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Introduction: Prediction of disease progression at all stages of chronic kidney disease (CKD) may help

improve patient outcomes. As such, we aimed to develop and externally validate a random forest model to

predict progression of CKD using demographics and laboratory data.

Methods: The model was developed in a population-based cohort from Manitoba, Canada, between April

1, 2006, and December 31, 2016, with external validation in Alberta, Canada. A total of 77,196 individuals

with an estimated glomerular filtration rate (eGFR) > 10 ml/min per 1.73 m2 and a urine albumin-to-

creatinine ratio (ACR) available were included from Manitoba and 107,097 from Alberta. We considered

>80 laboratory features, including analytes from complete blood cell counts, chemistry panels, liver en-

zymes, urine analysis, and quantification of urine albumin and protein. The primary outcome in our study

was a 40% decline in eGFR or kidney failure. We assessed model discrimination using the area under the

receiver operating characteristic curve (AUC) and calibration using plots of observed and predicted risks.

Results: The final model achieved an AUC of 0.88 (95% CI 0.87–0.89) at 2 years and 0.84 (0.83–0.85) at 5

years in internal testing. Discrimination and calibration were preserved in the external validation data set

with AUC scores of 0.87 (0.86–0.88) at 2 years and 0.84 (0.84–0.86) at 5 years. The top 30% of individuals

predicted as high risk and intermediate risk represent 87% of CKD progression events in 2 years and 77%

of progression events in 5 years.

Conclusion: A machine learning model that leverages routinely collected laboratory data can predict eGFR

decline or kidney failure with accuracy.
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CKD
currently affects >850 million adults
worldwide and is associated with

increased morbidity and mortality and high health care
costs.1 Although only a few patients with CKD will
develop kidney failure, much of the excess morbidity
and costs associated with CKD are driven by in-
dividuals who progress to more advanced stages of
CKD before reaching organ failure requiring dialysis.2

Accurate prediction of individual risk of CKD pro-
gression could improve patient experiences and
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outcomes through knowledge sharing and shared
decision-making with patients,3 enhance care by better
matching the risks and harms of therapy to the risk of
disease progression,4 and through improved health
system efficiency resulting from better alignment be-
tween resource allocation and individual risk.

The Kidney Failure Risk Equation is an interna-
tionally validated risk predictieon equation that accu-
rately predicts the risk of progression to kidney failure
for an individual patient with CKD. However, this
equation has important limitations in that it applies
only to later stages of CKD (G3–G5) and considers only
the outcome of kidney failure requiring dialysis. In
earlier stages of CKD, kidney failure is a rare event,
even if progression to a more advanced stage is not. In
these early stages, a decline in GFR of 40% is both
Kidney International Reports (2022) 7, 1772–1781
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clinically meaningful to patients and physicians and
allows sponsors to design feasible randomized
controlled trials at all stages of CKD.5 In addition, new
disease-modifying therapies for CKD that slow pro-
gression are available, but they have been largely
studied in patients with preserved kidney function.6

The optimal use of these therapies is in high-risk in-
dividuals with early stages of CKD where the benefit
for dialysis prevention is large and cost-effectiveness
may be optimal.7

Accurate models to predict a 40% decline in eGFR or
the composite outcome of kidney failure or 40%
decline in eGFR that can be applied to patients at all
stages of CKD (G1–G5) are needed. When these models
are based on laboratory data, they can be used through
electronic health records or laboratory information
systems, and are not subject to variability in coding,
often found with CKD and its complications. We pre-
sent here the derivation and external validation of new
laboratory-based machine learning prediction models
that accurately predict 40% decline in eGFR or kidney
failure in patients with CKD G1 to G5.

METHODS

Study Population
Development Cohort

The development cohort was derived from adminis-
trative data in Manitoba, Canada (population 1.4
million), using data from the Manitoba Centre for
Health Policy. The Manitoba Centre for Health Policy is
a research unit within the Department of Community
Health Sciences at the University of Manitoba that
maintains a population-based repository of data on
health services and other social determinants of health
covering all individuals in the province. We identified
all adult (age 18þ years) individuals in the province
with an available outpatient eGFR test between April 1,
2006, and December 31, 2016, with valid Manitoba
Health registration for at least 1-year preindex. eGFR
was calculated from available serum creatinine tests
using the CKD-Epidemiology Collaboration equation.8

Included patients were further required to have com-
plete demographic information on age and sex,
including the result of at least 1 urine ACR or protein-
to-creatinine ratio (PCR) test. Patients with a history of
kidney failure (dialysis or transplant) were excluded.

Validation Cohort

The validation cohort was derived from the Alberta
Health database. This database contains information on
demographic data, laboratory data, hospitalizations,
and physician claims for all patients in the province of
Alberta, Canada (population 4.4 million). Regular lab-
oratory coverage for creatinine measurements and
Kidney International Reports (2022) 7, 1772–1781
ACR/PCR values is complete from 2005; however,
additional laboratory values are fully covered only
from 2009 onward. As such, we identified a cohort of
individuals with at least 1 calculable eGFR, valid health
registration, and an ACR (or imputed PCRs) value
starting from April 1, 2009, to December 31, 2016. We
randomly sampled one-third of the external cohort to
perform the final analysis to reduce computation time.
Patients with a history of kidney failure (dialysis or
transplant) were excluded.

This study was reviewed and approved by the
institutional ethics review board at the Universities of
Manitoba (Health Research Ethics Board—Ethics
#HS21776:H2018:179) Alberta (Pro00053469), and Cal-
gary (REB16-1575). Informed consent was not required
as all data were provided deidentified using a scram-
bled personal health information number.
Variables
Independent Variables

All models included age, sex, eGFR, and urine ACR as
described previously. Baseline eGFR was calculated as
the average of all available outpatient eGFR results
beginning with the first recorded eGFR during the
study period and moving forward to the last available
test in a 6-month window and calculating the mean of
tests during this period. The index date of the patient
was considered the date of the final eGFR in this 6-
month period.9 Age was determined as the date of
the index eGFR, and sex was determined using a
linkage to the Manitoba Health Insurance Registry
which contained dates of birth and other demographic
data. If a urine ACR test was unavailable, we converted
available urine PCR tests to corresponding urine ACRs
using published and validated equations.10 The closest
result within 1 year before or after the index date was
selected. Urine ACR was log transformed to handle the
skewed distribution as in previous studies.

In addition to the previously described variables, we
also evaluated the utility of additional laboratory re-
sults from chemistry panels, liver enzymes, and com-
plete blood cell count panels for inclusion in the
random forest model based on associations found in
previous studies of models predicting CKD progres-
sion.11–13 The closest value within 1 year of the index
date was selected (before or after) for inclusion.
Distributional transformations were applied when
needed. The final random forest model included eGFR,
urine ACR, and an additional 18 laboratory results. An
overview of the degree of missingness for the labora-
tory panels is provided in Supplementary Table S1.
The random forest models applied imputations for
missing data using the method of Ishwaran et al.14
1773
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All laboratory data included were extracted from the
Shared Health Diagnostic Services of Manitoba Labo-
ratory Information System, and any values recorded
during a hospitalization event as determined by a
linkage to the Discharge Abstract Database were not
included (inpatient tests). For the validation cohort,
Alberta Health laboratory data were extracted from the
Alberta Kidney Disease Network. Of the 18 laboratory
tests used in the Manitoba model, 16 were also regu-
larly collected by the Alberta Kidney Disease Network.
The unavailable tests (aspartate aminotransferase and
gamma glutamyl transferase) were treated as missing
data.

Dependent Variable—Development Cohort

The primary outcome in our study was a 40% decline
in eGFR or kidney failure. The 40% decline in eGFR
was determined as the first eGFR test in the laboratory
data that was 40% or greater in decline from the
baseline eGFR, requiring a second confirmatory test
result between 90 days and 2 years after the first test
unless the patient dies or experiences kidney failure
within 90 days after the first test result revealing a 40%
or greater decline. Therefore, a patient experiencing a
single eGFR representing a 40% decline and dying
within 90 days is treated as an event, or if they expe-
rience kidney failure in that period.15 Kidney failure
was defined as initiation of chronic dialysis, receipt of a
transplant, or an eGFR <10 ml/min per 1.73 m2. Dial-
ysis was defined as any 2 claims in the Manitoba
Medical Services database for chronic dialysis, and
transplant was defined as any 1 claim in the Manitoba
Medical Services database for kidney transplant or a
hospitalization in the Discharge Abstract Database with
a corresponding procedure code for kidney trans-
plantation (1PC85 or 1OK85 using the Canadian Clas-
sification of Health Interventions codes or International
Classification of Diseases, Ninth Revision, procedure
code 55.6). An overview of tariff codes identifying
dialysis and transplant is provided in Supplementary
Table S2. The outcome date for the 40% decline in
eGFR or kidney failure was determined based on the
first of these events.6 Patients were followed until
reaching the above-mentioned composite end point,
death (as determined by a linkage to the Manitoba
Health Insurance Registry), a maximum of 5 years, or
loss to follow-up.

Dependent Variable—Validation Cohort

Using laboratory creatinine measurements as described
for the Manitoba cohort described previously, 40%
decline in eGFR was identified. Kidney failure was
defined similarly, but with minor adaptations necessi-
tated by a structurally different administrative data set
(Supplementary Table S2). Chronic dialysis and kidney
1774
transplants were identified using the Northern and
Southern Alberta Renal Program databases, a provin-
cial registry of renal replacement—any single code for
hemodialysis, peritoneal dialysis, or transplant was
used. (Note: Because the registry begins in 2001,
physician claims data were also used when excluding
individuals with prior transplants or dialysis). We
linked these data sources to the provincial laboratory
repository by unique, encoded, patient identifiers.

Statistical Analysis

Baseline characteristics for the development (internal
training and testing) and external validation cohorts
were summarized with descriptive statistics. We
developed a random forest model using the R package
Fast Unified Random Forest for Survival, Regression,
and Classification using a survival forest with right-
censored data.16 Data were split into training (70%)
and testing (30%) data sets with a single split and then
validated in an external cohort. Models were evaluated
for accuracy using the area under the receiver oper-
ating characteristic curve, the Brier score, and cali-
bration plots of observed versus predicted risk. Area
under the receiver operating characteristic curve and
Brier scores were assessed for prediction of the outcome
at 1 to 5 years, in 1-year intervals, and calibration plots
were evaluated at 2 and 5 years. Model hyper-
parameters were optimized using the tune.rfsrc func-
tion using comparisons of the maximal size of the
terminal node and the number of variables to possibly
split at each node to the out-of-bag error rate from the
Random Forest for Survival, Regression, and Classifi-
cation package.16

In addition, we assessed sensitivity, specificity,
negative predictive value (NPV), and positive predic-
tive value (PPV) for the top 10%, 15%, and 20% of
patients at highest estimated risk (high risk), including
for the bottom 50%, 45%, and 30% at lowest risk (low
risk). These metrics were assessed at 2 and 5 years. A
visualization of the risk of progression versus predicted
probability was plotted for 2 and 5 years. Using the
final grown 22-variable forest, variable importance of
included parameters was evaluated, with results for the
5 most influential variables presented.17

To evaluate robustness, we evaluated the model in
subpopulations of the testing and validation cohorts for
the 5-year prediction of the primary outcome defined
by CKD stage and the presence or absence of diabetes.

Sensitivity Analyses

For sensitivity analyses, we considered 2 comparator
models. (i) We evaluated a Cox proportional hazards
model using a guideline-based definition of risk using
the 3-level definition of albuminuria and 5 stages of
Kidney International Reports (2022) 7, 1772–1781



Table 1. Baseline characteristics of development and validation
cohorts

Clinical characteristics

Training
(Manitoba)
n [ 54,037

Internal testing
(Manitoba)
n [ 23,159

External validation
(Alberta)

n [ 107,097

Age 59.3 (17) 59.3 (17.1) 55.5 (16.2)

Male sex 25,829 (48%) 11,017 (48%) 57,168 (53%)

eGFR 82.2 (27.1) 82.2 (27.3) 86.0 (22.4)

Urine ACR (mg/mmol) 1.1 (0.5–4.7) 1.1 (0.5–4.7) 0.8 (0.4–2.2)

Comorbid conditions

Diabetes 24,460 (45%) 10,428 (45%) 43,504 (41%)

Hypertension 37,701 (70%) 16,275 (70%) 54,637 (51%)

Congestive heart failure 2840 (5%) 1187 (5%) 5808 (5%)

Prior stroke 1937 (4%) 832 (4%) 5590 (5%)

MI 1380 (3%) 608 (3%) 6382 (6%)

Laboratory characteristics

Urea (mmol/l) 6.6 (4.0) 6.6 (4.1) 6.8 (3.9)

Serum hemoglobin (g/l) 134 (19) 133 (19) 143 (16)

Glucose (mmol/l) 7.9 (4.1) 7.9 (4.1) 7.4 (4.1)

Serum albumin (g/l) 37 (6) 37 (6) 41 (4)

Events (5 yr)

40% decline 3965 (7.3%) 1658 (7.2%) 5106 (4.8%)

Kidney failure 246 (0.5%) 102 (0.4%) 367 (0.3%)

Composite 4211 (7.8%) 1760 (7.6%) 5473 (5.1%)

ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; MI, myocardial
infarction.
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eGFR as categorical predictors as a comparator (heat-
map model).18 (ii) We evaluated a Cox proportional
hazards model including the variables eGFR, urine
ACR, diabetes, hypertension, stroke, myocardial
infarction, age, and sex (clinical model). In addition, we
evaluated the model in the external validation cohort
where laboratory values were only included 1 year
before the index date.

Analysis was performed using R Version 4.1.0. Sta-
tistical significance was a priori identified using an
a ¼ 0.05.

RESULTS

Cohort Selection

For the development cohort (training and testing), we
had a total sample size of 77,196, allocating 54,037 to
the training data set (70%) and 23,159 to the testing
data set. A total of 321,396 individuals were identified
in the validation cohort, with a random subset of
107,097 selected for evaluation. Detailed overview of
the cohort selection process for both the development
and validation cohorts is provided in Supplementary
Figure S1.

Cohort Description

The mean age of the development cohort was 59.3
years, with a mean eGFR of 82.2 ml/min per 1.73 m2

and median urine ACR of 1.1 mg/mmol. Of the patients,
48% were male, 45% had diabetes, 70% had hyper-
tension, 5% had a history of congestive heart failure,
4% a prior stroke, and 3% a prior myocardial infarc-
tion (similar between the testing and training cohorts).
The validation cohort was slightly younger, with a
mean age of 55.5 years, mean eGFR of 86.0 ml/min per
1.73 m2, and median ACR of 0.8 mg/mmol. The vali-
dation cohort had a higher proportion of male patients
(53%), 41% of patients had diabetes, 51% hyperten-
sion, 5% a history of congestive heart failure, 5% a
prior stroke, and 5% a prior myocardial infarction. An
overview of baseline descriptive statistics is provided
in Table 1.

Model Performance in Internal Testing Cohort

In the random forest model with 22 variables, when
evaluated in the testing cohort, we found an AUC of
0.90 (0.89–0.92) for 1-year prediction of the primary
outcome and 0.84 (0.83–0.85) for 5-year prediction. The
Brier score was 0.02 (0.01–0.02) for 1-year prediction of
the primary outcome and 0.07 (0.06–0.09) for 5-year
prediction. AUCs and Brier scores for years 1 to 5 are
presented in Table 2. AUC and Brier score were similar
in the predefined subgroups (Supplementary Table S3).

We observed excellent calibration at both 2 and 5
years (Figures 1a) in both the internal and external
Kidney International Reports (2022) 7, 1772–1781
testing cohorts. In addition, a relationship between
occurrence of the primary outcome event was observed
to increase with increasing predicted probability
generated by the random forest algorithm (Figures 2a).

We evaluated statistics on sensitivity, specificity,
and PPV in high-risk patients (top 10%, 15%, and
20% of risk scores, respectively). For prediction of the
primary outcome at 2 years, we found that patients in
the top decile (14% 2-year risk threshold) had a
sensitivity of 58%, a specificity of 92%, and a PPV of
25%. Similarly, for the top 15% of patients (10% 2-
year risk threshold), we found a sensitivity of 69%,
specificity of 87%, and PPV of 20%. For the top 20%
of patients (7% 2-year risk threshold) sensitivity was
76%, specificity was 83%, and PPV was 16%. Using a
30% threshold to identify high- and intermediate-risk
patients, we would have identified 87% of in-
dividuals with an event in 2 years and 77% within 5
years.

In the low-risk patients, we found that the bottom
50% of patients (1.95% 2-year risk threshold) had a
sensitivity of 94%, specificity of 52%, and NPV of
>99%. For the lowest 45% of risk scores (1.61% 2-year
risk threshold), sensitivity was 95%, specificity was
47%, and NPV was >99%. Last, for the lowest 30% of
risk scores (0.85% 2-year risk threshold), we found a
sensitivity of 97%, a specificity of 31%, and an NPV
>99%. We also considered these statistics for the
prediction of the outcome at 5 years and found similar
accuracy (Table 3).
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Table 2. Results of the 22-variable random forest model in the internal testing and external validation cohorts for prediction of 40% decline in
eGFR or kidney failure

Time frame, yr

Internal testing cohort (Manitoba) n [ 23,159 External validation cohort (Alberta) n [ 107,097

AUC (95% CI) Brier score (95% CI) AUC (95% CI) Brier score (95% CI)

1 0.90 (0.89–0.92) 0.02 (0.01–0.02) 0.87 (0.86–0.89) 0.01 (0.01–0.01)

2 0.88 (0.87–0.89) 0.03 (0.03–0.04) 0.87 (0.86–0.88) 0.01 (0.01–0.01)

3 0.86 (0.85–0.87) 0.05 (0.04–0.06) 0.86 (0.85–0.86) 0.02 (0.02–0.02)

4 0.85 (0.84–0.86) 0.06 (0.05–0.07) 0.85 (0.84–0.86) 0.03 (0.03–0.03)

5 0.84 (0.83–0.85) 0.07 (0.06–0.09) 0.84 (0.84–0.85) 0.04 (0.04–0.04)

ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate.

CLINICAL RESEARCH T Ferguson et al.: Machine Learning Model for Progression of CKD
Urine ACR (including converted PCRs) was the most
influential variable in the random forest model, fol-
lowed by eGFR, urea, hemoglobin, age, serum albumin,
Figure 1. Calibration for the 22-variable random forest model for predictio
years. eGFR, estimated glomerular filtration rate.

1776
hematocrit, and glucose. An overview of model inputs
ranked by importance is detailed in Supplementary
Table S4.
n of 40% decline in eGFR or kidney failure at (a) 2 years and at (b) 5

Kidney International Reports (2022) 7, 1772–1781



Figure 2. Relationship between predicted risk from the random forest algorithm and the occurrence of the primary outcome (40% decline in
eGFR or kidney failure) at (a) 2 years and at (b) 5 years. eGFR, estimated glomerular filtration rate.

T Ferguson et al.: Machine Learning Model for Progression of CKD CLINICAL RESEARCH
Model Performance in External Validation

Performance was found to be similar when evaluated in
the external validation cohort with an AUC of 0.87
(0.86–0.89) for 1-year prediction declining to 0.84
(0.84–0.85) for 5-year prediction, with Brier scores of
0.01 (0.01–0.01) at 1 year and 0.04 (0.04–0.04) at 5 years
(Table 2). The external validation cohort had a lower
overall risk at both 2 years and 5 years, but we found
excellent calibration (Figure 1b) and a similar
Kidney International Reports (2022) 7, 1772–1781
association between rank of the risk score and proba-
bility of the composite outcome (Figure 2b). In addi-
tion, subgroup analyses in patients with and without
diabetes, CKD stages G1 to G3, and eGFR <60 ml/min
per 1.73 m2 had similar outcomes to the internal testing
cohort (Supplementary Table S3). Similar diagnostic
accuracy, evaluated with sensitivity, specificity, NPV,
and PPV, was observed in the external validation
cohort as that of the development cohort (Table 3).
1777



Table 3. Overview of model performance for the 22-variable random forest model

2 Yr
Threshold
Low risk

Internal testing cohort (n [ 23,159)
2 Yr

Predicted risk
Low risk

External validation cohort (n [ 107,097)

Population Sens Spec
NPV/PPV
NPV Population Sens Spec

NPV/PPV
NPV

0.85 Lowest 30 97 31 >99 0.84 Lowest 30 96 31 >99

1.61 Lowest 45 95 47 >99 1.31 Lowest 45 93 46 >99

1.95 Lowest 50 94 52 >99 1.51 Lowest 50 91 51 >99

High risk PPV High risk PPV

7 Top 20 76 83 16 4 Top 20 77 81 7

10 Top 15 69 87 20 4 Top 15 73 86 8

14 Top 10 58 92 25 6 Top 10 65 91 11

5 Yr
Internal testing cohort (n [ 23,159)

5 Yr
External validation cohort (n [ 107,097)

Threshold
Low risk Population Sens Spec

NPV/PPV
NPV

Predicted risk
Low risk Population Sens Spec

NPV/PPV
NPV

3.40 Lowest 30 97 32 99 3.33 Lowest 30 95 31 99

5.70 Lowest 45 93 48 99 4.61 Lowest 45 91 47 99

6.70 Lowest 50 91 53 99 5.11 Lowest 50 89 52 99

High risk PPV High risk PPV

19 Top 20 67 84 25 11 Top 20 69 83 18

24 Top 15 59 89 30 13 Top 15 61 88 21

31 Top 10 48 93 36 17 Top 10 50 92 26

NPV, negative predictive value; PPV, positive predictive value; Sens, sensitivity; Spec, specificity.
Data presented in percentage.
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Sensitivity Analyses

In the comparator analysis, the heatmap model per-
formed worse than the 22-variable random forest model
in the development cohort (C statistic 0.78 at 5 years vs.
0.84, Supplementary Table S5), as did the clinical
model (C statistic 0.81 at 5 years, P < 0.001,
Supplementary Table S6). When considering only
laboratory values in the 12 months preceding the index
date, the results of model evaluation for the random
forest model were unchanged (1-year AUC of 0.87,
0.86–0.88; 5-year AUC 0.84, 0.83–0.85).
DISCUSSION

In this retrospective cohort study of >177,000 in-
dividuals from a public health care system, we devel-
oped and externally evaluated laboratory-based
prediction models for the outcomes of kidney failure or
40% decline in eGFR. Our models are entirely based on
a single time point measure of routinely collected labo-
ratory data and predict the outcomes of interest (CKD
progression) with greater accuracy than current stan-
dard of care or commercially available models that test
for novel biomarkers and use machine learning
methods.19 Taken together, our novel model can be
implemented in clinical and research settings.

Previous investigators have developed prediction
models for the progression of CKD to kidney failure and
for intermediate outcomes that include incident CKD,
1778
rapid decline in kidney function, or 40% decline in
eGFR.19 Despite adequate sample sizes and evidence of
internal validity, most of these models have not been
externally validated nor translated into routine clinical
practice. In contrast, the Kidney Failure Risk Equations
developed in 2011,11 and internationally validated in
2016,20 have been translated into clinical practice
guidelines, electronic health records, and laboratory
information systems and are used to guide access to
nephrology referral, case management, and interdisci-
plinary care in many jurisdictions.21 Although the
Kidney Failure Risk Equations have similar accuracy to
the other published models, it is likely the usability/
simplicity of the equations and their reliance on labo-
ratory data have driven their adoption. With this in
mind, we sought to develop these new models for CKD
progression focusing primarily on laboratory data
sources and only adding demographic variables and
comorbid conditions if they meaningfully improved
discrimination or calibration.

Our machine models using a random forest seem to
perform better than a commercially available machine
learning model (RenalytixAI).19 Compared with the
RenalytixAI tool, our model has the advantage of
having had external validity in an independent popu-
lation and is therefore at lower risk for overfitting. This
step is particularly important for machine learning
models which, when derived in small data sets with
many predictors, tend to overfit the development
Kidney International Reports (2022) 7, 1772–1781
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population and often do not generalize well. Our
models require only easily mapped laboratory data,
which may make them easier to implement at scale than
models requiring multiple electronic health record
fields and data types, such as the RenalytixAI tool.
Finally, our test does not require the measurement of 3
novel biomarkers as does RenalytixAI, and therefore
can be performed in a routine laboratory setting or
using already collected laboratory data.

There are important clinical and research implications
of our proposed models: From a clinical perspective,
physicians can use our tool in the office to identify pa-
tientswho are early in their course of CKD (eGFR>60ml/
min per 1.73 m2), but at high risk of progression in the
next 5 years. Given the effect of interventions such as
SGLT2i on the slope of eGFR in this population, it is
possible that these patients may be able to forestall or
prevent the lifetime occurrence of kidney failure entirely
versus delaying the time to dialysis if the interventions
are implemented later in course of disease.22 In addition,
newer therapies such as finerenone may provide addi-
tional benefit for slowing CKD progression; however,
they have been largely studied in patients with pre-
served kidney function andmay be initially reserved for
intermediate and high risk subgroups to maximize
benefit while reducing the burden of cost and poly-
pharmacy.23 From a research perspective, several large
clinical trials have used 40% decline in eGFR or kidney
failure as the primary outcome, and validation of our
models in those trial data sets may help highlight risk
treatment interactions. For future trials that are
currently in planning or enrolment phases, the use of our
models may be helpful to enrich the trial population to
generate the appropriate number of outcomes in a
reasonable time frame.

Strengths of our analysis include external validation,
which is particularly important for machine learning
models as they can overfit small data sets that have many
predictor variables. In addition to this point, we found
that the model was able to externally validate with high
discrimination in a cohort that had totalmissingness for 2
variables. Additional strengths include novel research
methods that include random forest methodology on 2
well described data sets, findings from which have been
proven generalizable for multiple kidney outcomes and
interventions. A notable strength is the reliance only on
routinely collected laboratory data, enabling rapid
integration into electronic health records and laboratory
information systems.

There are also limitations to consider. First, the
model was developed and validated in a Canadian
population and requires further validation in other
settings. Second, the model includes individuals with
urine protein quantification and requires further
Kidney International Reports (2022) 7, 1772–1781
validation in settings where this information may not
be available. Third, we currently lack an online
calculator or an electronic health record/laboratory
information system integration, which would help
broader adoption. Last, future research needs to be
conducted to consider the cost-effectiveness and effi-
cacy/safety of a model guided strategy to determine the
prescription of disease-modifying therapy.

In conclusion, we present new models that use
routinely collected laboratory data and predict CKD
progression (40% decline in eGFR or kidney failure)
with accuracy for all patients with CKD. These models
can have important clinical and research benefits and
should be further externally validated and imple-
mented in health care settings.
DISCLOSURE

NT reports receiving grants, personal fees, and other from

Tricida Inc.; grants and personal fees from Astra Zeneca

Inc., Janssen, and Bayer; personal fees from Otsuka Inc.,

Boehringer Ingelheim/Eli Lilly, and Roche; other from

PulseData and Mesentech; personal fees and other from

Renibus, outside the submitted work; serving as the

founder of Klinrisk and Clinpredict Inc., in which Klinrisk

develops models for CKD progression and Clinpredict

works on implementation of models in electronic health

records; serving as scientific advisor to PulseData Inc., in

which PulseData develops customized machine models

for adverse outcomes in kidney disease. TF reports

receiving personal fees from Strategic Health Resources,

Quanta Dialysis Technologies Ltd., and Baxter Canada

outside the submitted work; and personal fees from

Clinpredict Inc. MMS received speaker’s fees from

AstraZeneca outside the submitted work. PK reports

receiving personal fees and other from Quanta Dialysis

Technologies Ltd. outside the submitted work. CR reports

receiving personal fees from Otsuka and Bayer and

personal fees and other from Health Logic Interactive

outside the submitted work.

ACKNOWLEDGMENTS

The authors acknowledge the Manitoba Centre for Health

Policy for use of data contained in the Manitoba Population

Research Data Repository under (HIPC #2018/2019-12). The

results and conclusions are those of the authors, and no

official endorsement by the Manitoba Centre for Health

Policy, Manitoba Health, or other data providers is inten-

ded or should be inferred. Data used in this study are from

the Manitoba Population Research Data Repository

housed at the Manitoba Centre for Health Policy, Univer-

sity of Manitoba, and were derived from data provided by

Manitoba Health. This study is based in part on data pro-

vided by Alberta Health and Alberta Health Services. The
1779



CLINICAL RESEARCH T Ferguson et al.: Machine Learning Model for Progression of CKD
interpretation and conclusions contained herein are those

of the researchers and do not represent the views of the

Government of Alberta or Alberta Health Services. Neither

the Government of Alberta, Alberta Health, nor Alberta

Health Services express any opinion in relation to this

study. PR holds Canadian Institutes for Health Research

funding (FRN 173359) to support studies in chronic kidney

disease. PR is supported by the Roy and Vi Baay Chair in

Kidney Disease. NT and MMS are supported by operating

grants or foundation awards from the Canadian Institutes

for Health Research. The funding organizations had no role

in the design and conduct of the study; in the collection,

analysis, and interpretation of the data; or in the prepara-

tion, review, or approval of the manuscript.

Data Sharing

This study used data collected by Manitoba Health and

Alberta Health, which are funded by the respective

provincial health ministries. The data set for this study is

held securely in coded form at the Manitoba Centre for

Health Policy and at Alberta Health. Data-sharing agree-

ments prohibit Manitoba Health and Alberta Health from

making the data sets publicly available, access may be

granted to those who meet prespecified criteria for confi-

dential access. The data set creation plan is available from

the authors on request. The data sets for this study were

prepared with custom code from Manitoba Health and

Alberta Health using SAS Version 9.4 (Cary, NC). These

data were later analyzed with custom code using the R

programming language. The packages used are publicly

available.
AUTHOR CONTRIBUTIONS

NT and TF had full access to all the data in the study and

take responsibility for the integrity of the data and the ac-

curacy of the data analyses. Concept and design: NT.

External model testing: PR and AC. Acquisition, analysis,

or interpretation of data: All authors. Drafting of the

manuscript: All authors. Critical revision of the manuscript

for important intellectual content: All authors. Obtained

funding, provided administrative, technical, or material

support, and supervision: NT.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

Figure S1. Overview of cohort selection.

Table S1. Overview of variable missingness in internal

testing and external validation cohorts.

Table S2. Definition of dialysis and transplantation. NARP,

Northern Alberta Renal Health Program; SARP, Southern

Alberta Renal Health Program; CCP, Canadian

Classification of Diagnostic, Therapeutic, and Surgical

Procedures; AHIP, Alberta Health Care Insurance Plan.
1780
Table S3. Results of subgroup analyses for prediction of

40% decline in eGFR or kidney failure at 5 years.

Table S4. Overview of variable importance by random

branch assignment for the 8 most influential parameters

in the random forest model.

Table S5. Results of guideline-based model (heatmap

model).

Table S6. Results of clinical model.
REFERENCES

1. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic

kidney disease in the United States. J Am Med Assoc.

2007;298:2038–2047. https://doi.org/10.1001/jama.298.17.2038

2. Golestaneh L, Alvarez PJ, Reaven NL, et al. All-cause costs

increase exponentially with increased chronic kidney disease

stage. Am J Manag Care. 2017;23(suppl):S163–S172.

3. Smekal MD, Tam-Tham H, Finlay J, et al. Patient and provider

experience and perspectives of a risk-based approach to

multidisciplinary chronic kidney disease care: a mixed

methods study. BMC Nephrol. 2019;20:110. https://doi.org/10.

1186/s12882-019-1269-2

4. Nelson J, Kent DM, Dahabreh IJ, et al. Risk and treatment

effect heterogeneity: re-analysis of individual participant data

from 32 large clinical trials. Int J Epidemiol. 2016;45:2075–

2088. https://doi.org/10.1093/ije/dyw118

5. Inker LA, Lambers Heerspink HJ, Mondal H, et al. GFR decline

as an alternative end point to kidney failure in clinical trials: a

meta-analysis of treatment effects from 37 randomized trials.

Am J Kidney Dis. 2014;64:848–859. https://doi.org/10.1053/j.

ajkd.2014.08.017

6. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on

chronic kidney disease outcomes in type 2 diabetes. N Engl J

Med. 2020;383:2219–2229. https://doi.org/10.1056/nejmoa20

25845

7. Komenda P, Ferguson TW, Macdonald K, et al. Cost-effec-

tiveness of primary screening for CKD: a systematic review.

Am J Kidney Dis. 2014;63:789–797. https://doi.org/10.1053/j.

ajkd.2013.12.012

8. Levey AS, Stevens LA, Schmid CH, et al. A new equation to

estimate glomerular filtration rate. Ann Intern Med. 2009;150:

604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-

00006

9. Hemmelgarn BR, Clement F, Manns BJ, et al. Overview of the

Alberta Kidney Disease Network. BMC Nephrol. 2009;10:30.

https://doi.org/10.1186/1471-2369-10-30

10. Weaver RG, James MT, Ravani P, et al. Estimating urine

albumin-to-creatinine ratio from protein-to-creatinine ratio:

development of equations using same-day measurements.

J Am Soc Nephrol. 2020;31:591–601. https://doi.org/10.1681/

ASN.2019060605

11. Tangri N, Stevens LA, Griffith J, et al. A predictive model for

progression of chronic kidney disease to kidney failure. JAMA.

2011;305:1553–1559. https://doi.org/10.1001/jama.2011.451

12. Chang HL, Wu CC, Lee SP, Chen YK, Su W, Su SL.

A predictive model for progression of CKD. Medicine (Balti-

more). 2019;98:e16186. https://doi.org/10.1097/MD.000000000

0016186
Kidney International Reports (2022) 7, 1772–1781

https://doi.org/10.1016/j.ekir.2022.05.004
https://doi.org/10.1001/jama.298.17.2038
http://refhub.elsevier.com/S2468-0249(22)01379-1/sref2
http://refhub.elsevier.com/S2468-0249(22)01379-1/sref2
http://refhub.elsevier.com/S2468-0249(22)01379-1/sref2
https://doi.org/10.1186/s12882-019-1269-2
https://doi.org/10.1186/s12882-019-1269-2
https://doi.org/10.1093/ije/dyw118
https://doi.org/10.1053/j.ajkd.2014.08.017
https://doi.org/10.1053/j.ajkd.2014.08.017
https://doi.org/10.1056/nejmoa2025845
https://doi.org/10.1056/nejmoa2025845
https://doi.org/10.1053/j.ajkd.2013.12.012
https://doi.org/10.1053/j.ajkd.2013.12.012
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.1186/1471-2369-10-30
https://doi.org/10.1681/ASN.2019060605
https://doi.org/10.1681/ASN.2019060605
https://doi.org/10.1001/jama.2011.451
https://doi.org/10.1097/MD.0000000000016186
https://doi.org/10.1097/MD.0000000000016186


T Ferguson et al.: Machine Learning Model for Progression of CKD CLINICAL RESEARCH
13. Zacharias HU, Altenbuchinger M, Schultheiss UT, et al.

A predictive model for progression of CKD to kidney failure

based on routine laboratory tests. Am J Kidney Dis. 2022;79:

217–230.e1. https://doi.org/10.1053/j.ajkd.2021.05.018

14. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random

survival forests. Ann Appl Stat. 2008;2:841–860. https://doi.

org/10.1214/08-AOAS169

15. Nelson RG, Grams ME, Ballew SH, et al. Development of risk

prediction equations for incident chronic kidney disease. JAMA.

2019;322:2104–2114. https://doi.org/10.1001/jama.2019.17379

16. Ishwaran H, Kogalur UB. RandomForestSRC. Random forests

for survival, regression and classification (RF-SRC). Published

July 6, 2022. Accessed July 20, 2022. https://cran.r-project.

org/web/packages/randomForestSRC/randomForestSRC.pdf

17. Ishwaran H. Variable importance in binary regression trees

and forests. Electron J Statist. 2007;1:519–537. https://doi.org/

10.1214/07-EJS039

18. Levey AS, De Jong PE, Coresh J, et al. The definition, clas-

sification, and prognosis of chronic kidney disease: a KDIGO

Controversies Conference report. Kidney Int. 2011;80:17–28.

https://doi.org/10.1038/ki.2010.483
Kidney International Reports (2022) 7, 1772–1781
19. Chan L, Nadkarni GN, Fleming F, et al. Derivation and vali-

dation of a machine learning risk score using biomarker and

electronic patient data to predict rapid progression of diabetic

kidney disease. Diabetologia. 2021;64:1504–1515. https://doi.

org/10.1007/s00125-021-05444-0

20. Tangri N, Grams ME, Levey AS, et al. Multinational assess-

ment of accuracy of equations for predicting risk of kidney

failure a meta-analysis. JAMA. 2016;315:164–174. https://doi.

org/10.1001/jama.2015.18202

21. Hingwala J, Wojciechowski P, Hiebert B, et al. Risk-based

triage for nephrology referrals using the kidney failure risk

equation. Can J Kidney Heal Dis. 2017;4:2054358117722782.

https://doi.org/10.1177/2054358117722782

22. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal

outcomes in type 2 diabetes and nephropathy. N Engl J Med.

2019;380:2295–2306. https://doi.org/10.1056/nejmoa1811744

23. Bakris GL, Agarwal R, Anker SD, et al. Design and baseline

characteristics of the finerenone in reducing kidney failure

and disease progression in diabetic kidney disease trial. Am

J Nephrol. 2019;50:333–344. https://doi.org/10.1159/00050

3713
1781

https://doi.org/10.1053/j.ajkd.2021.05.018
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1001/jama.2019.17379
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
https://doi.org/10.1214/07-EJS039
https://doi.org/10.1214/07-EJS039
https://doi.org/10.1038/ki.2010.483
https://doi.org/10.1007/s00125-021-05444-0
https://doi.org/10.1007/s00125-021-05444-0
https://doi.org/10.1001/jama.2015.18202
https://doi.org/10.1001/jama.2015.18202
https://doi.org/10.1177/2054358117722782
https://doi.org/10.1056/nejmoa1811744
https://doi.org/10.1159/000503713
https://doi.org/10.1159/000503713

	Development and External Validation of a Machine Learning Model for Progression of CKD
	Methods
	Study Population
	Development Cohort
	Validation Cohort

	Variables
	Independent Variables
	Dependent Variable—Development Cohort
	Dependent Variable—Validation Cohort

	Statistical Analysis
	Sensitivity Analyses

	Results
	Cohort Selection
	Cohort Description
	Model Performance in Internal Testing Cohort
	Model Performance in External Validation
	Sensitivity Analyses

	Discussion
	Disclosure
	Acknowledgments
	Data Sharing
	Author Contributions
	Supplementary Material
	References


