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In situ procedure for high-efficiency 
computational modeling of atrial 
fibrillation reflecting personal 
anatomy, fiber orientation, fibrosis, 
and electrophysiology
Byounghyun Lim, Jaehyeok Kim, Minki Hwang, Jun-Seop Song, Jung Ki Lee, Hee-Tae Yu,  
Tae-Hoon Kim   , Jae-Sun Uhm, Boyoung Joung   , Moon-Hyung Lee & Hui-Nam Pak*

We previously reported the feasibility and efficacy of a simulation-guided clinical catheter ablation of 
atrial fibrillation (AF) in an in-silico AF model. We developed a highly efficient realistic AF model reflecting 
the patient endocardial voltage and local conduction and tested its clinical feasibility. We acquired > 500 
endocardial bipolar electrograms during right atrial pacing at the beginning of the AF ablation procedures. 
Based on the clinical bipolar electrograms, we generated simulated voltage maps by applying fibrosis 
and local activation maps adjusted for the fiber orientation. The software’s accuracy (CUVIA2.5) was 
retrospectively tested in 17 patients and feasibility prospectively in 10 during clinical AF ablation. Results: 
We found excellent correlations between the clinical and simulated voltage maps (R = 0.933, p < 0.001) 
and clinical and virtual local conduction (R = 0.958, p < 0.001). The proportion of virtual local fibrosis 
was 15.4, 22.2, and 36.9% in the paroxysmal AF, persistent AF, and post-pulmonary vein isolation (PVI) 
states, respectively. The reconstructed virtual bipolar electrogram exhibited a relatively good similarities 
of morphology to the local clinical bipolar electrogram (R = 0.60 ± 0.08, p < 0.001). Feasibility testing 
revealed an in situ procedural computing time from the clinical data acquisition to wave-dynamics analyses 
of 48.2 ± 4.9 min. All virtual analyses were successfully achieved during clinical PVI procedures. We 
developed a highly efficient, realistic, in situ procedural simulation model reflective of individual anatomy, 
fiber orientation, fibrosis, and electrophysiology that can be applied during AF ablation.

Catheter ablation (CA) is an effective approach for rhythm control management of atrial fibrillation (AF)1,2. 
However, the recurrence rate after AF ablation procedures is still substantial3. Although pulmonary vein iso-
lation (PVI) is a well-established target of AF ablation, extra-pulmonary vein (PV) foci or drivers maintain AF 
in some patients, and extra-PV foci are more commonly found in AF patients with significant left atrial (LA) 
remodeling4,5. The Substrate and Trigger Ablation for Reduction of Atrial Fibrillation trial part 2 (STAR AF2) 
demonstrated that an empirical extra-PV ablation did not improve the rhythm outcome compared with a circum-
ferential PVI alone in patients with persistent AF (PeAF)6. However, the one-year recurrence rate was higher than 
40% regardless of any additional extra-PV ablation after the PVI, and the outcome of the invasive interventional 
catheter procedure was not adequate. Therefore, an innovative mapping technology to identify the core target of 
AF is needed in AF catheter ablation (AFCA).

Simulation is a very useful computer-aided method for identifying appropriate intervention targets. We 
recently reported the feasibility of a simulation-guided PeAF ablation by applying a personalized heart computed 
tomography (CT) image-integrated AF simulation7,8. To further this method, we developed a more realistic AF 
simulation reflective of personalized anatomy, fiber orientation, fibrosis, and electrophysiology. We upgraded our 
software (CUVIA2.5), which applies the clinically acquired voltage and activation data during the AF ablation 
procedure and can provide personalized AF wave-dynamics information to the operator. The purpose of this 
study was to validate the accuracy of the CUVIA2.5 by a retrospective clinical study and to test the feasibility of 
the realistic modeling-guided AF ablation in a prospective clinical study.
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Methods
The study protocol was approved by the Institutional Review Board of Severance Cardiovascular Hospital, Yonsei 
University Health System, and adhered to the Declaration of Helsinki. This study is registered at Clinicaltrials.
gov (NCT 02171364). All subjects provided written informed consent for the use of their cardiac CT images and 
clinical electrophysiological mapping data for the computational modeling studies.

3D computational model of the left atrium.  Ionic currents in each cell were determined using the 
human atrial myocyte model developed by Courtemanche et al.9. For remodeling of ion currents of AF, IK1 and 
INCX were increased by 100% and 40%, and INa, Ito, ICaL, and IKur were decreased by 10%, 70%, 50%, and 50%, 
respectively10,11. We developed our GUI software (CUVIA ver. 2.5, Model: SH01; Laonmed Inc., Seoul, Korea)7 so 
that it could implement not only virtual AF induction and the AF wave-dynamics by phase singularities (PS) and 
by the dominant frequency (DF), but also fiber orientation and fibrosis formation, onto the LA surface. The sys-
tem can also generate a realistic 3D in silico AF model from a patient’s clinical data. Figure 1 comprises an outline 
of modeling progression. We generated 3D modeling-integrated CT images of the LA12,13. Then, a 3D mesh was 
generated with 400,000~500,000 nodes and was refined as a triangular type; the mean distance between adjacent 
nodes was 235.1 ± 32.1 μm.

Acquisition of clinical electro-anatomical maps.  Clinical electro-anatomical maps were acquired to 
define the tissue characteristics of the model. We collected clinical data that included the bipolar electrograms 
recorded from > 500 points on the atrial surface to develop interpolated voltage data. The clinical electrogram 
data comprised sequential recordings during a paced rhythm, with a cycle length of 500 ms. The locations of the 
3D model, obtained from an EnSite NavX system (Abbott Inc., Lake Bluff, IL USA), were matched with the coor-
dinates of the clinical map after merging with the patient’s heart CT images. The voltage values and coordinates 
of each clinical catheter point were stored.

Alignment of electro-anatomical maps onto CT derived mesh models.  Registration of the 
electro-anatomical maps onto the CT models involved the four following steps: (1) geometry, (2) trimming, (3) 
field scaling, and (4) alignment. Each step was performed manually by aligning anatomical features. First, in the 
geometry step, an electro-anatomical map was created using a circular mapping catheter based on CT images. 
After the electro-anatomical map was created, the trimming step undertaken. During this stage, any artifact 
caused by the patient’s breathing was removed, and the PV and LA appendage (LAA) sites were divided based on 
the ostial position. Next, field scaling was applied to optimized the electro-anatomical map based on interelec-
trode spacing and to match the size thereof with that of the CT image as close as possible. In the alignment step, 
alignment points were based on a precisely defined ostium. Upon applying the alignment points in the same 
position, registration was completed. The alignment comprised rigid coordinate transformation. The mean reg-
istration error was estimated as 1.82 ± 1.25 mm. In this case, the catheter points representing electro-anatomical 
map and the segmented CT image of the LA were integrated.

Interpolation of the electro-anatomical map values on the mesh.  Virtual voltage data were cre-
ated by an interpolation of the clinical voltage mapping. We used the inverse distance weighting (IDW) method 
for signal interpolation14. We collected the data within a radius of 10 mm from the point where we wanted to 

Figure 1.  Study protocol. Outline of the realistic modeling reflecting the patient’s anatomy, fiber orientation, 
and fibrosis.
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interpolate the data and interpolated it using IDW to do so. An interpolated voltage map generated by our cus-
tomized software is shown in Fig. 2A, which is similar to that of the NavX system.

Definition of fiber orientation from atlases.  We accounted for fiber orientations using an atlas based 
mesh of each patient’s geometry15,16 and generated high-speed, high-density, and whole-chamber AF mapping 
using personalized electrophysiologic mapping data. The GPU fiber tracking process involved two stages: track-
ing and visualization. Fiber tracking was a parallel task, since the same algorithm was executed for each seed 
point, independent from each other, making it effective to use the GPU system. In the fiber orientation map, the 
difference in conduction according to the orientation was realized through the fiber tracking method. A vector 
along the myocardial fiber direction could be created at each point of the heart. The conductivity in the direction 
perpendicular to the vector was smaller than the conductivity in the vector direction. We adjusted the fiber ori-
entation based on the clinical LAT map.

Spatial distribution of fibrosis based on clinical voltage map.  The locations of fibrotic areas were 
determined based on a clinically acquired bipolar voltage map. First, bipolar voltage data from the clinically 
acquired map were interpolated onto the computational nodes on the 3D in silico atrial model. To determine 
fibrosis status (yes/no) for each node, we used the following nonlinear relationship between the bipolar voltage 
and probability of fibrosis17:
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where Pfibrosis is the probability that there is fibrosis at a given node and X is the bipolar voltage at that node in the 
range of 0 to 1.74 mV. If X is greater than 1.74 mV, Pfibrosis converges to zero. This was developed by comparing the 
predicted percentage of fibrosis across the 3D atrial model with the pre- and post-ablation fibrosis data. For each 
node, the probability of fibrosis calculated based on the clinically acquired bipolar voltage data was compared 
against a random number between 0 and 1.

Definition of base electrophysiological parameters of fibrotic and non-fibrotic tissue.  Using 
a model that reflects the structural orientation of the heart and fiber orientation, we created a model similar 
to the clinical local activation data as shown in Fig. 1. The conductivity of the model was applied at 0.1264 S/m 
(non-fibrotic longitudinal cell), 0.0546 S/m (fibrotic longitudinal cell), 0.0252 S/m (non-fibrotic transverse cell), 
and 0.0068 S/m (fibrotic transverse cell)18. If the random number was below the calculated probability of fibrosis, 
the node was considered to have a positive fibrosis status. Compared with normal cells, the ion current of the 
fibrosis cell, that is, the inward rectifier potassium current (IK1), L-type calcium current (ICaL), and sodium current 
(INa), decreased by 50%, 50%, and 40%, respectively18. We defined the longitudinal CV as that in the same direc-
tion as the vector and the transversal CV as that in the perpendicular direction to the vector.

Figure 2.  Comparison of the clinical and virtual modeling. (A) Comparison of the clinical and virtual voltage, 
(B) Comparison of the clinical and virtual local activation time (LAT), (C) Normalized signal between the 
clinical and virtual electrograms.

https://doi.org/10.1038/s41598-020-59372-x


4Scientific Reports |         (2020) 10:2417  | https://doi.org/10.1038/s41598-020-59372-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Customized tuning of parameters according to clinical conduction velocity and LAT synchro-
nization.  After obtaining the clinical local activation time (LAT) data and applying the fiber orientation and 
fibrosis on the 3D LA model, we conducted a synchronization between the clinical and virtual LAT maps to 
determine the conduction velocity (CV) as a preliminary simulation (Fig. 1). We modulated diffusion coefficients 
of the patient-specific atrial model by matching the CV obtained from the simulation to the clinical CV. We 
compared the virtual LAT and clinical LAT maps by measuring CV at five different points (Fig. 2B). To calculate 
the CVs of the clinical and simulation data, the conduction distances from the earliest activation site (EAS) near 
Bachmann’s bundle7 to five different activation points were measured on the surface of the simulation model 
and were divided by the time difference as previously described19. We adjusted the virtual conduction time by 
modulating the diffusion coefficient of the model. We then performed a comparison of the clinical and virtual 
LAT maps. In this study, the virtual CV was adjusted to the clinical LAT map after fibrosis was applied. We 
adjusted the longitudinal and transverse diffusion coefficients at the same rate. The calculated longitudinal CV 
was 0.707 ± 0.029 m/s, and the transverse CV was 0.486 ± 0.010 m/s.

Virtual AF induction and analyses of PS and DF.  Ramp pacing stimulation, which was performed with 
cycle lengths from 200 to 120 ms, was applied near Bachmann’s bundle7. The overall pacing duration was 6,530 ms. 
In order to establish the criteria of the action potential duration (APD) and CV in this model, the APD and CV 
were determined using the average data from the clinical Yonsei AF ablation cohort (n = 3,030). The effective 
refractory period and CV values measured in the clinical database were 217.3 ± 71.4 ms and 0.45 ± 0.24 m/s 
CV, respectively7,19. The APD90 and CV values measured in the simulation modeling were 206.5 ± 6.8 ms and 
0.50 ± 0.06 m/s, respectively. When AF was successfully induced, we analyzed the wave-dynamics of the PS and 
DF for 6s7. The DF was defined as the frequency with the highest power. The power spectral density was obtained 
by a Fourier transformation of the virtual action potential of each node. We calculated the DF values for all nodes 
of the 3D LA model. The peak point of the DF map and the highest 5% DF map were generated. The highest 5% 
DF areas were defined by nodes that showed the top 5% DF values. A PS trajectory map on the atrial surface was 
also generated. The PS was defined at the point where the phase was undetermined20,21. We sampled the 6-s data 
for a single PS calculation in our previous study7. We then used the location-centric method21 that we previously 
developed for identifying the phase singularity points with a high computational speed and accuracy. We previ-
ously validated our method by comparing it with the Iyer-Gray method. In our previous study of electrophysio-
logical rotor ablation in an in-silico modeling22, the mother rotor was defined as the rotor with a tip that remains 
within a circle of the diameter that is half the wavelength of the cardiac wave for longer than 5 s. The wavelength 
was determined for the linear wave generated by a line while pacing with a 600-ms cycle length before the initia-
tion of reentry. The rotor tip was defined as the PS point of the rotor.

Numerical solution and accelerated computing.  The finite difference method was used for numerical 
modeling of the atrium and solution in the triangular type mesh23 (Supplementary Fig. S1A). Most mathemat-
ical functions were performed with the compute unified device architecture (CUDA) system, based on C and 
C +  + languages, and parallel transaction was conducted using a graphic processing unit (GPU). We used the 
CUDA system to perform a parallel computing and calculated the results at very high speeds by grouping register 
memories (Supplementary Fig. S1B). Since the complex exponential or logarithm calculations were evaluated at 
a high cost in the computation, we used a lookup table for faster computation speeds (Supplementary Fig. S1C). 
We calculated the extracellular potential for the two electrodes of the bipolar catheter. The unipolar electrograms 
at different points of the atria surface under conditions of uniform intracellular anisotropic resistivity were simu-
lated, as previously described24. The extracellular potential (φe) was given by the following equation:
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where ∇Vm is the spatial gradient of the transmembrane potential Vm, σi the intracellular conductivity, σe the 
extracellular conductivity, r the distance from the source point (x, y, z) to the measuring point (x’, y’, z’), and dv the 
differential volume. The bipolar electrograms were calculated by subtracting two adjacent unipolar electrograms 
spaced 1 mm apart. The time step was adaptively varied between 0.01 and 0.1 ms, and we opted for double preci-
sion for a higher numerical accuracy using the operator splitter method10,25.

Accuracy validation of retrospective simulation.  To validate the realistic AF modeling generated by the 
CUVIA2.5, we investigated the correlations between the pre-acquired clinical voltage mapping data and retrospec-
tive simulated mapping results (both during a pacing state) in 17 patients who underwent AF ablation (70.6% male, 
60.4 ± 8.4 years old, 58.8% PeAF, Table 1). Using the clinical bipolar electrogram data (from 7 PeAF, 5 paroxysmal 
AF [PAF], and 5 post-PVI PAF patients), we integrated patient-specific heart CT imaging of the LA, spatiotemporal 
locations in bipolar electrograms, degree of fibrosis based on the clinical voltage maps, and fiber orientation based 
on clinical activation time. Morphological similarity of the bipolar electrograms was calculated by the mean of the 
inner product between the normalized clinical and simulated electrogram signals by the following equation26,27:

⋅EGM EGM
EGM EGM (3)

Cli Vir

Cli Vir

where EGMCli is the clinical bipolar vector and EGMVir the virtual bipolar vector. Figure 2C shows an example of a 
normalized signal between a clinical and virtual electrogram. We used these data to generate realistic AF modeling. 
All simulation data were calculated by CUVIA software version 2.5 (Laonmed Inc., Seoul, Korea). We compared the 
similarities between the clinical and simulated voltage maps and that between the clinical and virtual LAT maps.

https://doi.org/10.1038/s41598-020-59372-x


5Scientific Reports |         (2020) 10:2417  | https://doi.org/10.1038/s41598-020-59372-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Prospective clinical feasibility during the AF ablation procedure.  To test the clinical feasibility of 
a personalized realistic modeling of AF, we prospectively tested the in silico modeling in 10 patients (40% male, 
55.2 ± 9.5 years old, all PeAF) during AF ablation procedures. At the beginning of the procedure, an on-site pro-
cedure team acquired the LA bipolar electrograms at 500~1000 points after internal cardioversion (5~30 J) and 
sent the spatiotemporal data to the core lab by e-mail or via the internal network after integration of the heart CT 
imaging (100~300 Mb in size). The operators started the circumferential PVI as soon as the bipolar electrogram 
data were exported. The core lab team conducted the simulation study using the patient data obtained from the 
procedure team. After analysis of the wave-dynamics with PS and DF maps, the analyzed results were sent back 
to the on-site procedure team by e-mail or the internal network, and the calculation time of the core lab was 
monitored to determine whether the simulation results could be provided within a routine circumferential PVI 
procedure.

Statistical analysis.  Data are expressed as the mean ± standard deviation. Data for the retrospective and 
prospective feasibility simulation study were compared using a Pearson’s correlation. A p-value < 0.05 was con-
sidered statistically significant. The statistical analyses were performed using SPSS software for Windows (version 
20.0, Statistical Package for Social Sciences, Chicago, IL, USA).

Results
Comparison of the clinical electrogram-based map and virtual modeling.  We compared the endo-
cardially-acquired clinical bipolar voltage with the simulated voltage map in 17 patients, as shown in Fig. 2A. We 
observed an excellent correlation between the clinical data and simulation models (R = 0.933, p < 0.001, Fig. 2A 
and Table 2). In a regional sub-analysis, the LA was divided into 10 areas (Supplementary Fig. S1D), and the 
regional clinical voltage and virtual voltage were evaluated (Fig. 3A). There was a high correlation between the 
clinical voltage and virtual voltage in each region (Table 2). Although the R-value was lowest in the left inferior 
PV area (R = 0.727), the correlation was still significant (p < 0.001). To compare the local CVs in the clinical map 
and simulation map, we measured the conduction times from the earliest activation site (A, asterisk in Fig. 2B) 
to the other areas (LAA, mitral annulus 12 o’clock area, LA roof, and bottom of the left inferior pulmonary vein; 
b–e in Fig. 2B). The clinical and virtual LAT maps were similar, and the local conduction times measured were 
significantly correlated (R = 0.958, p < 0.001, Table 3, Fig. 2B). In the morphological analysis, the reconstructed 
virtual bipolar electrograms exhibited a relatively good similarities of morphology (R = 0.60 ± 0.08, p < 0.001) to 
the local clinical bipolar electrograms (Fig. 2C).

Degree of fibrosis in the virtual AF map.  We generated an interpolated voltage map by applying fibro-
sis, and the degree of fibrosis was calculated using the clinical local voltage ‘X’ in Eq. 118. The calculated fibrosis 
was 15.4% in patients with PAF (n = 5), 22.2% in patients with PeAF (n = 7), and 36.9% during the post-PVI 
state (n = 5). For the analysis of the spatial relationship between the fibrosis and PS or DF, we calculated the 
proportion of fibrotic nodes, number of PS occurrences, and DF values in the 10 segmented regions presented 
in Supplementary Fig. S1D. The regional number of PS had a good correlation to the degree of fibrosis (R = 0.87, 
p < 0.001). High DF areas were generally localized at the periphery of fibrosis and had a poor regional correlation 
to the fibrotic area (R = 0.38, p < 0.001, Supplementary Fig. S2 and Supplementary Table S1). The degree of atrial 
fibrosis affected the AF wave-dynamics.

Retrospective accuracy 
study (17 patients)

Prospective feasibility 
study (10 patients)

Age, years (Mean ± SD) 60.4 ± 8.4 55.2 ± 9.5

>65 years old 7 (41.2%) 1 (10%)

<65 years old 10 (58.8%) 9 (90%)

Gender

  Male 12 (70.6%) 4 (40%)

  Female 5 (29.4%) 6 (60%)

Persistent AF 10 (58.8%) 10 (100%)

Heart failure 3 (17.7%) 3 (30%)

Hypertension 10 (58.8%) 4 (40%)

Diabetes 1 (5.9%) 3 (30%)

Previous stroke 0 (0%) 0 (0%)

Previous TIA * 0 (0%) 0 (0%)

Vascular disease 0 (0%) 0 (0%)

Left atrium dimension 40.5 ± 4.9 mm 46.1 ± 5.6 mm

Ejection fraction 60.9 ± 11.6% 60.4 ± 4.8%

E/Em † 10.4 ± 3.3 10.2 ± 4.3

Table 1.  Patient characteristics. *TIA, transient ischemic attack; † E/Em, the ratio of the early diastolic mitral 
inflow velocity (E) to the early diastolic mitral annular velocity (Em).
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Clinical voltage (mV)
Simulated 
voltage (mV) R value P value

RMSE 
(%RMSE)

Septum 1.49 ± 0.65 1.65 ± 0.60 0.940 <0.001 0.21 (12.9%)

Anterior wall 1.22 ± 0.40 1.13 ± 0.36 0.950 <0.001 0.16 (14.5%)

Left atrial 
appendage 1.63 ± 0.91 1.61 ± 0.77 0.956 <0.001 0.18 (11.1%)

Peri-mitral area 1.40 ± 0.85 1.39 ± 0.74 0.988 <0.001 0.27 (19.4%)

Posterior wall 1.01 ± 0.80 0.80 ± 0.81 0.943 <0.001 0.13 (15.8%)

Roof 2.14 ± 1.23 2.36 ± 1.33 0.985 <0.001 0.33 (13.9%)

Left superior PV 0.78 ± 0.67 0.60 ± 0.56 0.943 <0.001 0.19 (32.1%)

Left inferior PV 0.64 ± 0.47 0.50 ± 0.37 0.727 <0.001 0.18 (36.6%)

Right superior PV 3.38 ± 0.73 3.36 ± 1.34 0.942 <0.001 0.20 (5.9%)

Right inferior PV 1.06 ± 0.73 0.95 ± 0.50 0.953 <0.001 0.24 (25.1%)

Overall 1.48 ± 0.76 1.44 ± 0.83 0.933 ± 0.07 <0.001

Table 2.  Mean voltage of 10 LA segments and the correlation between the clinical and simulated voltage map. 
RMSE: Root mean square error, %RMSE: Percentage root mean square error.

Figure 3.  (A) Regional voltage of the clinical and virtual data, (B) The calculation time for a realistic AF 
modeling using CUVIA and Matlab software under a condition of 500,000 nodes.

Patients Clinical CT (ms) Virtual CT (ms) R value P value RMSE (%RMSE)

1 38.8 ± 7.6 43.5 ± 7.4 0.967 0.032 5.12 (11.8%)

2 37.5 ± 8.3 37.5 ± 10.6 0.999 0.001 2.35 (6.3%)

3 56.5 ± 30.1 55.5 ± 31.3 0.979 0.021 6.52 (11.7%)

4 40.0 ± 8.2 55.3 ± 12.6 0.999 0.001 15.90 (28.8%)

5 65.0 ± 20.9 72.0 ± 21.7 0.999 <0.001 7.11 (9.9%)

6 61.5 ± 22.4 65.5 ± 18.8 0.989 0.011 6.20 (9.5%)

7 57.8 ± 14.4 64.3 ± 21.7 0.972 0.028 10.61 (16.5%)

8 45.5 ± 12.8 51.3 ± 18.6 0.973 0.027 8.90 (17.4%)

9 59.8 ± 11.7 68.3 ± 13.9 0.906 0.094 10.37 (15.2%)

10 58.5 ± 13.6 57.8 ± 18.8 0.992 0.008 5.55 (9.6%)

11 72.5 ± 21.4 72.3 ± 21.5 0.993 0.007 2.50 (3.5%)

12 43.8 ± 15.2 57.8 ± 18.0 0.961 0.039 15.02 (26.0%)

13 52.5 ± 12.3 59.5 ± 16.3 0.644 0.356 14.40 (24.2%)

14 50.3 ± 16.4 59.9 ± 12.2 0.978 0.021 10.57 (17.8%)

15 74.0 ± 20.9 76.3 ± 20.7 0.973 0.027 5.32 (7.0%)

16 45.3 ± 10.2 53.3 ± 13.2 0.962 0.038 9.11 (17.1%)

17 65.5 ± 11.4 68.5 ± 11.9 0.999 <0.001 3.08 (4.5%)

Overall 54.4 ± 11.1 59.9 ± 10.0 0.958 ± 0.08 <0.001

Table 3.  Comparison between the clinical and virtual local conduction times (CTs). RMSE: Root mean square 
error, %RMSE: Percentage root mean square error.
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Processing time for AF modeling.  We performed the simulation using the GPU-based parallel calcula-
tion system for a highly efficient computation speed. With our CUDA system, it took about 1.2 minutes to run a 
1-second simulation in a LA model with 400,000~500,000 nodes, and the computational time increased by 36 sec 
with every 10,000 additional nodes. The system can be simulated 102-fold faster than the previous calculating 
method using Matlab under the same condition (Fig. 3B). During the AFCA procedures in the 10 patients with 
PeAF, we acquired a clinical endocardial voltage map and LAT map (NavX, Abbott Inc. U.S.A.) and conducted a 
realistic simulation based on the clinically acquired data. The calculated time from the clinical electrogram data 
extraction to the report of the virtual DF and PS maps was 48.2 ± 4.9 min. After extraction of the clinical data, 
the operator immediately started the PV isolation procedure and received a report of the patient’s virtual DF map 
and PS map before the PVI procedure was complete, in all cases (100%). We present here a representative case of 
computational modeling in a patient with persistent AF (Supplementary Fig. S3). In this case, the computational 
time was 41 min, and the highest DF site was close to the posterior aspect of the left side of the PV in spite of a het-
erogeneous distribution of the DF and PS. Sustaining AF was successfully terminated during the left-side CPVI, 
and we did not conduct any extra-PV LA ablation in this patient with persistent AF.

Discussion
In this study, we generated a highly efficient realistic simulation modeling of AF, which could be applied to the 
clinical AF ablation procedure. We proved the accuracy of the model by the similarity of virtual and clinical 
electrograms and the association of fibrosis and wave-dynamic parameters. At the beginning of the AF abla-
tion procedure, we acquired bipolar electrograms with > 500 points during RA pacing and sent a file containing 
the electrograms and their spatial location data to the core lab by e-mail or via the network. A patient-specific 
realistic AF modeling, reflecting the degree of fibrosis, activation pattern, and fiber orientation, was performed, 
and virtual AF was induced based on a highly efficient computing algorithm (72-s calculation times for 1-s AF 
simulation). We conducted additional AF wave-dynamics analyses, and the results were reported to the operator 
within 50 min during the PVI procedure. To the best of knowledge, this study is the first study to verify the clinical 
applicability of highly efficient realistic computational modeling of AF in reflection of a patient’s atrial anatomy, 
fiber orientation, fibrosis, and electrophysiology in a retrospective and prospective clinical application.

AF ablation reduces the heart failure mortality28 and stroke risk29 and improves the cognitive function30 and 
renal function31. However, AFCA is a time consuming and challenging procedure with a substantial recurrence 
rate, especially in patients with PeAF. Because the PVI is the cornerstone of AFCA, we conducted a circumfer-
ential PVI (CPVI) in every patient during the AFCA procedure. However, the ablation of non-PV triggers is 
also important to improve the rhythm outcome of AFCA. Therefore, we acquired bipolar voltage maps at the 
beginning of the procedure and ran a simulation study to detect any extra-PV AF drivers during the CPVI pro-
cedure6,32. An empirical extra-PV ablation is partially effective in some patients with PeAF, but a prospective ran-
domized clinical trial failed to prove its usefulness6. Moreover, an empirical extra-PV ablation may increase the 
LA pressure and has the risk of causing a stiff LA syndrome. Clinical investigators have thus been tracing person-
alized extra-PV AF rotors or drivers over the last 7 years33,34. Rotors can exist in AF but not as a stationary, single, 
mother rotor, as Jalife originally defined in ventricular fibrillation35. We recently demonstrated the effectiveness of 
virtual ablation targeting AF spiral wave reentries represented by a high DF area22, but the spatiotemporal stability 
of the high DF area changes depending on the CV8 in simulation modeling studies. Thus, it is not clear whether 
burning of non-stationary phantom targets results in consistent outcomes in patients with AF. Instead, a more 
accurate, sophisticated, and fast mapping technique that reflects patient-specific anatomy, fiber orientation, fibro-
sis, and electrophysiology, which can affect AF wave-dynamics, is required. In this study, the number of PS was 
higher in areas with fibrosis, which was consistent with the previous reports36. However, the DF area was localized 
to the periphery of the fibrotic area with a poor correlation, consistent to Koduri’s report37.

The computational cardiac simulation study has a growing role and allows the non-invasive identification 
of atrial reentries in AF38. The contemporary clinical 3D mapping system has enabled electro-anatomical map-
ping of the atrium in detail after heart image integration, but it is not possible for identifying non-stationary AF 
drivers or spiral reentries of sustained AF by a point-to-point catheter mapping. Although the entire chamber 
AF mapping technique, such as focal impulse and rotor mapping (FIRM)33 and panoramic mapping34, has been 
developed, there is a limit to the spatial resolution of the AF map. In recent years, high-performance modeling 
reflecting the MRI late gadolinium-enhanced fibrosis, fiber orientation, and atrial thickness has been developed 
and has been clinically applied (Supplementary Table S1)39–42. Using this sophisticated simulation modeling, 
high-density entire chamber mapping of AF, reflecting personalized anatomy, fiber orientation, and fibrosis is 
possible. Nevertheless, evidence of the relationship between MRI-characterized scar and real histological fibrosis 
has not been proven except in ischemic cardiomyopathy, and bilayer atrial modeling is still best for the application 
of the atrial wall thickness40. Despite the relatively well-developed AF modeling technology, the highest hurdle 
in applying the simulation to clinical practice is the long calculation time. In this study, high-speed, high-density, 
whole-chamber AF mapping using personalized electrophysiologic mapping data was made possible by speeding 
up the computing calculation, and the simulation results were directly applied to the AF ablation procedure. By 
using this in situ procedural high-efficiency modeling of AF, we expect to be able to increase the ablation success 
rate of PeAF patients by detecting and ablating more precise, reproducible, and consistent extra-PV AF drivers.

Although this study considered patient-specific atrial anatomy, fiber orientation, fibrosis, and electrophysiol-
ogy in a realistic in silico modeling of AF, the model was a monolayer design. An atrial thickness variation could 
affect the wave propagation in the area of an abrupt change in the fiber orientation, but the wave propagation 
pattern of the monolayer model is reported to be similar to that of the multilayer model43. Moreover, we could 
not reflect the epicardial conduction pattern by the endocardially-acquired clinical voltage and local activation 
pattern. A reflection of the accurate atrial wall thickness may improve the elaborate wave-dynamics analyses 
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as well as be applicable to radiofrequency energy titration during clinical AF ablation. We did not analyze the 
AF after multiple site stimulation. Although the AF dynamics can be affected by the induction site44, the spatial 
distribution of the AF wave dynamic parameters does not significantly differ from spontaneously induced AF, 
regardless of the induction site45. The clinical relevance of the study was limited due to the lack of clinical data on 
simulation-guided ablation, and a well-designed clinical trial is warranted. The DF and PS might be insufficient 
to characterize the complex AF wave-dynamics and to guide ablation, because the fibrillation process is complex 
and driven by focal sources or a pure multiple wavelet mechanism. The validity of the PS in the identification 
of reentrant activity is still controversial46. Although the registration between the electroanatomical map and 
the CT model was performed by an experienced technician, we cannot exclude any registration error47 during 
the clinical mapping process that may have had an impact on the accuracy of the model. In a recent study, the 
time required for the PVI was shortened by attempting ablation with high-power, short-duration radiofrequency 
energy. Therefore, further shortening of the simulation computation time is required. The current realistic AF 
model was simulated using invasive clinical data, and simulation using less invasive clinical data is necessary for 
the use of this model in a wider range of AF patients.

Conclusion
We developed a realistic simulation model for AF reflecting personal anatomy, fiber orientation, fibrosis, and 
electrophysiology using a bipolar electrogram-generated map acquired during the AF ablation procedure. This 
high-performance model would enable a patient-specific virtual intervention or virtual drug therapy after further 
validation.
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