (17.0%) as germline in DNA, and 327

(22.4%) as unique to RNA. These RNA-unique variants are a mix of

somatic mutations missed in DNA-seq, e.g., due to regional higher

sequencing coverage in RNA-seq or tumor heterogeneity, unfiltered

RNA editing sites, or artifacts caused by PCR, sequencing, or align-

ment and variant calling.

Landscape of somatic mutations in the breast cancer
transcriptome

We applied the filters derived from the 275 sample set to the entire

RNA-seq SCAN-B 3,217 sample set, resulting in 144,593 total

variants comprised of 141,095 SNVs, 1,112 insertions, and 2,386

deletions (Table 1). The number of mutations per sample in the

SCAN-B set was lower compared to the ABiM set, likely due to the

ABiM set being sequenced to a higher depth (Table EV1). The SNVs

comprised 50,270 missense, 2,311 nonsense, 1,042 splicing, 68,819

affecting 30/50 untranslated regions (UTRs), 17,057 synonymous

mutations, as well as 1,596 mutations predicted otherwise. The

majority of indels were predicted to cause frameshifts or affect 30/50

UTRs (Table EV2). After removing synonymous mutations, the

number of mutations was reduced to 127,536 variants in the SCAN-

B set, i.e., an average of 40 mutations per tumor.

We analyzed the contribution of the six nucleotide substitution

types (C>A, C>G, C>T, T>A, T>C, and T>G) to SNVs in the ABiM

and SCAN-B sets (Fig 2A). Compared to DNA, RNA-seq-based vari-

ant calls showed a relative under-representation of C>T substitu-

tions and an over-representation of T>C substitutions.

In accordance with published studies of primary BC, the most

frequently mutated genes were the known BC drivers PIK3CA (34%

of samples), TP53 (23%), MAP3K1 (7%), CDH1 (7%), GATA3

(7%), and AKT1 (5%) (Fig 3). As reported before (Ciriello et al,

2015), disruptive alterations in CDH1 were a hallmark of lobular

carcinomas (135/386 [35.0%] of samples), while alterations in

TP53, MAP3K1, and GATA3 were more common in the ductal type.

86.8% of SCAN-B samples had at least one mutation in a gene

targeted by an approved or experimental drug, based on the Data-

base of Gene-drug Interactions (DGI).

Somatic mutations in important BC genes

We examined known driver BC genes more closely and found our

RNA-seq-based mutation calls to recapitulate known mutation rates

and hot spots, summarized in Table 2, Table EV2, and Fig 2C–F.

Associations of mutated genes and clinical and molecular biomark-

ers are summarized in Table EV3, and several examples are high-

lighted below.

PIK3CA was the most frequently mutated gene, with 1,163 non-

synonymous mutations in 1,095 patient samples (34% of patients).

As expected, and in line with previous studies (Saal et al, 2005; The

Cancer Genome Atlas, 2012; Pereira et al, 2016), the majority of

alterations were the known hot spot mutations H1047R/L, E545K,

and E542K (Table 2, Fig 2D), which lead to constitutive signaling

(Bader et al, 2006). All hot spot mutations and the vast majority of

other PIK3CA alterations were missense mutations. Mutations were

associated with lobular, ER+, PgR+, HER2�, and Luminal A (LumA)

BC (Table EV3).

TP53 is frequently disrupted by somatic SNVs; however, a few

hot spot mutations exist (Giacomelli et al, 2018). The mutation

frequency in BC is estimated to be 35.4-37% (The Cancer Genome

Atlas, 2012; Pereira et al, 2016), which we could confirm in our

DNA-seq ABiM filter-definition cohort (37%). Likely due to

nonsense-mediated decay (NMD), loss of heterozygosity, and/or

decreased mRNA transcription, in the 3,217 cases, the frequency of

TP53 mutations was lower at 23% (782 mutations in 733 samples).

Despite underdetection by RNA-seq, the identified hot spot residues

were the same as reported in the IARC TP53 database (release R20)

(Bouaoun et al, 2016). The most often mutated amino acids we

observed were R273, R248, R175 (50, 49, and 24 mutations respec-

tively, total 123/782 [15.7%]), followed by positions Y220 (21/782
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[2.7%]), R280 (19/782 [2.4%]), and R342 (17/782 [2.2%])

(Table 2, Fig 2C). Most detected mutations are in the DNA binding

domain, and 77.6% of overall mutations are missense mutations,

likely leading to protein loss of function (LoF). As anticipated, TP53

mutations were associated with ductal, ER�, PgR�, HER2+,

hormone receptor positive (HoR+)/HER2+ (HoR+ defined as ER+

and PgR+, HoR� otherwise), HoR�/HER2+, triple-negative BC

(TNBC), and the basal-like and HER2-enriched PAM50 subtypes

(Table EV3), as reported before (The Cancer Genome Atlas, 2012).

PTEN is a crucial tumor suppressor gene and regulator of PI3K

activity, and PTEN protein expression is associated with poor

outcome (Saal et al, 2007). In our dataset, we found 124 non-synon-

ymous mutations in 116/3,217 (3.6%) samples, including hot spot

mutations in H303 and H266 of unknown significance (Fig 2E). Muta-

tions were significantly associated with HER2� disease (Table EV3).

ERBB2 (HER2) mutations have emerged as a novel biomarker

and occur by the majority in patients without ERBB2 amplification

(Bose et al, 2013), but also in ERBB2-amplified cases (Cocco et al,

2018). Evidence is mounting that recurrent ERBB2 mutations lead to

increased activation of the HER2 receptor in tumors classified as

HER2 normal (Bose et al, 2013; Wen et al, 2015; Pahuja et al,

2018). Activating ERBB2 mutations have been shown to confer ther-

apy resistance against standard of care drugs such as trastuzumab

and lapatinib (Cocco et al, 2018), but can be overcome using pan-

HER tyrosine kinase inhibitors (TKIs) such as neratinib (Bose et al,

2013; Ben-Baruch et al, 2015; Ma et al, 2017; Cocco et al, 2018).

ERBB2 mutations have also been shown to confer resistance to

endocrine therapy in the metastatic setting (Nayar et al, 2018),

where HER2-directed drugs are effective (Murray et al, 2018). We

identified 117 non-synonymous ERBB2 mutations in 103 patients

(3.2%), higher than the previously reported incidence rates of 1.6%-

2.4% (Bose et al, 2013; Wen et al, 2015; Ross et al, 2016), but lower

than in metastatic BC where rates as high as ~ 7% have been

reported (Cocco et al, 2018). Two hot spots, L755S (28/117) and

V777L (24/117) that cause constitutive HER2 signaling (Fig 2F) (Bose

et al, 2013; Wen et al, 2015), accounted for 44.4% of total ERBB2

mutations. Co-occurrence of ERBB2 mutation and amplification has

been reported before, however mainly in the metastatic setting

(Cocco et al, 2018). In our untreated, early BC cohort, we observed

ERBB2 mutation and amplification in 12 tumors, demonstrating that

co-incident ERBB2 mutation and amplification is rare but can occur in

early, treatment-naı̈ve BC. Mutation and amplification were not

mutually exclusive (P = 0.88), and interestingly ERBB2 mutations

occurred predominantly in tumors classified as PAM50 HER2-

enriched subtype (P = 0.0001). Moreover, ERBB2 mutation was

significantly associated with PgR� and lobular BC (Table EV3).

Loss of E-cadherin (CDH1) protein expression is a hallmark of

the lobular BC phenotype (Ciriello et al, 2015). With 12% of our

cohort being of lobular type, we observed 137 of total 233 CDH1

mutations in lobular BCs (58.8%, P = 1.6E-72). The mutations

were mostly comprised of nonsense mutations (37.2%) and

frameshift indels (35.4%), suggesting they contribute to CDH1

Figure 1. Study design.

Study design flow diagram for DNA-seq-informed optimization of RNA-seq variant calling.

Table 1. Number of mutations in the ABiM (DNA-seq and RNA-seq) and SCAN-B (RNA-seq) cohorts.

Cohort Source Coverage
Total
mutations SNVs Insertions Deletions

Samples with
mutations

Mutations
per sample

ABiM DNA Capture regions 3,478 3,173 50 173 274 12.7

ABiM RNA Capture regions 1,459 1,304 57 98 265 5.5

ABiM RNA Whole mRNA 16,683 15,764 235 684 275 60.7

SCAN-B RNA Whole mRNA 144,593 141,095 1,112 2,386 3,217 44.9

Sample numbers differ from total cohort sizes due to filtering resulting in samples with no remaining post-filter mutations.
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expression loss and drive the lobular phenotype. We observed one

nonsense mutation hot spot (Q23*, n = 18), and this residue was

also hit by a rare missense mutation (Q23K, n = 1). In addition to

lobular BC, CDH1 mutations were associated with ER+, HER2�,
and HoR+/ HER2� status, and the LumA subtype (Table EV3).

Other notable mutated genes in our set were MAP3K1, AKT1,

ESR1, GATA3, FOXA1, SF3B1, and CBFB. MAP3K1 is a regulator of

signaling pathways and regularly implicated in various cancer types.

Loss of MAP3K1 expression activates the PI3K/AKT/mTOR pathway

and desensitizes the tumor to PI3K inhibition (Avivar-Valderas et al,

2018), thus mutation status of this gene may affect efficacy of PI3K-

targeting drugs. We observed a high rate of frameshift indels, and

missense mutations mostly clustered in the kinase domain. Co-

mutation of MAP3K1 and PIK3CA occurred in 108 tumors (3.4%),

and inactivating (frameshift/nonsense) MAP3K1 alterations

occurred in 77 of 1,095 (7%) of PIK3CA-mutant tumors. AKT1 is a

A

C

D

E

F

B

Figure 2. Overview of non-synonymous mutations in terms of base substitution signatures, molecular subtype, and protein impact.

A Contribution of base change types to the overall SNV composition in the ABiM cohort for captured DNA regions and mRNA in the captured DNA regions, as well as
SCAN-B whole mRNA.

B Number of non-synonymous mutations per sample. Bars are colored by PAM50 subtypes Luminal A (dark blue), Luminal B (light blue), HER2-enriched (pink),
basal-like (red), Normal-like (green) and Unclassified (gray).

C–F Lollipop plots showing the location, abundance, and impact of SNVs in (C) TP53, (D) PIK3CA, (E) PTEN, and (F) ERBB2 on the respective encoded protein. Protein
change labels are shown for the most mutated amino acid positions, with residues ordered left to right by mutation frequency within each label.
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common oncogene with 156 (4.8%) mutated samples and featured

the fourth most mutated hot spot (E17K, 121 mutations) in the

SCAN-B cohort. These mutations are predictive of sensitivity to AKT

inhibitors (Hyman et al, 2017). ESR1 encodes the estrogen receptor

(ER) alpha, perhaps the most important clinical BC biomarker.

Seventy-seven tumors harbored 81 ESR1 variants, including known

endocrine treatment resistance mutations, that are discussed else-

where in detail (M. Dahlgren, AM. George, C. Brueffer, S. Gladchuk,

Y. Chen, J. Vallon-Christersson, C. Hegardt, J. Häkkinen, L. Rydén,

M. Malmberg, C. Larsson, SK. Gruvberger-Saal, A. Ehinger, N.

Loman, Å. Borg, LH. Saal, submitted). Relatedly, GATA3 and

FOXA1 are frequently mutated transcription factors that are directly

involved in modulating ER signaling, and their expression is inde-

pendently associated with beneficial survival in ER+ tumors (Hisa-

matsu et al, 2012). We identified 246 GATA3 mutations, including

known recurrent frameshift mutations (P409fs, n = 30 and D336fs,

n = 10) and the M294K/R missense mutation (n = 15), as well as

10 splice site variants. In FOXA1, we detected 146 total mutations,

including known recurrent S250F (n = 23) and F266L/C (n = 12)

missense mutations. Most mutations occurred in the forkhead DNA

binding domain. While the role of mutations in these genes has not

been thoroughly characterized, Takaku et al (2018) suggest that

GATA3 can function as either oncogene or tumor suppressor

depending on the mutations the gene accumulated, and which part

of the protein product is impacted. According to their classification,

the most frequent mutation in our cohort, the P409fs frameshift

mutation, results in an elongated protein product compared to

GATA3-wt that has favorable survival compared to mutations of the

second Zinc finger domain. In line with their involvement in ER

signaling, mutations in GATA3, FOXA1, MAP3K1, and ESR1 were

associated with ER+ and PgR+ disease. Further, GATA3, MAP3K1,

and ESR1 were associated with HoR+/ HER2�, and GATA3 and

MAP3K1 with ductal BC, while ESR1 and FOXA1 were more

common in lobular BC. All these genes were associated with the

LumA subtype, with the exception of GATA3 which was associated

to Luminal B (LumB) (Table EV3).

SF3B1 encodes a subunit of the spliceosome and mutations in

this gene have been identified as potentially interesting treatment

Histological Grade
Ki67 Status

HER2 Status
PgR Status

ER Status
Molecular Subtype

Histological Subtype

Sample n=3,217

NFIC (3%)

SF3B1 (3%)

ARHGAP35 (3%)

TRPS1 (3%)

RUNX1 (3%)

PLEC (3%)

RNF213 (3%)

ARID1A (3%)

CBFB (3%)

ERBB2 (3%)

TBX3 (4%)

KMT2C (4%)
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G1
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Figure 3. Overview of frequently mutated genes across 3,217 SCAN-B samples.

Waterfall plot of the 20most frequently mutated genes (rows) across 3,217 SCAN-B samples (columns). Genes are ranked from top to bottom bymutation frequency. Samples
are sorted by histological subtype and alteration occurrence. Mutations are colored by predicted functional impact.
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targets after having been observed in myelodysplastic syndromes

and chronic lymphocytic leukemia. We identified 81 SF3B1 muta-

tions in 79 tumors, 60 of which were K700E hot spot mutations that

deregulate splicing and result in differential splicing patterns in BC

(Maguire et al, 2015). Alterations in this gene are associated with

ER+ disease (Maguire et al, 2015) and affect alternative splicing

patterns (Alsafadi et al, 2016). The cohort frequency of 1.9% K700E

mutations matches up with previously reported 1.8% in an unse-

lected breast cancer cohort (Maguire et al, 2015). We could not con-

firm the reported prevalence of SF3B1 mutations in ER+ tumors in

the total ER+ group (P = 0.052), but in the ER+/ HER2� subgroup

(68/79 mutated tumors ER+/ HER2�, P = 0.021), as well as the

association with non-ductal, and non-lobular subtypes (P = 0.0033).

Additionally, SF3B1 mutations were associated with LumB tumors

(P = 0.0006) (Table EV3).

CBFB is a transcriptional co-activator of RUNX2, an expression

regulator of several genes involved in metastatic processes such as

cell migration. Increased CBFB expression has been identified as

essential for cell invasion in BC (Mendoza-Villanueva et al, 2010).

Recurrent CBFB mutations have recently been reported in ER+/

HER2� disease; however, the significance of these mutations is

unknown (Griffith et al, 2018). We could confirm this finding show-

ing 107 mutations (3.3% cohort frequency), 95 of which were in

ER+/ HER2� samples (4% of ER+/ HER2� samples, P = 0.0005).

We also found them to be associated with the LumA subtype

(Table EV3); however, we did not observe the splice site mutation

described by Griffith et al (2018), perhaps due to degradation of the

spliced mRNA by NMD.

Mutations in molecular pathways

We were interested whether the mutational data, when consid-

ered from the perspective of mutated pathways, could reveal new

biological correlates. To test this, we mapped mutation status to

important BC pathways as defined in the Reactome database

(Fabregat et al, 2018; Jassal et al, 2020). We called a pathway

mutated when at least one of the member genes had a non-

synonymous mutation and clustered samples by pathway muta-

tion status using Euclidean distance and Ward linkage. Notable

Table 2. The most occurring non-synonymous mutations in the genes
PIK3CA, AKT1, SF3B1, GATA3, ERBB2, TP53, FOXA1, and CDH1 in 3,217
SCAN-B samples.

Gene AA change
Number of
mutations

Mut. samples
(%)

Mut. in
gene (%)

PIK3CA H1047R 483 15 41.5

E545K 212 6.6 18.2

E542K 142 4.4 12.2

H1047L 77 2.4 6.6

N345K 49 1.5 4.2

E726K 26 0.8 2.2

C420R 20 0.6 1.7

E453K 13 0.4 1.1

G1049R 11 0.3 0.9

E545A 10 0.3 0.9

Q546K 10 0.3 0.9

M1043I 8 0.2 0.7

Other 102 3.2 8.8

AKT1 E17K 121 3.8 76.1

Other 38 1.2 23.9

SF3B1 K700E 60 1.9 74.1

Other 21 0.7 25.9

GATA3 P409fs 30 0.9 12.2

M294K 14 0.4 5.7

D336fs 10 0.3 4.1

D332fs 10 0.3 4.1

Other 182 5.7 74

ERBB2 L755S 28 0.9 23.9

V777L 24 0.7 20.5

D769Y 9 0.3 7.7

Other 56 1.7 47.9

TP53 R273C 25 0.8 3.2

R248Q 25 0.8 3.2

R175H 24 0.7 3.5

R248W 22 0.7 3.1

R273H 19 0.6 2.4

Y220C 17 0.5 2.2

F134L 14 0.4 1.8

E285K 13 0.4 1.7

R213* 12 0.4 1.5

R282W 12 0.4 1.5

R306* 10 0.3 1.3

Y163C 10 0.3 1.3

L194R 9 0.3 1.2

R342* 9 0.3 1.2

E286K 8 0.2 1

G245S 8 0.2 1

H179R 8 0.2 1

Table 2 (continued)

Gene AA change
Number of
mutations

Mut. samples
(%)

Mut. in
gene (%)

Q331* 8 0.2 1

Other 529 16.4 65.1

FOXA1 S250F 23 0.7 15.8

F266L 11 0.3 7.5

Other 112 3.5 76.7

CDH1 Q23* 18 0.6 7.7

I650fs 8 0.2 3.4

P127fs 8 0.2 3.4

Other 199 6.2 85.4

Shown are the total number of mutations, the frequency of the mutations in
the SCAN-B cohort (Mut. samples), and the frequency of a particular
mutation within all mutations in the gene (Mut. in gene).
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clusters that emerged were co-mutated hedgehog signaling, p53-

independent DNA repair, and hypoxia response pathways, as well

as a cluster of NOTCH1/2/3 signaling mutated tumors, both in

mostly basal-like and HER2-enriched tumors. Both clusters are

linked in their relation to cancer stem cell development (Habib &

O’Shaughnessy, 2016; Locatelli & Curigliano, 2017), which, in

addition to the NOTCH and Hedgehog pathways themselves, has

emerged as a novel treatment target, particularly in TNBC.

Another co-mutation cluster was made up of PI3K/AKT, MET,

RET, EGFR, ERBB2, and ERBB4 signaling pathways that occurred

in a subset of Luminal A and B tumors (Fig 4; see Table EV4 for

Reactome pathway IDs). Activation of these pathways is involved

in the development of ER+ BC through proliferation-inducing

signaling, or endocrine therapy resistance, e.g., via activating

ERBB2 mutations (Nayar et al, 2018).

Tumor mutational burden

Tumor mutational burden is increasingly of interest due to its

association to neoantigen burden and response to immunothera-

pies. We used the median number of non-synonymous mutations

per transcriptome megabase (rnaMB), 0.082 mutations/rnaMB, to

stratify all SCAN-B samples into TMB-high and TMB-low groups.

Samples with HER2-enriched and basal-like PAM50 subtypes were

enriched in the top 10% of samples with the highest TMB

compared to the lowest 90% (P = 2.2E-16, Fig 2B), supporting

previous results and indicating that immunotherapy may have

higher activity in these two PAM50 subtypes (The Cancer Genome

Atlas, 2012).

Mutational landscape and patient outcomes

Next, we were interested in the association between mutations in

important BC genes and patient outcome under various treatments.

Below we show the results for TP53, PIK3CA, ERBB2, and PTEN

with OS of SCAN-B patients in clinical biomarker and treatment

groups (Figs 5 and EV2), as well as selected pathways (Figs 6 and

EV3). Specific treatments stratified by clinical biomarker and treat-

ment groups are detailed in Table EV4. The web tool SCAN-B Muta-

tionExplorer may be used to query any gene(s) and pathway(s) of

interest.

In line with expectations, TP53 mutation predicted poor survival

in untreated patients (hazard ratio [HR] 2.39, 95% CI [1.5–3.79],

P = 0.00014), patients treated with endocrine- and chemotherapy

(HR: 1.83 [1.09–3.05], P = 0.02), as well as the HoR+/HER2�

biomarker subgroup (HR: 1.43 [1.06–1.94], P = 0.019). After adjust-

ing for important covariates in multivariable (MV) Cox analyses,

TP53 mutations remained a significant stratifier among patients

receiving endocrine- and chemotherapy.

In early-stage breast cancer, PIK3CA mutations have been associ-

ated with slightly better 5-year OS than PIK3CA-wt tumors in

univariable analysis, but not when correcting for clinicopathological

and treatment variables (Zardavas et al, 2018). In our hands, we

saw a similar univariable effect in patients who did not receive

systemic treatment (HR: 0.54 [0.32–0.91], P = 0.018), but not when

adjusting for covariates. Additionally, PIK3CA mutations in

HER2 � any treated patients became significant in multivariable

analysis.

ERBB2 mutations were indicators of poor prognosis in endo-

crine therapy only (HR: 1.85 [1.08–3.18], P = 0.023) and endo-

crine- and chemotherapy-treated (HR: 3.49 [1.4–8.72], P = 0.0042)

patients, as well as in the HoR+/HER2� subgroup (HR: 1.96

[1.14–3.35], P = 0.013). After multivariable adjustment, they

remained a significant predictor in the endocrine-only-treated

patient subgroup.

PTEN mutations alone were associated with poor survival in the

patient group not receiving systemic treatment (HR: 2.56 [1.03–

6.33], P = 0.036), but not in any of the other treatment or clinical

biomarker groups (Fig 5 and EV2). While loss of PTEN protein

expression or non-functional PTEN protein can be caused by SNVs

and indels, it can also be caused by other mechanisms such as large

structural variants (Saal et al, 2008) and promoter methylation

(Zhang et al, 2013) that have not been investigated in this study. To

account for this, we defined a new subgroup PTEN-MutExp, where a

status of “low” identifies cases with either PTEN mutation or gene

expression in the lower quartile within the cohort, and “normal”

otherwise. The PTEN-MutExp low group, incorporating gene expres-

sion, showed improved stratification in the no systemic treatment

group (HR: 1.88 [1.2–2.95], P = 0.0053), and significantly lower OS

in patients receiving only endocrine treatment (HR: 1.63 [1.26–

2.12], P = 0.00021), as well as HoR+/HER2� patients (HR: 1.54

[1.2–1.99], P = 0.00076). Most of the prognostic value is provided

by the gene expression, however mutation data improved stratifi-

cation (Fig EV4). After multivariable adjustment, PTEN mutations

in the no systemic-treated subgroup, as well as the PTEN-MutExp

“low” group in HoR+/HER2� and HoR+/HER2+ patients, remained

significant.

Abstracting from mutations in individual genes, we investigated

the effect of mutated pathways on OS in patient subgroups stratified

by treatment (Fig 6) and clinical subgroup (Fig EV3). Mutated WNT

(Fig 6A, HR: 2.14 [1.18–3.89], P = 0.01), Hedgehog (Fig 6B, HR:

1.68 [1.06–2.68], P = 0.026), and NOTCH2 (Fig 6C, HR: 2.31 [1.27–

4.2], P = 0.0047) pathways, as well as the p53-independent DNA

damage repair pathway (Fig 6D, HR: 2.03 [1.3–3.17], P = 0.0015)

were associated with worse survival in patients not receiving

systemic treatment. Additionally, NOTCH2 signaling (Fig 6C, HR:

1.65 [1.19–2.3], P = 0.0026) was associated with worse OS in

patients receiving only endocrine treatment, and TGFb signaling

(Fig 6E, HR: 1.79 [1.08–2.96], P = 0.021) with worse OS in patients

treated with endocrine- and chemotherapy. Further, WNT signaling

was associated with worse OS in HoR+/HER2+ (HR: 2.57 [1.04–

6.33], P = 0.034) and TNBC patients (HR: 2.5 [1.27–4.91],

P = 0.0061; Fig EV3). In multivariable analysis, WNT pathway

mutations in HoR+/HER2+ and TNBC patients, NOTCH2 pathway

mutations in endocrine-only-treated patients, and TGFb pathway

mutations in endocrine + chemo � any treated patients remained

significant stratifiers.

Given its importance as an emerging biomarker for response to

immune checkpoint therapy (Goodman et al, 2017), we investigated

whether TMB could also provide response information with respect

to conventional treatment regimens (Fig 7). When stratified into

TMB-high and TMB-low by the SCAN-B cohort median TMB per

rnaMB, low TMB was favorable to OS independent of treatment

across the cohort (HR, 1.54 [1.28–1.86], P = 0.0000033), as well as

in patients not systemically treated (HR: 2.53, [1.58–4.05],

P = 0.000066), treated with endocrine therapy only (HR: 1.55 [1.22–
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1.98], P = 0.00036), endocrine � any therapy (HR: 1.4 [1.12–1.74],

P = 0.0028), and chemotherapy � any therapy (HR: 1.66 [1.12–

2.47], P = 0.011). High TMB is typically associated with improved

survival in TNBC, possibly due to increased neoantigen load

enabling a stronger immune response. However, we observed no

such effect in TNBC patients within the SCAN-B cohort (P = 0.34,

Fig EV5). Mutational load was a significant survival stratifier across

the Nottingham Histological Grade (NHG) grading scheme (G1, HR:

0.38 [0.16–0.9], P = 0.022; G2, HR: 1.46 [1.1–1.94], P = 0.0078; G3,

HR: 1.53 [1.13–2.07], P = 0.0055), and within the ER+ (HR: 1.41

[1.15–1.74], P = 0.00097), PgR+ (HR: 1.28 [1.02–1.59], P = 0.031),

HER2� (HR: 1.53 [1.25–1.86], P = 0.000024), and Ki67-high (HR:

1.76 [1.17–2.65], P = 0.0064) patient subgroups (Fig EV5). Interest-

ingly, LumB patients with high TMB showed worse survival (HR:

1.58 [1.13–2.21], P = 0.0064), whereas TMB was not a significant

stratifier for any other molecular subtype (Fig EV5). LumB tumors

were also the only subgroup where TMB remained a significant

stratifier in multivariable analysis.

SCAN-B MutationExplorer

To enable public exploration and re-use of our rich mutational dataset,

we developed the web-based application SCAN-B MutationExplorer

(available at http://oncogenomics.bmc.lu.se/MutationExplorer; Fig 8).

Figure 4. Binary heatmap of mutation status of important breast cancer pathways in 3,217 samples.

Binary heatmap of mutation status of important BC pathways in 3,217 samples. Samples with wild-type (wt) pathway status (defined as all member genes being wt) are
colored blue, those with mutated pathways (at least one member gene mutated) are colored red. Samples and pathways were clustered using Euclidean distance andWard
linkage. Reactome IDs for the pathways can be found in Table EV4.
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No Systemic Treatment Endo only Endo+Chemo±any HER2±any

A

B

D

C

E

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.00014

HR, 2.39 (1.5 to 3.79)

MV¶ HR, 0.83 (0.37 to 1.89)

No. at risk
wt 262 257 248 242 230 195 129 79 30
mut 74 71 64 60 56 45 28 20 8

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.018

HR, 0.54 (0.32 to 0.91)

MV¶ HR, 0.74 (0.39 to 1.41)

No. at risk
wt 215 211 201 192 181 153 96 57 23
mut 121 117 111 110 105 87 61 42 15

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.097

HR, 2.01 (0.87 to 4.66)

MV¶ HR, 1.03 (0.34 to 3.06)

No. at risk
wt 322 315 300 291 277 231 151 95 36
mut 14 13 12 11 9 9 6 4 2

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.036

HR, 2.56 (1.03 to 6.33)

MV¶ HR, 6.54 (1.9 to 22.5)

No. at risk
wt 325 317 303 293 279 234 154 97 38
mut 11 11 9 9 7 6 3 2

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

normal
low

logrank P=0.0053

HR, 1.88 (1.2 to 2.95)

MV¶ HR, 0.93 (0.49 to 1.78)

No. at risk
normal 239 236 229 222 211 178 117 71 28
low 97 92 83 80 75 62 40 28 10

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.23

HR, 1.24 (0.87 to 1.75)

MV$ HR, 0.95 (0.65 to 1.39)

No. at risk
wt 1,391 1,381 1,348 1,317 1,276 1,079 828 514 199
mut 188 186 182 174 167 149 112 77 34

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.4

HR, 0.9 (0.7 to 1.16)

MV$ HR, 1.02 (0.78 to 1.34)

No. at risk
wt 954 944 921 897 860 738 573 378 162
mut 625 623 609 594 583 490 367 213 71

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.023

HR, 1.85 (1.08 to 3.18)

MV$ HR, 1.89 (1.1 to 3.25)

No. at risk
wt 1,528 1,516 1,480 1,444 1,400 1,190 914 578 227
mut 51 51 50 47 43 38 26 13 6

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.53

HR, 0.79 (0.37 to 1.66)

MV$ HR, 0.74 (0.3 to 1.79)

No. at risk
wt 1,523 1,513 1,478 1,440 1,392 1,184 907 571 225
mut 56 54 52 51 51 44 33 20 8

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

normal
low

logrank P=0.00021

HR, 1.63 (1.26 to 2.12)

MV$ HR, 1.27 (0.95 to 1.69)

No. at risk
normal 1,216 1,211 1,189 1,159 1,121 957 735 459 180
low 363 356 341 332 322 271 205 132 53

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.02

HR, 1.83 (1.09 to 3.05)

MV$ HR, 1.8 (1.01 to 3.2)

No. at risk
wt 691 691 686 676 662 559 374 191 77
mut 223 223 221 213 207 174 123 67 19

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.64

HR, 1.13 (0.67 to 1.91)

MV$ HR, 0.96 (0.54 to 1.71)

No. at risk
wt 622 622 619 606 598 510 352 180 70
mut 292 292 288 283 271 223 145 78 26

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.0042

HR, 3.49 (1.4 to 8.72)

MV$ HR, 1.94 (0.69 to 5.48)

No. at risk
wt 890 890 884 866 848 714 487 253 95
mut 24 24 23 23 21 19 10 5 1

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.38

HR, 1.57 (0.57 to 4.33)

MV$ HR, 1.3 (0.4 to 4.2)

No. at risk
wt 875 875 869 853 833 704 478 247 93
mut 39 39 38 36 36 29 19 11 3

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

normal
low

logrank P=0.13

HR, 1.48 (0.89 to 2.48)

MV$ HR, 1.46 (0.83 to 2.58)

No. at risk
normal 660 660 655 644 628 527 355 184 69
low 254 254 252 245 241 206 142 74 27

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.63

HR, 1.2 (0.58 to 2.49)

MV¤ HR, 0.72 (0.25 to 2.07)

No. at risk
wt 206 205 202 199 195 165 118 69 31
mut 142 142 139 133 132 110 80 48 19

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.46

HR, 0.72 (0.29 to 1.76)

MV¤ HR, 0.15 (0.02 to 0.89)

No. at risk
wt 256 255 249 243 240 200 148 86 36
mut 92 92 92 89 87 75 50 31 14

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.89

HR, 1.15 (0.16 to 8.44)

MV¤ HR, 1.55 (0.2 to 12.33)

No. at risk
wt 338 337 331 322 317 268 192 113 48
mut 10 10 10 10 10 7 6 4 2

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

wt
mut

logrank P=0.48

MV HR, 0.41 (0.02 to 8.01)

MV¤ HR, 0.38 (0.01 to 24.83)

No. at risk
wt 342 341 335 326 321 272 196 115 49
mut 6 6 6 6 6 3 2 2 1

Time after diagnosis (years)

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

normal
low

logrank P=0.52

HR, 0.75 (0.3 to 1.83)

MV¤ HR, 0.31 (0.07 to 1.41)

No. at risk
normal 258 258 254 245 241 205 146 86 37
low 90 89 87 87 86 70 52 31 13

Figure 5.
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With this interactive application, a user can filter the 3,217 SCAN-B

samples based on combinations of clinicopathological and molecular

markers (histological type, ER, PgR, HER2, Ki67, NHG, and PAM50

subtype), treatments (endocrine, chemotherapy, HER2 treatment), and

mutations based on mutation type (e.g., nonsense or missense) and

COSMIC occurrence. From the filtered data, the user can create muta-

tional landscape waterfall plots and conduct survival analysis using

KM analysis and log-rank tests based on mutations in single genes,

pathways as defined in the Reactome database or custom, as well as

TMB, either using the absolute number of mutations, or mutations per

expressed MB of genome, using a user-defined threshold. Mutations

can also be plotted from a protein point of view using user-defined

occurrence cutoffs for showing and annotating mutations. Plots in

PDF format as well as the mutation set underlying the currently active

plot in tab-separated values (TSV) format can be downloaded for

further analysis. The application is based on R Shiny and the source

code is available under the BSD 2-clause open source license at http://

github.com/cbrueffer/MutationExplorer.

Discussion

Tumor somatic mutation status is a crucial piece of information for

the future of precision medicine to guide treatment selection and

give insight into tumor evolution. Analysis of DNA is the gold stan-

dard for detecting SNVs, indels, and larger structural variants.

However, many interesting tumor properties are only accessible on

the transcriptome level and cannot be interrogated using DNA; most

prominently gene expression at the isoform and gene level, as well

as de novo transcripts originating from gene fusions. The SCAN-B

initiative (Saal et al, 2015) decided early on to perform RNA-seq on

the tumors of all enrolled patients. Based on this, we have devel-

oped, refined, and benchmarked gene expression signatures (Bruef-

fer et al, 2018; Dihge et al, 2019; Lundgren et al, 2019; Søkilde

et al, 2019; Vallon-Christersson et al, 2019), and detected recurring

fusions affecting miRNAs (Persson et al, 2017). Herein, we

described the development of a pipeline for detection of somatic

SNVs and indels based on RNA-seq, adding another layer to infor-

mation that can now be obtained from a single sequencing analysis

within 1 week of surgery (Saal et al, 2015).

To date, several approaches for RNA-seq mutation calling,

mostly in combination with matched DNA, have been developed

(Horvath et al, 2013; Piskol et al, 2013; Radenbaugh et al, 2014;

Wilkerson et al, 2014; Guo et al, 2017; Siegel et al, 2018); however,

calling from RNA-seq alone, particularly from tumor-only samples,

is still a challenge. With the advance of targeted and whole exome

sequencing into the clinics, and efforts such as TCGA, MSK-Impact,

and others, variant calling from DNA-seq has improved in recent

years, although discordance between detection pipelines still exists

(Hofmann et al, 2017; Ellrott et al, 2018; Shi et al, 2018). Part of

this improvement is the availability of validation resources such as

the Genome in a Bottle datasets (Zook et al, 2016). With clinical

interest in RNA-seq only recently picking up, e.g., as shown by two

recent review articles (Byron et al, 2016; Cie�slik & Chinnaiyan,

2018), comparably well-characterized RNA-seq datasets for valida-

tion do not yet exist to our knowledge.

The strategy for mutation calling herein was to perform initial

variant calling with low requirements on coverage and base quality

to increase sensitivity while allowing false positives. To increase

specificity, we then applied stringent post hoc filtering that can be

easily amended as further annotation data become available, or as

existing sources receive updates. The advantage of this two-step

strategy is the possibility to accommodate different research and

clinical questions in the future that may have different filtering

needs.

Two major contributors of false-positive mutation calls are germ-

line SNPs/indels and RNA editing. Common approaches for dealing

with germline events are calling mutations from matched tumor/

normal samples, or filtering SNPs present in databases such as

dbSNP. The latter is problematic, since some dbSNP entries with a

low variant allele frequency (VAF) may be legitimate somatic muta-

tions. On the other hand, filtering on the dbSNP “common” flag (at

least 1% VAF in any of the 1,000 genomes populations) can lead to

many low-VAF germline SNPs remaining. We tried to address this

issue by combining the dbSNP and COSMIC databases, and only fil-

tering variants present in dbSNP if they were not present in

COSMIC. We filtered out known RNA editing sites using publicly

available databases; however, there is still an overabundance of

T>C substitutions in our RNA-based calls compared to DNA-based

calls, suggesting many unknown editing sites and insufficient filter-

ing (Fig 2B). Approaches have been developed to identify RNA edit-

ing sites using DNA/RNA-trained machine learning models (Sun

et al, 2016) or RNA-seq data alone (Ramaswami et al, 2013), which

may provide ways to improve filtering in the future by creating a

SCAN-B RNA editing database.

The overall landscape of somatic mutations in our study looked

similar to that reported previously from DNA (The Cancer Genome

Atlas, 2012; Pereira et al, 2016), with the two most frequently

mutated genes PIK3CA (34% of samples) and TP53 (23%), followed

by other known drivers MAP3K1 (7%), CDH1 (7%), GATA3 (7%),

and AKT1 (5%) (Fig 2). While mutation frequencies in oncogenes

such as PIK3CA are generally in line with previous reports, frequen-

cies in tumor suppressor genes were generally lower in RNA-seq

than would be expected from our study population. For example,

◀ Figure 5. Impact of gene mutations on overall survival across treatment groups.

A–E Overall survival (OS) of patients with tumors containing mutations in the genes (A) TP53, (B) PIK3CA, (C) ERBB2, and (D) PTEN. (E) OS by PTEN-MutExp genotype
(“low” defined as PTEN mutation or PTEN expression in the lower quartile across the cohort, “normal” otherwise) stratified by groups receiving no systemic
treatment (n = 336), endocrine therapy only (Endo only; n = 1,579), endocrine- and chemotherapy (Endo + Chemo � any; n = 914), as well as HER2 treatment
with any other treatment or none (HER2 � any; n = 348). Specific treatments in these groups are detailed in Table EV5. In each Kaplan–Meier plot, wild-type (wt)
and normal cases are plotted in blue, mutated (mut) and low cases are plotted in red, the log-rank P value is given, and the hazard ratio (HR) for mutation/low is
given with a 95% CI and after univariable and multivariable (MV) Cox regression adjustment. Covariables included in the MV analysis were age at diagnosis, lymph
node status, tumor size, and the variables denoted by the following symbols: ¶, ER, PgR, HER2, and NHG; ¤, ER, PgR, and NHG; $, HER2 and NHG. ER, estrogen
receptor; HER2, human epidermal growth factor receptor 2; NHG, Nottingham histological grade; PgR, progesterone receptor.
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our TP53 RNA-seq somatic mutation frequency of 23% (reference:

36%, cBioPortal.org) suggests we may be missing a significant frac-

tion of TP53 mutations present in DNA. Similar trends can be seen

in PTEN (observed: 3.6%, reference: 4.6%), BRCA1 (observed:

0.2%, reference: 1.6%), and BRCA2 (observed: 0.03%, reference:

2.2%). This is not surprising since only mutations in sufficiently

highly expressed genomic regions can be detected by RNA-seq and

loss of expression of tumor suppressor genes is a hallmark of onco-

genesis. Furthermore, truncated mRNAs caused by nonsense muta-

tions are typically removed by nonsense-mediated decay before they

can be captured for sequencing. Thus, our findings do not reflect

the true mutational spectrum of tumor suppressor genes. Despite

these limitations, we could identify a putative mutation in at least

one gene targeted by an existing drug in the majority of patient

tumors (86.8%), demonstrating that it should be feasible to match

most patients to targeted treatments using RNA-seq analyses.

One of the major oncogenic pathways in breast cancer is PI3K/

AKT/mTOR, which is frequently upregulated by activating muta-

tions in PIK3CA, MAP3K1, and AKT1, or inactivating mutations in

PTEN, leading to increased growth signaling. This pathway is being

targeted by multiple drugs, such as alpelisib (Novartis) (Juric et al,

2018) in HoR+/HER2� PIK3CA mutant tumors in combination with

fulvestrant (André et al, 2019), and the AKT1 inhibitor AZD5363

(AstraZeneca) (Hyman et al, 2017). The strength of RNA-seq in

mutation profiling lies within oncogenes, and we demonstrate that

alterations in drug targets such as PIK3CA and AKT, as well as genes

potentially modulating drug efficacy, such as MAP3K1, can be

detected. Eventually, RNA-seq may be used as companion diagnos-

tic for oncogene-targeting drugs such as these. While we also

detected mutations in PTEN, these only showed significant prognos-

tic power when combined with low gene expression in the PTEN-

MutExp low group, suggesting either SNVs and indels are a minor

mechanism of PTEN loss in early BC compared to structural rear-

rangements (Saal et al, 2008), and other means of PTEN expression

loss. Taken together, we detected mutations in multiple PI3K/AKT/

mTOR signaling nodes that lead to increased pathway activation

and have emerging clinical utility in luminal BC, e.g., through

combination with EGFR inhibition as demonstrated in basal-like BC

(She et al, 2016).

Loss of p53 activity, either through LoF mutations, dominant-

negative mutations, or low expression, is a major contributor to

tumorigenesis. While RNA-seq generally underdetects TP53 muta-

tions, the identified hot spot residues remain the same as reported

in the IARC TP53 database. Clinically these mutations could already

be actionable, as TP53 mutations are a sign of DNA damage repair

deficiency and may be prognostic for sensitivity to PARP inhibition

(Holstege et al, 2010; Severson et al, 2015). Patients with TP53-

mutant tumors had significantly worse OS in the patient subgroups

treated only with endocrine therapy, or no systemic treatment at all

(Fig 5), and HoR+/HER2� patients (Fig EV2), suggesting that TP53

mutations identify a subgroup of patients that are spared

chemotherapy or systemic therapy overall by appearing low risk,

but are in fact high-risk patients that should be treated accordingly.

Endocrine treatment is the most important first-line treatment in

BC. Resistance to these treatments leads to disease progression and

recurrence and has been studied extensively. Drivers for endocrine

resistance include activating mutations in ESR1 and ERBB2 which

have been studied mostly in the metastatic setting. We show that

mutations in these genes already occur in early, untreated BC, with

177 (5.5%) of patients in our population-based cohort having a

mutation in either gene. We further demonstrate that patients with

these mutations that received only endocrine treatment have infe-

rior OS, suggesting drug resistance. Detecting these patients early

could open up additional treatment options that have shown effi-

cacy in the metastatic setting, such as selective estrogen receptor

degraders (SERDs) in ESR1-mutated tumors, or TKIs such as nera-

tinib in ERBB2-mutated BC.

The role of alternative splicing in tumorigenesis has recently

garnered increased attention, and the extend of isoform switching in

several cancer types, including BC, has been characterized (Vitting-

Seerup & Sandelin, 2017). Mutations such as the SF3B1 K700E hot

spot mutation deregulate splicing and result in differential splicing

patterns in BC (Maguire et al, 2015). The clinical effect of these

mutations is unclear, and we did not detect significant survival strat-

ification in important biomarker or treatment groups. However, the

fact that mutations in splicing-related genes can be detected from

RNA-seq make this method attractive for research and possible clini-

cal use, as they can be correlated with expression originating from

the same sequencing experiment.

Individual mutations, particularly in infrequently mutated genes,

affect a smaller number of molecular pathways to achieve the classi-

cal hallmarks of cancer such as sustained proliferative signaling.

Mutation status of several individual pathways was associated with

reduced OS in different treatment subgroups. In patients not system-

ically treated or only treated with endocrine therapy WNT,

NOTCH2, p53-independent DNA repair pathway mutation status,

and Hedgehog signaling mutation status may identify patients diag-

nosed as low risk who may benefit from more adjuvant treatment

(Fig 6). While these stratification profiles were visible in treatment

subgroups, they mostly did not yield significant results in clinical

biomarker subgroups (Fig EV3). This may indicate that current risk

stratification in histopathological biomarker subgroups is inade-

quate and should take molecular information into account—some-

thing we and others have also shown on the level of gene

◀ Figure 6. Impact of pathway mutations on overall survival across treatment groups.

A–E Overall survival of patients with tumors containing mutations in pathways (A) WNT signaling, (B) Hedgehog signaling, (C) NOTCH2 signaling, (D) p53 independent
DNA damage repair, (E) TGFb signaling, stratified by groups receiving no systemic treatment (n = 336), endocrine therapy only (Endo only; n = 1,579), endocrine-
and chemotherapy (Endo + Chemo � any; n = 914), as well as HER2 treatment with any other treatment or none (HER2 � any; n = 348). Specific treatments in
these groups are detailed in Table EV4. In each Kaplan–Meier plot, wild-type (wt) cases are plotted in blue, mutated (mut) cases are plotted in red, the log-rank P
value is given, and the hazard ratio (HR) for mutation is given with a 95% CI and after univariable and multivariable (MV) Cox regression adjustment. Covariables
included in the MV analysis were age at diagnosis, lymph node status, tumor size, and the variables denoted by the following symbols: ¶, ER, PgR, HER2, and NHG;
¤, ER, PgR, and NHG; $, HER2 and NHG. See Table EV3 for Reactome pathway IDs. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; NHG,
Nottingham histological grade; PgR, progesterone receptor.
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expression (Brueffer et al, 2018). Identifying the mutation status of

pathways and pathway clusters may aid in future clinical trials and

treatment, e.g., by aiding selection of treatments that exploit

synthetic lethality (Weidle et al, 2011).
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High TMB has been identified as a predictive biomarker for

response to immune checkpoint therapy in diverse solid tumors

(Goodman et al, 2017; Lauss et al, 2017; Hellmann et al, 2018;

Thomas et al, 2018; Zacharakis et al, 2018). Using RNA-seq to

assess mutational burden may be a useful capability for clinical

trials and eventual clinical implementation in BC (Schmid et al,

2018). Questions remain however, as TMB is influenced by many

biological and technical factors such as ploidy, tumor heterogeneity

and clonality (Conroy et al, 2019), sample tumor cell content,

sequencing depth, and variant filtering. Which cutoff to use for

stratifying patients into TMB groups is also still emerging (Panda

et al, 2017; Schmid et al, 2018), and specifically has not been

addressed to our knowledge in RNA-seq data. Due to this, and to

account for different expression profiles per tumor, we decided to

use the median number of non-synonymous mutations per MB of

transcriptome across the cohort to stratify patients into TMB-high

and TMB-low groups and use it to study OS in different

conventional treatment and biomarker subgroups. In several of

these groups, high TMB was significantly associated with worse

survival, confirming previous reports (Xu et al, 2018), however

interestingly not in TNBC. These tumors typically show higher TMB

than other clinical BC subtypes, likely because many of them have

impaired DNA damage repair mechanisms. Shah and colleagues

(Shah et al, 2012) showed that only ~ 36% of mutations in TNBCs

are expressed; we speculate that due to this, we may underestimate

TMB in several of our TMB-low patients. Additionally, RNA-seq

underdetects truncating mutations such as frameshift indels that are

a major source of neoantigens. Immune checkpoint therapy is a

particularly attractive treatment approach in patients with TNBC

and basal-like tumors for which currently no targeted therapy exists.

For these patients, determination of TMB using DNA-seq may be a

better option than relying on RNA-seq.

Large-scale projects such as TCGA and SCAN-B generate vast

amounts of data, but bioinformatics skills are required to make

◀ Figure 7. Impact of tumor mutational burden on overall survival across treatment groups.

Overall survival stratified by tumor mutational burden (TMB) across treatment groups in 3,217 patients. Samples were classified as TMB-high if the amount of non-
synonymous mutations per expressed MB (rnaMB) was ≥ the median number of non-synonymous mutations per rnaMB across the whole SCAN-B cohort (0.082 mutations
per rnaMB) and TMB-low otherwise. In each Kaplan–Meier plot, TMB-low cases are plotted in blue, TMB-high cases are plotted in red, the log-rank P value is given, and the
hazard ratio (HR) for TMB high is given with a 95% CI and after univariable and multivariable (MV) Cox regression adjustment. Covariables included in the MV analysis were
age at diagnosis, lymph node status, tumor size, and the variables denoted by the following symbols: ¶, ER, PgR, HER2, and NHG; ¤, ER, PgR, and NHG; $, HER2 and NHG; #,
NHG. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HoR, hormone receptor; NHG, Nottingham histological grade; PgR, progesterone receptor;
TMB, tumor mutational burden; TNBC, triple-negative breast cancer.

Figure 8. The SCAN-B MutationExplorer.

The SCAN-BMutationExplorer web-based application for interactive exploration of mutations, and their association with clinicopathological subgroups and overall survival.
As an example, generation of the image used in Fig 2 is shown.
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efficient use of them. Web portals such as cBioPortal (Cerami

et al, 2012) have emerged to make these huge datasets explorable

without specialized skills. In this spirit, we developed the open

source web application SCAN-B MutationExplorer to make our

mutation dataset easily accessible for other researchers. We hope

that SCAN-B MutationExplorer will aid knowledge generation and

the development of better BC biomarkers in the future. The open

source nature of the portal allows developers to adopt the code

for their own purposes, and we welcome contributions of any

kind.

Limitations

The mutation calling we have performed herein tries to achieve

sensitive variant calling by using lenient parameters, and heavy

filtering of the resulting variants based on stringent quality

factors, annotations, and curated databases. This approach has

several limitations. While our 275 patient cohort for filter devel-

opment had matched tumor and normal DNA sequencing data,

the SCAN-B cohort only consisted of tumor RNA-seq data. This

made accounting for PCR and sequencing artifacts more challeng-

ing. Further while many germline events can be filtered by

comparing to general databases such as dbSNP, and population-

specific ones such as SweGen, these databases are incomplete,

and it is thus not possible to remove all germline events this

way. As these databases improve, our filters can be upgraded to

increase performance. Herein, we also applied filters developed in

a matched DNA/RNA set of targeted capture sequencing of 1,697

genes and 1,047 miRNAs (275 sample ABiM cohort) to whole

mRNA-seq (3,217 sample SCAN-B cohort). This assumes the tran-

scriptional characteristics of the captured regions are representa-

tive for the whole mRNA.

Conclusion

In summary, we present a tumor-only RNA-seq variant calling strat-

egy and resulting mutation dataset from a large population-based

early breast cancer cohort. Although variant calling from RNA-seq

data is limited to expressed regions of the genome, mutations in

important BC genes such as PIK3CA, TP53, and ERBB2, as well as

pathways can be reliably detected, which may be used to inform

clinical trials and eventual reporting to the clinic. Mutations in

TP53, PIK3CA, ERBB2, and PTEN provided prognostic information

in several treatment and biomarker patient subgroups, demonstrat-

ing the utility of the dataset for research. We make this dataset

available for analysis and download via the open source web appli-

cation SCAN-B MutationExplorer, accessible at http://oncogenomic

s.bmc.lu.se/MutationExplorer.

Materials and Methods

Patients

The study was approved by the Regional Ethics Review Board of

Lund at Lund University (diary numbers 2007/155, 2009/658, 2009/

659, 2010/383, 2012/58, 2013/459). We analyzed data from two

previously described cohorts. For 273 patients, including two

patients with bilateral disease (thus 275 tumors), enrolled in the All

Breast Cancer in Malmö (ABiM) study from 2007 to 2009, matched

snap-frozen primary breast tumor tissue and blood samples were

collected as previously described (Winter et al, 2016). A cohort of

3,273 SCAN-B primary breast tumors described previously (Brueffer

et al, 2018) was reduced to 3,217 samples following additional qual-

ity controls. All patients provided informed consent, and the study

conforms to the WMA Declaration of Helsinki and the Department

of Health and Human Services Belmont Report. Tissue collection,

preservation in RNAlater, sequencing, expression estimation, and

molecular subtyping using the PAM50 gene list were performed as

previously reported (Saal et al, 2015; Brueffer et al, 2018). Clinical

records were retrieved from the Swedish National Cancer Registry

(NKBC). Estrogen receptor (ER) and progesterone receptor (PgR)

status was categorized using an immunohistochemical staining

cutoff of 1%. Patients in the SCAN-B cohort had median

74.5 months follow-up, and patient demographics for both cohorts

are detailed in Table 3.

Library preparation and sequencing

For the 275 sample ABiM cohort, tumor and normal DNA was

sequenced using a custom targeted capture panel of 1,697 genes and

1,047 miRNAs as described (Winter et al, 2016). For the same

tumors, RNA-seq was performed as described (Brueffer et al, 2018)

(a subset of the 405 sample cohort therein). In short, strand-specific

dUTP libraries were prepared and sequenced on an Illumina HiSeq

2000 sequencer to an average of 50 million 101 bp reads per sample

(Parkhomchuk et al, 2009; Saal et al, 2015).

For the 3,217 sample SCAN-B cohort, RNA-seq data were gener-

ated as previously described (Brueffer et al, 2018). In short, strand-

specific dUTP mRNA-seq libraries were prepared (Parkhomchuk

et al, 2009; Saal et al, 2015), and an average 38 million 75 bp reads

were sequenced on an Illumina HiSeq 2000 or NextSeq 500 instru-

ment (Table EV1).

Sequence data processing

For tumor and normal DNA, reads were aligned to the GRCh37

reference genome using Novoalign 2.07.18 (Novocraft Technologies,

Malaysia). Using a modified version of the variant workflow of the

bcbio-nextgen NGS framework (https://github.com/bcbio/bcbio-ne

xtgen, modified version https://github.com/cbrueffer/bcbio-nextge

n/tree/v1.0.2-scanb-calling) utilizing Bioconda for software

management (Grüning et al, 2018), duplicate reads were marked

using biobambam v2.0.62 (Tischler & Leonard, 2014) and variants

were called from paired tumor/normal samples using VarDict-Java

1.5.0 (Lai et al, 2016) (with default options except -f 0.02 -N

${SAMPLE} -b ${BAM_FILE} -c 1 -S 2 -E 3 -g 4 -Q 10 -r 2 -q 20),

which internally performs local realignment around indels. Variant

coordinates were converted to the GRCh38 reference genome using

CrossMap 2.5 (Zhao et al, 2014). Raw RNA-seq reads were trimmed

and filtered as described previously (Brueffer et al, 2018) and then

processed using the modified bcbio-nextgen 1.0.2 variant workflow.

Reads were aligned to a version of the GRCh38.p8 reference genome

that included alternative sequences and decoys and was patched

with dbSNP Build 147 common SNPs, and the GENCODE 25 tran-

scriptome model using HISAT2 2.0.5 (Kim et al, 2015) (with default
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Table 3. Patient demographics and clinicopathological variables in the ABiM and SCAN-B cohorts.

ABiM cohort (275 Samples) SCAN-B cohort (3,217 Samples)

Patient count Percent (%) Patient count Percent (%)

Age (years)

<50 64 23.3 597 18.6

≥50 211 76.7 2,620 81.4

Tumor size (mm)

≤20 145 52.7 2,080 64.7

21–50 120 43.6 1,018 31.6

>50 6 2.2 77 2.4

Missing 3 1.1 42 1.3

Positive lymph nodes (number)

0 151 54.9 1,974 61.4

1–3 60 21.8 851 26.5

≥4 44 16.0 290 9.0

Missing 20 7.3 102 3.2

Histological type

Ductal 215 78.2 2,602 80.9

Lobular 23 8.4 386 12.0

Other 28 10.2 229 7.1

Missing 9 3.3 0 0.0

ER status (1% cutoff)

Positive 223 81.1 2,786 86.6

Negative 48 17.5 233 7.2

Missing 4 1.5 198 6.2

PgR status (1% cutoff)

Positive 204 74.2 2,509 78.0

Negative 64 23.3 379 11.8

Missing 7 2.5 329 10.2

HER2 status

Positive 44 16.0 414 12.9

Negative 197 71.6 2,651 82.4

Missing 34 12.4 152 4.7

Nottingham histological grade

Grade 1 31 11.3 483 15.0

Grade 2 97 35.3 1,509 46.9

Grade 3 146 53.1 1,161 36.1

Missing 1 0.4 64 2.0

Ki67 status

High 109 39.6 887 27.6

Low 153 55.6 627 19.5

Missing 13 4.7 1,703 52.9

Molecular subtype

Luminal A 109 39.6 1,545 48.0

Luminal B 83 30.2 899 27.9

HER2-enriched 30 10.9 279 8.7

Basal-like 35 12.7 318 9.9
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options except --rna-strandness RF --rg-id ${ID_NAME} --rg PL:illu-

mina --rg PU:${UNIT} --rg SM:${SAMPLE}). BAM index files were

generated using Sambamba 0.6.6 (Faust & Hall, 2014), and duplicate

reads were marked using SAMBLASTER 0.1.24 (Tarasov et al,

2015). Variants were called using VarDict-Java 1.5.0 with default

options except -f 0.02 -N ${SAMPLE} -b ${BAM_FILE} -c 1 -S 2 -E 3

-g 4 -Q 10 -r 2 -q 20 callable_bed, where callable_bed was a sample-

specific BED file containing all regions of depth ≥ 4.

All variants were annotated using a Snakemake (Köster &

Rahmann, 2012) workflow around vcfanno 0.3.1 (Pedersen et al,

2016) and the data sources dbSNP v151 (Sherry et al, 2001),

Genome Aggregation Database (gnomAD) (Karczewski et al, 2020),

Catalogue of Somatic Mutations in Cancer (COSMIC) v87 (Forbes

et al, 2015; Sondka et al, 2018), CIViC (Griffith et al, 2017), MyCan-

cerGenome (release March 2016, http://www.mycancergenome.

org), SweGen version 20171025 (Ameur et al, 2017), the Danish

Genome Project population reference (Maretty et al, 2017), RNA

editing databases (Kiran & Baranov, 2010; Ramaswami & Li, 2014;

Sun et al, 2016; Picardi et al, 2017), UCSC low complexity regions,

IntOGen breast cancer driver gene status (Gonzalez-Perez et al,

2013) (accessed 2018-08-02), and the drug gene interaction database

(DGIdb) v3.0.2 (Cotto et al, 2017). We used SnpEff v4.3.1t (with

default parameters except hg38 -t -canon) (Cingolani et al, 2012b)

to predict functional variant impact on canonical transcripts as

defined by SnpEff.

To filter out recurrent artifacts introduced during library prepara-

tion or sequencing, we constructed a panel of “normal” tissues

consisting of all variants enumerated from RNA-seq analysis of adja-

cent non-tumoral breast tissues sampled from 10 SCAN-B patients.

Gene expression data in fragments per kilobase of transcript per

million mapped reads (FPKM) for the ABiM and SCAN-B cohorts

were generated as previously reported and is available from the

NCBI Gene Expression Omnibus, accession GSE81540 (Brueffer

et al, 2018).

Variant filtering

The strategy we applied for developing DNA-seq-informed filters is

outlined in Fig 1. Due to the lenient settings used for sensitive initial

variant calling, we developed and applied rigid filters to reduce

false-positive calls resulting from either sequencing or PCR artifacts,

RNA editing, or germline variants. To this end, variants called from

275 matched tumor/normal targeted capture DNA datasets were fil-

tered, among other parameters, for low complexity regions, SNP

status (dbSNP “common”, SweGen and COSMIC SNPs, high

gnomAD allele frequency), allele frequency ≥ 0.05, depth ≥ 8,

homopolymer environments, and RNA editing sites. Using the

resulting DNA variants as reference, we developed filters for the 275

sample RNA-seq variants by permuting values of the sequencing,

variant calling, and annotation variables, and for each permutation

calculating the concordance to the DNA mutations. Following these

“negative” filters, we applied a range of “positive” filters to rescue

filtered variants, e.g., to retain a variant if it is present in the curated

MyCancerGenome database of clinically important mutations.

Finally, we selected the combination of “negative” and “positive”

filter settings with the best balance of sensitivity and specificity.

Using SnpSift (Cingolani et al, 2012a), we applied the filters to

RNA-seq mutation calls from the 3,217 patient cohort. A complete

list of final filter variables and values for both the tumor/normal

DNA variant calls, as well as the RNA-seq variant calls can be found

in Table EV6.

Data analysis

All analyses were performed using R 3.5.1. Waterfall, heatmap,

and lollipop plots were made using the GenVisR 1.14.2 (Skidmore

et al, 2016), pheatmap 1.0.12, and RTrackLayer 1.42.1 packages.

Substitution signatures were analyzed using the MutationalPat-

terns 1.8.0 package (Blokzijl et al, 2018). Survival analysis was

conducted using OS as endpoint. Overall survival was analyzed

using the Kaplan–Meier (KM) method, two-sided log-rank tests,

and Cox models, all implemented in the survival 2.44-1.1 pack-

age. Multivariable Cox models included the variables age at diag-

nosis, lymph node status, and tumor size as covariables, as well

as ER, PgR, HER2, and NHG as relevant. All models were

checked for proportional hazards using Grambsch and Therneau’s

test for non-proportionality and Schoenfeld residuals (Grambsch

and Therneau, 1994). Associations were tested using one-tailed

and two-tailed Fisher’s exact test. P-values < 0.05 were

considered significant. The web application SCAN-B Muta-

tionExplorer was written in R using the Shiny, GenVisR, and

SurvMiner packages.

Data availability

The datasets produced and used in this study are available in the

following databases:

• Clinical data and mutation calls: http://oncogenomics.bmc.lu.se/

MutationExplorer

• Gene expression data: NCBI Gene Expression Omnibus GSE81540

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81540;

Brueffer et al, 2018).

Raw patient sequencing data cannot be provided due to Swedish

data protection laws.

Expanded View for this article is available online.

Table 3 (continued)

ABiM cohort (275 Samples) SCAN-B cohort (3,217 Samples)

Patient count Percent (%) Patient count Percent (%)

Normal-like 13 4.7 112 3.5

Unclassified 5 1.8 64 2.0
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