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The clinical course of autoimmune and infectious disease varies greatly even between 

individuals with the same condition. An understanding of the molecular basis for this 

heterogeneity could lead to significant improvements in both monitoring and treatment. 

During chronic infection the process of T cell exhaustion inhibits the immune response, 

facilitating viral persistence1. We show that a transcriptional signature reflecting CD8 T cell 

exhaustion is associated with poor clearance of chronic viral infection, but conversely 

predicts better prognosis in multiple autoimmune diseases. The development of CD8 T cell 

exhaustion during chronic infection is driven by both persistence of antigen and a lack of 

accessory ‘help’ signals. In autoimmunity, we found that where evidence of CD4 T cell 

costimulation was pronounced, that of CD8 T cell exhaustion was reduced. We could 

reproduce the exhaustion signature by modifying the balance of persistent TCR stimulation 

and specific CD2-induced costimulation provided to human CD8 T cells in vitro, suggesting 

that each process plays a role in dictating outcome in autoimmune disease. The “non-

exhausted” T cell state driven by CD2-induced costimulation was reduced by signals 

through the exhaustion-associated inhibitory receptor PD-1, suggesting that induction of 

exhaustion may be a therapeutic strategy in autoimmune and inflammatory disease. Using 

expression of optimal surrogate markers of costimulation/exhaustion signatures in 

independent datasets, we confirmed an association with good clinical outcome or response 

to therapy in infection (hepatitis C virus (HCV)), and vaccination (yellow fever, malaria, 

influenza) but poor outcome in autoimmune and inflammatory disease (type 1 diabetes 

(T1D), anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), systemic 

lupus erythematosus (SLE), idiopathic pulmonary fibrosis (IPF) and dengue hemorrhagic 
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fever (DHF)). Thus, T cell exhaustion plays a central role in determining outcome in 

autoimmune disease and targeted manipulation of this process could lead to new therapeutic 

opportunities.

In a complex set of data such as the transcriptome, similar measurements may be grouped 

together by network analysis to form discrete modules that can highlight novel pathways 

contributing to the pathogenesis of complex diseases. We have previously shown that a CD8 

T cell transcriptional signature in patients with multiple immune-mediated diseases can 

predict a subsequent relapsing disease2,3. However, the biology underlying this observation 

was not clear. We therefore applied weighted gene co-expression network analysis 

(Extended Data Fig. 1)3 to the transcriptomes of purified CD4 and CD8 T cells isolated from 

a prospective cohort of 44 AAV patients with active, untreated disease7 (Supplementary 

Table 1) to further explore the mechanisms driving relapsing autoimmunity. Modules of 

genes (Fig. 1A, rows) were summarized as ‘eigengene’ profiles (Fig. 1B, F) that were 

correlated with clinical variables (Fig. 1A, I, columns) and visualized in the form of a 

heatmap (Fig. 1A, I). Modules derived from both CD8 (Fig. 1A-D) and CD4 (Fig. 1 F-I) T 

cell transcriptomes showed strong correlation with disease outcome but not activity, and 

were co- correlated (Fig. 1E) despite being mutually exclusive (Supplementary Table 2). A 

similar analysis using a cohort of 23 SLE patients also presenting with active, untreated 

disease (Supplementary Data Table 3)2 identified analogous CD8 and CD4 T cell expression 

modules (Extended Data Fig. 2) that again correlated with clinical outcome but not disease 

activity. By contrast a type 1 interferon response signature was associated with disease 

activity but not with long-term outcome (Extended Data Fig. 2F), consistent with previous 

reports4.

Next, we reasoned that genes within co-correlated modules in related cell types might 

inform the biology of relapsing disease. By selecting CD4 T cell modules showing 

significant, strong correlation with relapse rate and performing network enrichment analysis 

we identified a module corresponding to CD4 T cell costimulation (Extended Data Figs. 1F, 

G, 3A, Supplementary Tables 2, 4). By way of validation we repeated this analysis using an 

independent co-expression network algorithm that similarly demonstrated association 

between a CD4 costimulation module and clinical outcome (Supplementary Table 5). The 

independent association of modular signatures with clinical outcome (Fig. 1A, I) was 

confirmed using multiple linear regression modeling (Extended Data Fig. 3B-E) and was 

only apparent during active disease (Extended Data Fig. 3F, Extended Discussion). During 

chronic viral infection CD8 T cell memory responses are exquisitely dependent on CD4 T 

cell costimulation5,6 which can lead to the resolution of chronic infection in both mice1 and 

humans7. When antigen persists in the absence of costimulation CD8 T cells become 

‘exhausted’1, a phenotype characterized by progressive loss of effector function, persistent 

high expression of inhibitory receptors and profound changes in gene expression, distinct 

from those seen in effector, memory or anergic T cells8. Although mice lacking inhibitory 

receptors have an increased incidence and severity of autoimmunity9,10 a specific role for 

exhaustion in dictating the outcome of autoimmune responses has not been demonstrated.

We hypothesized that CD4 T cell signals may be important in limiting exhaustion towards 

persistent self-antigen during autoreactive immunity, analogous to responses during 
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persistent infection. We therefore used Gene Set Enrichment Analysis (GSEA11) to test for 

altered expression of transcriptional signatures reflecting T cell exhaustion (and other T cell-

related phenotypes) between patient subgroups defined by the CD8 modular analysis, who 

go on to develop relapsing or quiescent autoimmunity (Fig2A). Using this approach, we 

observed that genes specifically downregulated in exhausted CD8 T cells during chronic 

murine LCMV infection (but not altered in memory, naïve or effector cells, Supplementary 

Table 68) were similarly downregulated in CD8 T cells from patients at low risk of 

subsequent relapse (Fig2B, Extended Data Figs. 3G-I, 4).

During chronic murine LCMV infection, T cell exhaustion is driven by coordinate 

upregulation of multiple coinhibitory receptors12 that signal synergistically to produce a 

state of generalized immunosuppression13. In autoimmunity, these receptors were not 

coordinately upregulated as a group. Instead patients with good prognosis from each disease 

were characterized by upregulation of a distinct subset of exhaustion-associated coinhibitory 

receptors (Fig2C). Although a divergence from the murine LCMV model, T cell exhaustion 

accompanied by expression of a limited subset of coinhibitory receptors is similar to that 

described in intratumoral CD8 T cells14 which are a target for checkpoint therapy (Extended 

Data Fig.4I)15,16.

To confirm whether exhaustion was associated with clinical outcome, we used the murine 

CD8 T cell exhaustion signature (Supplementary Table 68) to perform unsupervized 

hierarchical clustering of three independent cohorts of patients with distinct diseases (AAV, 

Fig2. D-F; SLE, Fig.2 G-I; IBD, Fig. 2 J-L). In each case this identified a subgroup of 

patients with both early (Fig. 2E, H, K) and recurrent (Fig. 2F, I, L) relapses. Whereas CD8 

exhaustion was associated with poor outcome in viral infection, in every case it predicted 

favorable prognosis in autoimmune and inflammatory disease (Fig.2D-L). Again, 

independent association with outcome was confirmed using multiple linear regression 

models (Extended Data Fig.3D, E). Together, these data demonstrate that a transcriptional 

signature of relative CD8 T cell exhaustion, similar to that determining outcome in chronic 

viral infection and cancer, is apparent during active, untreated disease in patients with 

favorable long-term outcome in multiple autoimmune and inflammatory diagnoses.

CD8 T cell exhaustion is characterized by high expression of coinhibitory receptors (such as 

PD-112) and low expression of nascent memory markers (such as IL7R17) and is promoted 

by both the persistence of antigen18 and a lack of accessory costimulation6. To understand 

signals driving exhaustion and outcome in autoimmunity, we attempted to recreate the 

outcome-associated transcriptional signatures using variable TCR signal duration and 

costimulation of primary human cells in vitro. We stimulated purified human CD8 T cells 

using a magnetic bead conjugated with antibodies targeting costimulatory molecules (Fig. 

3A) and measured expression of IL7R and PD-1 expression (Fig. 3B-I, Extended Data Fig. 

5A-G) as markers indicating an exhausted phenotype. Comparison between persistent (6 

days) and transient TCR stimulation (36 hours) showed that IL7R expression returned on a 

proportion of cells after several divisions when the TCR stimulus was removed (Fig. 3C) but 

failed to do so if it persisted (Fig. 3D, G). We then systematically tested whether 

costimulatory molecules, identified from the CD4 T cell network analysis described above 

(Fig.1I, Extended Data Figs. 3A, H-K), could overcome the effect of persistent TCR 
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stimulation during in vitro differentiation. We found that specific costimulation with anti-

CD2 (Fig. 3E, H), but not with other stimuli such as IFNα or anti-CD40, resulted in 

maintained IL7R expression, limited upregulation of PD-1 and enhanced cell survival (Fig. 

3E, Extended Data Fig. 5L-O).

While CD8 exhaustion is known to limit viral control during chronic infection, exhausted 

cells may be restored to useful function by blocking inhibitory signaling through PD-119. 

Enhancing coinhibitory signals is therefore a logical therapeutic strategy in autoimmune 

disease, aiming to facilitate exhaustion despite high levels of costimulation that would 

otherwise be predicted to result in an aggressive relapsing disease course. To test this 

concept, primary human CD8 T cells were costimulated during persistent TCR signaling as 

above (Fig. 3E) in the presence or absence of a bead-bound Fc-chimeric version of the 

principal PD-1 ligand, PDL-1 (Fig. 3A, F). When added to CD2-costimulated CD8 T cell 

cultures, increased PD-1/PDL-1 signaling suppressed differentiation of a non-exhausted 

IL7Rhi subpopulation (Fig.3 F, H, I).

To define the phenotype of T cell exhaustion more robustly, as small numbers of surface 

markers are insufficient, we analyzed the transcriptome of CD8 T cells exposed to persistent 

stimulation with and without CD2 signaling (Supplementary Table 7). This CD2 response 

signature characterized exhausted cells but not effector or memory subsets (by GSEA, Fig. 

3J- L). Consistent with this, patient clusters generated using the CD2 response signature 

recreated subgroups similar to those generated using the murine LCMV CD8 exhaustion 

signature (Fig. 2D, G, J and Fig. 3M-O). Thus, CD2 signaling during persistent TCR 

stimulation of primary human CD8 T cells prevents the development of transcriptional 

changes characteristic of exhaustion, recreating transcriptional signatures associated with 

outcome in both viral infection and autoimmunity.

To confirm that the transcriptional signatures reflected the development of functional 

exhaustion in vitro, we showed that cells appearing exhausted by surface markers 

(IL7RloPD-1hi) also expressed markers of apoptotic resistance, characteristic cytokine 

patterns and showed diminished survival on restimulation (BCL2loIFNγloIL10hi, Extended 

Data Fig. 6A-E). There was no evidence of preferential accumulation of CD8 T cell subsets 

following CD2-induced costimulation (Extended Data Fig. 6F-H). These data highlight the 

importance of CD2 signaling in limiting the development of CD8 T cell exhaustion in the 

face of persistent TCR simulation, and provide a starting point for more sophisticated 

attempts to therapeutically exhaust an autoimmune response in a targeted fashion.

We next aimed to independently validate the association between the balance of CD4 

costimulation and CD8 exhaustion with clinical outcome using published datasets. The 

majority of these profile unseparated peripheral blood mononuclear cells (PBMC), in which 

T cell-intrinsic signatures are not readily apparent due to the confounding influence of 

expression from other cell types20. We therefore used a classification algorithm 

(randomforests) to identify optimal surrogate markers of costimulation/exhaustion modules 

in PBMC data from autoimmune patients taken concurrently with the T cells described 

above (Fig. 4A). As the CD8 exhaustion and CD4 costimulation signatures were themselves 

correlated (Extended Data Fig. 3G-I), it became easier to detect their combined signal in 
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PBMC using surrogate markers (Fig.4A, Extended Data Fig.7). The top-ranked candidate 

KAT2B is a transcriptional co-activator known to mediate an anti-apoptotic effect under 

conditions of metabolic stress52 and to increase cellular resistance to cytotoxic 

compounds53. These characteristics, along with its high expression in memory and T-

follicular helper and NK cells (Extended Data Fig. 8), suggest that it may mark the 

development of a durable, persistent T cell phenotype promoting long-lived responses in 

either infection or autoimmunity. The observed association was confirmed by both technical 

replication (using the same samples run on an independent array platform) and independent 

validation (Fig. 4B).

To test whether similar associations may be apparent in multiple infectious and autoimmune 

diseases we directly compared expression levels of KAT2B (and of the other top surrogate 

markers, Extended Data Fig. 9) between clinical subgroups defined within published studies 

for which PBMC expression and linked clinical outcome data were available. Where 

subgroups were not pre-specified, we compared clinical outcome in groups stratified as 

having either above or below-median expression of KAT2B (Fig. 4C-K). Hierarchical 

clustering using all top surrogate markers gave similar stratification to that seen using 

KAT2B alone, while as expected the separation of patient subgroups varied slightly in 

different clinical circumstances (Fig. 4 C-K, Extended Data Fig. 9).

Combined interferon and ribavirin therapy may result in increased virus-specific T cell 

responses in chronic HCV, although such eradication therapy is successful in only 50% of 

cases21 and in some cases no change in endogenous immune response is observed22. In a 

cohort of hepatitis C patients receiving combination therapy, KAT2B expression was 

progressively induced and showed significantly greater induction in patients ultimately 

responding to therapy (Fig. 4C, Extended Data Fig. 10A). In a clinical trial of malaria 

vaccination23 high KAT2B expression identified a subgroup with response rates of 78%, 

almost twice that seen in the low response group (Fig. 4D, Extended Data Fig. 10B-D). 

Moreover, response to vaccination for either influenza24 (Fig. 4E, Extended Data Fig. 10E-

F) or yellow fever25 (Fig. 4F) could be predicted by stratifying recipients based on their 

expression of KAT2B following vaccine exposure. Dengue viral infection can result in a 

wide range of clinical manifestations ranging from asymptomatic infection or self-limiting 

fever (uncomplicated dengue, UD) to hemorrhagic fever (DHF). Consistent with our 

observations in autoimmunity, we observed that KAT2B expression was elevated in patients 

developing the excessive inflammatory response of DHF (Fig. 4G)26.

We next asked whether surrogate detection of T cell costimulation/exhaustion modules 

could predict progression of other autoimmune diseases. Idiopathic pulmonary fibrosis (IPF) 

is a progressive interstitial lung disease characterized by both autoantibodies and 

autoreactive CD4 T cells27. In a cohort of 75 IPF patients28 high expression of KAT2B 

predicted subsequent progression to transplantation or death (Fig. 4H). We also observed 

that PBMC Kat2b expression was elevated in the murine NOD model of T1D29 with levels 

rising sharply during the T cell initiation phase, long before the onset of diabetic 

hyperglycemia (Extended Data Fig. 10G). In a cohort of samples taken prospectively from 

children at high risk of disease but prior to its onset30 expression of KAT2B was seen to 
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specifically and progressively rise (Fig. 4I-K) both in patients who progressed to T1D and in 

those who developed islet-cell autoantibodies.

We show that the balance between costimulatory and coinhibitory signals that shape T cell 

exhaustion coincide with opposite clinical outcomes during autoreactive and anti-viral 

immunity. This at once allows prediction of outcome during infection and autoimmunity and 

creates the potential for targeted therapeutic exhaustion of an autoimmune response in those 

predicted to follow an aggressive disease course. That this association is apparent in 

multiple autoimmune and inflammatory diseases emphasizes the importance of signals 

shaping T cell exhaustion in driving risk of relapse or recurrence (prognosis) rather than 

disease susceptibility (diagnosis) or immediate severity (disease activity), and suggests that 

targeted manipulation of these processes may lead to new treatment strategies that extend 

beyond the conditions discussed here.

Methods

Patients

Ethical approval—Ethical approval for this study was obtained from the Cambridge 

Local Research

Ethics Committee (REC reference numbers 04/023, 08/H0306/21,08/H0308/176) and 

informed consent was obtained from all subjects enrolled.

AAV patients

59 AAV patients attending or referred to the specialist vasculitis unit at Addenbrooke’s 

hospital, Cambridge, UK between July 2004 and May 2008 were enrolled into the present 

study. Active disease at presentation was defined by Birmingham vasculitis activity score 

(BVAS31) and the clinical impression that induction immunosuppression would be required. 

Prospective disease monitoring was undertaken monthly with serial BVAS disease scoring31 

and full biochemical, hematological and immunological profiling followed by treatment 

with an immunosuppressant and tapering dose steroid therapy (Supplementary Table 1). At 

each time-point of follow-up, disease activity was allocated into one of three categories 

defined as follows:

1. Flare (at least 1 major or 3 minor BVAS criteria),

2. low grade activity (0 major and 1-2 minor BVAS criteria),

3. no activity (0 major or minor BVAS criteria).

All disease flares were crosschecked against patient records to confirm clinical impression 

of disease activity and the need for intensified therapy as a result. Disease activity scoring 

was performed by a single investigator (EFM) who was blinded to gene expression data at 

the time of scoring. Additional flares were defined in the absence of BVAS scoring if 

patients attended for emergency investigation (bronchoscopy, or specialist ophthalmological 

or Ear/Nose/Throat surgical review) that confirmed evidence of active disease. To 

differentiate between discrete flares, clear improvement in disease activity was required in 

the form of an improvement in flare-related symptoms together with a reduction in BVAS 
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score, a reduction in markers of inflammation (CRP, ESR), and a reduction in 

immunosuppressive therapy.

SLE patients

The SLE cohort was composed of 23 patients attending or referred to the Addenbrooke’s 

Hospital specialist vasculitis unit between July 2004 and May 2008 meeting at least four 

ACR SLE criteria32, presenting with active disease (defined below) and in whom 

immunosuppressive therapy was to be commenced or increased. Following treatment with 

an immunosuppressant patients were followed up monthly. Disease monitoring was 

undertaken with serial BILAG disease scoring33 and full biochemical, hematological and 

immunological profiling (Supplementary Table 4).

A discrete disease flare required all three of the following prospectively defined criteria:

1. new BILAG score A or B in any system

2. clinical impression of active disease by the reviewing physician

3. the intention to increase in immunosuppressive therapy as a result.

Additional flares were defined in the absence of BILAG scoring if patients were admitted 

directly to hospital as emergency cases for increased immunosuppressive therapy. To 

differentiate between disease flares clear improvement in disease activity was required in the 

form of diminished flare-related symptoms together with a reduction in both BILAG score 

and immunosuppressive therapy.

IBD patients

Patients with active CD and UC were recruited from a specialist IBD clinic at 

Addenbrooke’s Hospital, prior to commencing treatment. Diagnosis was made using 

standard endoscopic, histologic, and radiological criteria34. Patients who had already 

received immunomodulators or corticosteroids were excluded. Enrolled patients were 

managed conventionally using a step-up strategy3.

Assessment of disease activity was in accordance with national and international guidelines 

and included consideration of symptoms, clinical signs, and objective measures, including 

blood tests (C-reactive protein [CRP], erythrocyte sedimentation rate [ESR], hemoglobin 

concentration, and serum albumin), stool markers (calprotectin), and mucosal assessment 

(by sigmoidoscopy or colonoscopy) where appropriate. Validated scoring tools were used as 

another means of assessing disease activity (Harvey-Bradshaw severity index35 or simple 

clinical colitis activity index36 for CD and UC, respectively), although these were not used 

to guide treatment decisions. All clinicians were blinded to the microarray results.

For each disease, all patients were not included in all analyses as, for example, comparison 

of modular network analysis in related cell types required that samples passing QC filtering 

were available for all cell types for all patients. Our previous publications have shown that 

the sample sizes used here are adequate to detect reproducible signatures correlating with 

clinical traits.
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Follow up Analysis

Comparisons of outcome and associated clinical variables between subgroups were analyzed 

using the Kaplan-Meier log-rank test and non-parametric Mann Whitney U test or the Chi-

square test as appropriate. Correction for multiple testing was applied using the Bonferroni 

method or false discovery rate (FDR, Benjamini and Hochberg method) where appropriate 

as indicated.

3. Cell separation and RNA extraction

Venepuncture was performed at a similar time of day in all cases to minimize gene 

expression differences arising from circadian variation37. Peripheral blood mononuclear 

cells (PBMC), CD4 and CD8 T cells were isolated from 110ml of whole blood by 

centrifugation over ficoll and positive selection using magnetic beads as previously 

described20. The purity of separated cell subsets was determined by flow cytometry and 

included as a covariate in downstream correlation and network analyses (e.g. Figure. 1 A, I). 

Total RNA was extracted from each cell population using an RNeasy mini kit (Qiagen) with 

quality assessed using an Agilent BioAnalyser 2100 and RNA quantification performed 

using a NanoDrop ND-1000 spectrophotometer.

Microarray gene expression profiling

HsMediante25k custom spotted microarray—Total RNA (250 ng) was converted 

into double-stranded cDNA and labelled with Cy3- or Cy5-dCTP as previously described20. 

Appropriate Cy3- and Cy5-labelled samples were pooled and hybridized to custom spotted 

oligonucleotide microarrays (HsMediante25k) comprised of probes representing 25,342 

genes and control features38. All samples were hybridized in duplicate, using a dye-swap 

strategy, against a common reference RNA derived from pooled PBMC samples. Following 

hybridization, arrays were washed and scanned on an Agilent G2565B scanner.

Affymetrix Human Gene 1.0 ST microarray—Aliquots of total RNA (200ng) were 

labeled using Ambion WT sense Target labeling kit and hybridized to Human Gene 1.0 or 

1.1 ST Arrays (Affymetrix) as described. After washing, arrays were scanned using a GS 

3000 or Gene Titan scanner (Affymetrix) as appropriate.

Published datasets

Published datasets were accessed through either NCBI-GEO or ArrayExpress, imported into 

R using the Bioconductor package GEOquery and analyzed as described. Search criteria 

incorporated the name of individual diseases and were filtered to human datasets but not by 

platform used. Studies were only included if they met the following criteria:

1. Similar QC filters as applied to the data produced in-house were satisfied 

(described below).

2. Samples were taken at an analogous time-point to those from which the 

costimulation and exhaustion signatures in autoimmunity were identified. i.e. 

samples taken during active disease without concurrent immunosuppressive 

therapy.
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3. Clinical outcome data was available.

It was not feasible to build a unified predictive model across all available datasets as they 

originated from different groups and were performed on mutually incompatible microarray 

platforms.

For the HCV data used in Fig. 4C a marked response was defined as an HCV titer decrease 

> 3.5 log10iu/ml and a poor response as an HCV titer decrease <1.5 log10iu/ml by day 28 

after commencing combined therapy with ribavirin and pegylated interferon-alpha. For the 

Malaria vaccine trial used in Fig. 4D ‘protection’ was defined as delayed or complete 

protection from subsequent confirmed P.Falciparum infection following standardised 

exposure (x5 bites) compared to infectivity control subjects. For the influenza data used in 

Fig. 4E protection was defined as >/= 1 high response to at least 1 (of 3) included strains. A 

high response was defined as >/= 4-fold increase in HAI titre at d28 and a titre >/= 1:40 as 

per US FDA guidelines.

All gene expression data used has been deposited in publicly available repositories (NCBI-

GEO and ArrayExpress): AAV, SLE (E-MTAB-2452, E-MTAB-157, E-MTAB-145) IBD 

(E-MTAB-331), LCMV (GSE9650), HCV (GSE7123), malaria vaccination (GSE18323), 

influenza vaccination (GSE29619), yellow fever vaccination (GSE13486), dengue fever 

(GSE25001), IPF (GSE28221), T1D (E-TABM-666), NOD (GSE21897), RA (GSE15258, 

GSE33377), in vitro CD8 stimulation (XXXX).

Data analysis

Preprocessing and quality control (QC)—For Mediante hs25k arrays, raw image data 

were extracted using Koadarray v2.4 software (Koada Technology) and probes with a 

confidence score >0.3 in at least one channel were flagged as present. Extracted data were 

imported into R where log transformation and background subtraction were performed 

followed by within array print-tip Loess normalization and between-array quantile and scale 

normalization using the Limma package39 in Bioconductor40. Further analysis was then 

performed in R and only data demonstrating a strong negative correlation (r2>0.9) between 

dye swap replicates were used in downstream analyses.

Affymetrix raw data (.CEL) files were imported into R and subjected to variance 

stabilization normalization using the VSN package in BioConductor41. Quality control was 

performed using the Bioconductor package arrayQualityMetrics42 with outlying samples 

removed from downstream analyses. Correction for batch variation was performed using the 

Bioconductor package ComBat43 and batch structure was included as a covariate in 

downstream correlation analyses.

Clustering

Hierarchical clustering was performed using a Pearson correlation distance metric and 

average linkage analysis, performed either in Cluster with visualization in Treeview44, using 

Genepattern45 or directly in R using hclust in the stats package.
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Differential expression

Differentially-expressed genes were identified using linear modeling and an empirical Bayes 

method39 using a false discovery rate threshold of 0.05 as indicated to determine 

significance.

Weighted Gene Coexpression Network Analysis (WGCNA)

Highly correlated genes in immune cell subsets were identified and summarized with a 

modular eigengene profile using the Weighted Gene Coexpression Network Analysis 

(WGCNA) Bioconductor package in R46. Normalized, log transformed expression data was 

variance filtered using the inflexion point of a ranked list of median absolute deviation 

values for all probes. A soft thresholding power was chosen based on the criterion of 

approximate scale-free topology47. Gene networks were constructed and modules identified 

from the resulting topological overlap matrix with a dissimilarity correlation threshold of 

0.01 used to merge module boundaries and a specified minimum module size of n=30. 

Modules were summarized as a network of modular eigengenes, which were then correlated 

with a matrix of clinical variables and the resulting correlation matrix visualized as a 

heatmap (Extended Data Figure 1). As each module by definition is comprised of highly 

correlated genes, their combined expression may be usefully summarized by eigengene 

profiles48, effectively the first principal component of a given module (e.g. Figure 1B, F). A 

small number of eigengene profiles may therefore effectively ‘summarize’ the principle 

patterns within the cellular transcriptome with minimal loss of information. This 

dimensionality-reduction approach also facilitates correlation of ME with clinical traits (e.g. 

Figure 1A, I). Significance of correlation between a given clinical trait and a modular 

eigengene was assessed using linear regression with Bonferroni adjustment to correct for 

multiple testing (Extended Data Figure 1). Independent association of a given module 

eigengene or gene expression profile (e.g. KAT2B) with clinical outcome was assessed 

using a multiple linear regression model. Significance of each term in the linear model was 

plotted against its regression coefficient, as a measure of the strength of association (the 

regression coefficient reflecting the change in clinical outcome per unit change in modular/

gene expression), for example Extended Data Fig.3B-E.

Overlap of signatures with modules derived from network analysis is shown to the right of 

selected module heatmaps (Figure 1A, Extended Data Figures 2A, E, F) by the following 

formula to allow correction for variable module size: (signature genes overlapping with 

module genes, n)/(genes in module, n) x100. The overlap of randomly selected signatures of 

equivalent size was used as a control and is shown adjacent to the above plots.

HOPACH analysis

For validation purposes, highly-correlated genes were independently partitioned into 

discrete modules using a second algorithm, Hierarchical Ordered Partitioning And 

Collapsing Hybrid (HOPACH49) in R. This approach differs from WGCNA in that it does 

not rely on a user-specified correlation threshold to define module boundaries but rather 

aims to maximize homogeneity of modules. Normalized, log transformed data were 

clustered using a hierarchical algorithm with modular boundaries defined by the median 

split silhouette (MSS), a measure of how well-matched a gene is to the other genes within its 
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current cluster versus how well-matched it would be if it were moved to another cluster. On 

partitioning the dataset into clusters, each cluster is reiteratively subdivided until the MSS is 

maximized, thereby producing an optimal segregation into maximally discrete modules.

Knowledge-based network generation and pathway analysis

The biological relevance of gene groups comprising modules identified by co-expression 

analysis were further investigated using the Ingenuity Pathways Analysis platform50. Six 

modules from the CD4 T cell WGCNA analysis showed significant correlation with clinical 

outcome in AAV after correction for multiple testing (Bonferroni method, Supplementary 

Table 3). We applied network and pathway enrichment analysis to genes comprising these 

modules to determine whether they may have any biological relevance. Briefly, for network 

analysis genes from a specified target set of interest are progressively linked together based 

on a measure of their interconnection, which is derived from described functional 

interactions. Additional highly interconnected genes that are absent from the target genes 

(open symbols) may be added to complete a network of arbitrary size (set at n = 35). 

Networks may be ranked by significance which reflects the probability of randomly 

generating a network of similar size from genes included in the full knowledge database 

containing at least as many target genes as in the network in question. For pathways 

analysis, the overrepresentation of canonical pathways (pre-defined, well-characterized 

metabolic and signaling pathways curated from extensive literature reviews) amongst a 

specified set of target genes is assessed, with significance determined by computing a 

Fisher’s exact test with false discovery rate correction for multiple testing.

Gene Set Enrichment Analysis (GSEA)

GSEA11 was used to further assess whether specific biological pathways or signatures were 

significantly enriched between patient subgroups identified by gene modules (as opposed to 

testing for enrichment of pathways within modules themselves as outlined in the previous 

section). GSEA determines whether an a priori defined ‘set’ of genes (such as a signature) 

show statistically significant cumulative changes in gene expression between phenotypic 

subgroups (such as patients with relapsing or quiescent disease). In brief, all genes are 

ranked based on their differential expression between two groups then an enrichment score 

(ES) is calculated for a given gene set based on how often its members appear at the top or 

bottom of the ranked differential list. 1000 random permutations of the phenotypic 

subgroups were used to establish a null distribution of ES against which a normalized 

enrichment score (NES) and FDR-corrected q values were calculated. GSEA was run with a 

focused subgroup of gene signatures (as in Figure 2B and Figure 3K)11 selected to test the 

null hypothesis that different CD8 T cell phenotypes were not significantly enriched in 

patient subgroups identified by modular analysis.

Selection of optimal PBMC-level biomarkers

Optimal surrogate markers facilitating identification of the CD4 T cell co-stimulation/CD8 

exhaustion signatures in PBMC-level data were determined using a randomforests 

classification algorithm51 (Figure 4A). Although signatures apparent in purified T cell 

transcriptome data correlate with clinical outcome, they cannot be similarly detected in data 
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derived from PBMC due to the confounding influence of expression from other cell types 

nor can the same genes be used to predict outcome in PBMC2,20. However, as CD4 T cell 

co-stimulation and CD8 T cell exhaustion signatures themselves showed close correlation 

we hypothesized that this would amplify the signal detectable in PBMC and that detection of 

the combined CD4/CD8 T cell response may be feasible. The availability of both separated 

T cell and PBMC data from the same patients at the same time facilitate a supervized search 

for surrogate markers of the co-stimulation/exhaustion signatures in PBMC. Expression data 

derived from both CD4 T cells and PBMC were available for a cohort of n=37 patients 

(AAV and SLE) following QC and hybridization to the HsMediante25k custom microarray 

platform and constituted a training cohort. Normalized, log- transformed expression data 

was analyzed using the MLInterfaces Bioconductor package in R52. Using PBMC-level 

expression data samples were classified into subgroups showing either high or low 

expression of the costimluation/exhaustion signature (as illustrated in Extended Data Figure 

5H, I) and probes were subsequently ranked using the variable importance metric based on 

their ability to predict allocation to either group. The variable importance for a given gene 

reflects the change in accuracy of classification (% increase in MSE or increase in node 

purity) when that variable is randomly permuted. For a poorly predictive gene, random 

permutation of its values will minimally influence classification accuracy. Conversely, the 

most robust predictors will have a comparatively large effect on classification accuracy 

when randomly permuted. PBMC samples from a subset of n=37 cases derived from the 

training cohort were labeled and hybridized on an alternative microarray platform 

(Affymetrix Gene ST1.0) as a technical validation set (Figure 4B, left panel). PBMC 

samples from an independent n=47 cases not included in the training cohort were labeled 

and hybridized to the Affymetrix Gene ST1.0 platform as an independent test set (Figure 

4B, right panel). For both technical validation and independent test sets expression of the 

optimal biomarker identified in Figure 4A (KAT2B) was used to bisect the cohort relative to 

the median expression and clinical outcome was compared in KAT2Bhi and KAT2Blo 

patients.

Linear Models

Linear modeling was performed in R using the stats package. This took the form of

where y (the response variable) was selected as normalized flare rate (flares/days follow-up) 

and x1-xn (the test variables) were selected to include measures of disease activity (both 

clinical scores and laboratory markers of inflammation), quantification of circulating 

leucocyte subsets (lymphocytes, neutrophils) and concurrent measurements of autoantibody 

titer where relevant. Test variables also included a biomarker profile (e.g. exhaustion 

signature or KAT2B expression). The significance and magnitude (regression coefficient, 

reflecting change in response variable (flares/days follow-up) per unit change in each test 

variable included) were extracted and plotted against each other (for example, Extended 

Data Fig. 3B-E). Not all clinical or laboratory measures were relevant comparisons in each 

case and therefore were not all included in every model generated.
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T cell culture

Primary human CD8 T cells were separated from leucocyte cones obtained from NHS Blood 

and Transplant (Addenbrooke’s Hospital, Cambridge, UK) by centrifugation over ficoll and 

positive selection using magnetic beads as previously described20. The purity of separated 

cell subsets was determined by three-color flow cytometry. Purified T cells were labeled 

with 10μM CFSE (Invitrogen) and resuspended in complete RPMI 1640 (Sigma Aldrich) in 

the presence of 10% FCS. Purified CD8+ T cells (>95%) were then stimulated in sterile, 96-

well U-bottomed culture plates (Greiner) using an ‘artificial APC’ consisting of MACS 

iBead particles (1:2 bead:cell ratio, Miltenyi) or DynaBead particles (Invitrogen) conjugated 

to either CD3/CD28 or CD2/CD3/CD28 as indicated in the presence of IL2 (10ng/ml, Gibco 

life technologies) for 6 days. The magnetic iBead construct was removed after 36h in some 

instances as indicated. In some experiments, additional costimulation was provided by the 

addition of either IFNα (10ng/ml, Abcam) or by additional conjugation of recombinant 

Human PD-L1 Fc Chimera (life technologies, 1μg/ml) or anti-CD40 antibody (50ng/ml, 

Abcam) as indicated. The nature of costimulatory signals tested was based upon the results 

of the network analysis of CD4 T cell modules described above (Supplementary Table 2).

For restimulation experiments cells were harvested on day 6 post-stimulation and sorted into 

IL7Rhi and IL7Rlo populations (Extended Data Figure 6D) using a FACSAriaIII cell sorter 

(BD Biosciences) with live/dead discrimination performed using an AquaFluorescent amine-

reactive dye (Invitrogen). Cell numbers were normalized and were resuspended in complete 

RPMI 1640 (2×104/ml, Sigma-Aldrich) and ‘rested’ in a sterile, U-bottomed culture plate 

(Greiner) for 6 days (37C, 5% CO2) before being restimulated (anti-CD2/3/28 1:2 bead:cell 

ratio, Miltenyi MACSiBead) for a further 6 days in the presence of IL2 (10ng/ml, Gibco life 

technologies).

Note that, as described in Extended Data Fig. 6G, human memory CD8 T cell subsets do not 

equivalently respond to the stimulation conditions described above. As primary whole 

human CD8 T cells are composed of highly variable proportions of memory subsets and 

whole CD8 T cells were stimulated it was necessary to perform paired tests of significance 

when comparing resulting T cell subsets and transcriptional profiles.

Flow cytometry

Immunophenotyping was performed using an LSR Fortessa analyzer (BD Biosciences), and 

data was analyzed using FlowJo software (Tree Star). Reactions were standardized with 

multicolor calibration particles (BD Biosciences) with saturating concentrations of the 

following antibodies: AquaFluorescent Live/Dead (Invitrogen), IL7Rα AF647 (BD 

biosciences, clone HIL-7R-M21), PDCD1 APC (eBioscience, clone MIH4). For intracellular 

staining, cells were fixed and permeabilized using a transcription factor staining buffer set 

(eBioscience) and before staining with saturating concentrations of antibody against BCL2 

(BD Biosciences, clone 100).
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Extended Data

Extended Data Figure 1. Overview of weighted gene coexpression analysis
(A) mRNA derived from purified leucocyte subsets sampled during active, untreated 

autoimmune disease is labeled and hybridized to a microarray platform (both HsMediante 

25k and Affymetrix Gene ST1.0 used here). Genes are then combined into modules (B, 

colored blocks) based on the similarity of their expression profile in all samples. (C) Detail 

for the ‘black’ module. Each horizontal black line represents expression of a single gene 

within the given module. y-axis = gene expression, x-axis = patient samples, red-bar = 
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eigengene profile which effectively summarizes the expression of all genes comprising the 

black module. (D) Each modular profile is related to all others in a hierarchy that can itself 

be visualized by plotting correlation of all module eigengenes, such as in the heatmap shown 

here. Colored blocks represent individual modules, defined as in (A). Modules are aligned in 

identical order on x and y-axes with heatmap color representing the correlation between 

each. Note that the diagonal (top left to bottom right) therefore represents correlation of each 

eigengene profile with itself, and is always 1. Distance metric = Euclidean distance. (E) As 

each module is summarized by a representative eigengene profile, each may then be 

correlated against a range of clinical variables allowing visualization of how the 

transcriptome relates to clinical variables, again in the form of a correlation heatmap. 

Correlation = Pearson, r. (F) Heatmap showing gene expression modules (y-axis) correlated 

against clinical variables (x-axis) for the CD4 transcriptome in AAV, correlation = Pearson, 

r. (G) Heatmap illustrating significance of correlations identified in (F). P-value threshold at 

Bonferroni-corrected P<0.05. Color-bar indicates actual P-value of correlations deemed 

significant, grey shading = corrected P >0.05. Significance for costimulation (black) module 

from Figure 1 is also shown (P = 0.0005).

McKinney et al. Page 15

Nature. Author manuscript; available in PMC 2016 January 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 2. Weighted gene coexpression network analysis of the T cell 
transcriptome and its correlation with clinical phenotype in SLE
(A, E) Heatmaps illustrating the correlation of coexpression modules (colored blocks, y-

axis) derived from the CD8 (A) and CD4 (E) transcriptomes of 23 SLE patients with clinical 

traits (x-axis). Overlap of the previously described prognostic signature with coexpression 

modules, along with the distribution of a random signature of equivalent size, shown to the 

right of (A) (overlap = signature genes / module genes %). Overlap of the CD4 T cell 

costimulation ‘black’ module (defined in Fig.1) shown to the right of (E) along with a 

randomly derived module and a type 1 interferon response signature previously shown to 
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associate with active SLE4. Overlap shown as % representation of the signature within each 

module. (B, D) Linear plots illustrating the ‘charcoal’ (B) and ‘grey’ (D) modules in detail. 

y-axis = gene expression, x-axis = individual patients, colored lines (red, blue) = module 

eigengenes. (C) Correlation of SLE CD4 T cell costimulation module eigengene (x-axis, 

blue) against SLE CD8 T cell prognostic signature (y, red). Pearson correlation, r, with P = 

2-tailed significance. (F) Expanded detail from (E) illustrating that modules corresponding 

to type 1 IFN response and costimulation signatures correlate with disease activity and 

outcome respectively but not vice versa.
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Extended Data Figure 3. Identification and validation of genes involved in CD4 costimulation 
that correlate with clinical outcome, and how that relationship changes after treatment
(A) A knowledge-based network analysis of 336 probes comprising the ‘black’ expression 

module (Fig.1E) identifies a network of costimulation signaling (Supplementary Table 3). 

Individual genes are shown in circles with the ‘strength’ of their connections indicated by 

the weight of the black bar linking them. Pathways of TCR signaling, ICOS-ICOSL 

signaling and CD28 signaling all significantly enriched in this module (FDR p < 0.05). (B-

E) Scatterplots showing the outcome of multiple linear regression models testing the 

association of 4 signatures (red symbols) as indicated, directly compared to clinical markers 
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of disease activity (black symbols). x-axis = magnitude of association (regression 

coefficient, change in normalized flare rate (flares/days follow-up) per unit change in each 

variable tested). y-axis = significance of association in multiple regression model, P. 

significance threshold (dashed red line, P = 0.05). (B) CD8 turquoise module eigengene in 

AAV, (C) CD4 costimulation (black) module eigengene in AAV, (D, E) CD8 exhaustion 

signature (Supplementary Table 6) in AAV/SLE (D) and IBD (E). Clinical variables 

incorporated vary due to differing relevance in each case but include some of: disease 

activity score (BVAS/BILAG/CDAI/Harvey-Bradshaw score), CRP, autoantibody titer 

(PR3/MPO, dsDNA), Lymphocyte count, neutrophil count, platelet count, IgG, IgA, IgM, 

ESR, age. (F) Line plot showing mean expression of a CD8 T cell exhaustion signature in 38 

AAV patients measured at presentation during active, untreated disease (t0) and again 12 

months later when disease activity was quiescent and patients were on maintenance 

immunosuppressive therapy (t12). Patients are grouped into those falling above (red) and 

below (blue) median expression of the exhaustion signature eigengene at entry. P = Mann-

Whitney test comparing t12 and t0 values. The difference between the groups that is easily 

apparent at enrolment with active, untreated disease (t0) is no longer apparent when disease 

is treated and quiescent twelve months later (t12). (G-I) Scatterplots showing inverse 

correlation between individual eigenvalues of the CD4 costimulation signature (x-axis, red) 

and the CD8 exhaustion signature (y-axis, blue) defined as in Fig. 2, for AAV (G), SLE (H) 

and IBD (I) cohorts. Correlation = Pearson, r2, 2-tailed significance.
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Extended Data Figure 4. Windrose plots showing relative GSEA enrichment of immune 
signatures in autoimmune disease and melanoma
Windrose plots showing relative enrichment (GSEA FDR q value) of distinct immune 

signatures between patient subgroups (as defined as in Fig2). (A, B) AAV, (C, D) SLE and 

(E, F) IBD. (A, C, E) enrichment of immune signatures from selected CD8 T cell 

phenotypes and (B, D, F) enrichment of signatures specifically up/down regulated by CD8 T 

cell subsets derived from the LCMV model of T cell exhaustion (acute LCMV-Armstrong v 

chronic LCMV-Cl138). Detailed information on genes included in each signature is 

provided in Supplementary Table 6. (G, H) Windrose plots showing relative enrichment 
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(GSEA FDR q value) of distinct immune signatures between CD8 T cells from melanoma 

patients, comparing CD8 from tumor-infiltrated lymph node with circulating CD8 T cells16. 

(G) Enrichment of immune signatures from selected CD8 T cell phenotypes and (H) 

enrichment of signatures specifically up/down regulated by CD8 T cell subsets derived from 

the LCMV model of T cell exhaustion (acute LCMV-Armstrong v chronic LCMV-Cl138). 

Specific enrichment is seen for genes downregulated by exhausted cells but not for all genes 

upregulated by exhausted cells. (C) Heatmap showing differential expression of selected 

canonical coinhibitory receptors (as for Fig2C12) in the LCMV exhaustion model, between 

prognostic subgroups identified in D, G, J (reproduced from Fig.2C) and also between 

exhausted CD8 from melanoma-infiltrated lymph node compared to circulating tumor-

specific CD8 T cells16. Blue = up in exhausted, Red = up in non-exhausted, grey = no 

significant change (FDR p<0.05).
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Extended Data Figure 5. T cell costimulation with CD2, but not type 1 interferon or anti-CD40, 
prevents development of an exhausted IL7RloPD1hi phenotype during prolonged anti-CD3/28 T 
cell stimulation
(A-D) Representative scatterplots showing IL7R expression (y-axis) by cell division (CFSE 

dilution, x-axis) in (A) unstimulated cells and following each of three different costimulation 

cultures: (B) anti-CD3/CD28 alone, (C) anti-CD2/3/28 and (D) anti-CD40/3/28. IL7Rhi 

expressing subset indicated in black gate with % live cells shown. (E- G) Line and 

scatterplots showing absolute number of IL7Rhi cells (E), PD-1 expression (F) and cell death 

(G, death = AquaFluorescent dye+) during CD8 T cell differentiation (x-axis, number of 
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divisions undergone by day 6 of culture measured by CFSE dilution) following anti- CD3/28 

(blue) or anti-CD2/3/28 stimulation (red). P= paired t-test, n = 5 paired samples. (L, M) Line 

and scatterplots showing absolute number of IL7Rhi cells (y-axis) by number of divisions 

undergone at day 6 (x-axis) following polyclonal stimulation with anti-CD3/28 (blue) or 

anti-CD3/28 plus anti-CD40 (L, green) or interferon alpha (IFNα, green, M) costimulation. 

(N) Line and scatterplot showing extent of proliferation occurring (% of live cells on day 6 

having undergone each of 0-4 divisions) following polyclonal stimulation of primary human 

CD8 T cells with CD3/28 alone (blue) or with additional anti-CD2 costimulation (red), 

confirming no difference in the extent of live cell proliferation between groups. (O) 

Absolute live (AquaFluorescent Dye−) cell counts (y- axis) by the number of divisions 

undertaken (x-axis) by day 6 following polyclonal stimulation of primary human CD8 T 

cells with CD3/28 alone (blue) or with additional anti-CD2 costimulation (red), illustrating 

increased cell survival with CD2 costimulation despite equivalent proliferation. P values = 

2-way ANOVA of 4 paired stimulations. (H, I) Hierarchical clustering of 44 AAV (left 

panels) and 23 SLE (right panels) patients using 336 genes comprising a CD4 T cell 

costimulation module (black module, Fig 1) identifies 2 patient subgroups (high 

costimulation, red, and low costimulation, blue) in CD4 T cell expression data defined by 

the first major division in the patient dendrogram. (J, K) Scatterplots illustrating selected 

costimulatory and coinhibitory receptors for the subgroups identified in (H) and (I). Selected 

receptors were chosen based on their inclusion in networks derived from the costimulation 

and exhaustion signatures as illustrated in Extended Data Figure 3A.
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Extended Data Figure 6. CD2-costimulation results in functionally distinct subpopulations 
showing enhanced survival following in vitro restimulation but no preferential expansion of CD8 
memory subsets
(A) Representative flow cytometry density plots of CD8 T cells showing BCL2 expression 

on day 7 after stimulation with anti-CD3/28 (blue) or anti-CD2/3/28 (red). Figures are % of 

total CD8 T cells. (B) Quantification of BCL2 expression in CD8 T cells stimulated as in 

(A). P = Mann-Whitney, n = 5 paired biological replicates per group. (C) Scatterplots 

showing cytokine levels (y-axis, pg/ml) measured in supernatants of CD8 T cells on day 7 

after in vitro stimulation with either anti-CD3/28 (left column, blue) or CD2/3/28 (right 
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column, red). Samples represent paired stimulations of primary CD8 T cells from the same 

individual using either stimulation protocol, n = 6 biological replicates per group. (D) 

Scatterplots illustrating populations sorted following polyclonal anti-CD3/28 (left panel) and 

anti-CD2/3/28 (right panel) stimulation of primary CD8 T cells. (E) % live cells 

(AquaFluorescent dye−) remaining 7 days after restimulation of each sorted subpopulation 

of CD8 cells. Cells were rested for 6 days in complete RPMI1640 medium without IL2 

before being restimulated with anti-CD2/3/28 for a further 7 days. P = Mann-Whitney, Error 

bars = Mean +/− SEM. (F) Representative scatterplot illustrating CD8 T cell memory 

populations isolated by flow cytometric sorting and stimulated in (G, H). (G) Scatterplot 

showing absolute number of IL7Rhi cells (y-axis) on day 6 following anti-CD3/28 (blue) or 

anti-CD2/3/28 (red) stimulation of purified CD8 T cell memory populations (x-axis). * = 

P<0.05, Mann-Whitney test. n = 5 paired biological replicates per group. (H) Scatterplots 

showing % CD8 T cell memory subsets (y-axis) resulting from stimulation of purified 

central memory (Tcm), naïve (Tn), effector memory (Tem) and effector memory-RA 

(Temra) populations with anti-CD3/28 (blue) or anti-CD2/3/28 (red) for 6 days, n = 4 paired 

biological replicates per group.
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Extended Data Fig. 7. Top PBMC surrogate markers reflect expression of CD4 
costimulation/CD8 exhaustion modules within CD4 and CD8 data respectively
Top PBMC-level predictors (n=13) were selected as indicated in Fig4A and data is shown 

comparing expression of the optimal predictor (KAT2B, A, E) and of each other top 

predictor gene (D, H) in PBMC data compared to expression of the CD4 costimulation 

module eigengene in CD4 data (A-D) and the CD8 exhaustion signature eigengene in CD8 

data (E-H) for n=44 patients with AAV. Significance of correlation, *P<0.05, **P<0.01, 

***P<0.001. (B, F) Scatterplots showing the outcome of multiple linear regression models 

testing the association of KAT2B expression in CD4 (B) and CD8 (F) data (red symbols) 

McKinney et al. Page 26

Nature. Author manuscript; available in PMC 2016 January 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



directly compared to clinical markers of disease activity (black symbols). x-axis = 

magnitude of association (regression coefficient, change in normalized flare rate (flares/days 

follow-up) per unit change in each variable tested). y-axis = significance of association in 

multiple regression model, P. significance threshold (dashed red line, P = 0.05). Clinical 

variables incorporated = disease activity score (BVAS), CRP, Lymphocyte count, neutrophil 

count, IgG. (C, G) Heatmaps reproduced from Fig1A and I respectively, showing overlap of 

top PBMC-level predictors with the modular analysis presented for CD4 (C) and CD8 (G) 

data in Figure 1. As expected, surrogate markers showed stronger correlation with the CD4 

than the CD8 signature as the algorithm was trained to detect the CD4 costimulation 

module.
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Extended Data Fig. 8. Immune cell subset expression pattern of top PBMC-level surrogate 
markers of CD4 costimulation/CD8 exhaustion signatures
Dot plots showing expression (median +/− SEM) of KAT2B (A) and for each of 12 other 

top PBMC-level surrogate predictors of CD4 costimulation/CD8 exhaustion signatures 

(from Fig.4A) in a range of 22 immune cell subsets. Genes showing significant correlation 

of expression with KAT2B across all cell types are indicated (**P<0.001).
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Extended Data Fig. 9. Hierarchical clustering of multiple datasets using 13 top PBMC-level 
surrogate markers of CD4 costimulation/CD8 exhaustion modules identifies patient subgroups 
with distinct clinical outcomes
Replication of association between surrogate markers of CD4costimulation/CD8 exhaustion 

signatures and clinical outcome (as shown in Fig4C-K) but using all top 13 PBMC-level 

surrogates rather than KAT2B alone. (A, C, E, G, I, K, M) Heatmaps showing hierarchical 

clustering of gene expression data of 13 top PBMC-level surrogate predictors of CD4 

costimulation/CD8 exhaustion signatures (from Fig.4A) in patients with chronic HCV53 (A), 

during malaria vaccination (C), influenza vaccination (E), yellow fever vaccination (G), 
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dengue fever infection (I), idiopathic pulmonary fibrosis (IPF, K) and pre-T1D (M). 

Subgroups were defined using a major division of the cluster dendrogram and Group1 

allocated based on KAT2B expression (highest in Group 1). Clinical outcome associated 

with each subgroup identified is shown in B (HCV, % responders to IFNα/ribavirin 

therapy), D (% showing protection v no protection from malaria vaccine), F (% response to 

influenza vaccination), H (yellow fever antibody-titer post-vaccination), J (% progression to 

dengue hemhorrhagic fever, DHF), L (% patients progressing to need for transplantation or 

death) and N (% samples from patients with prior or subsequent progression to islet-cell 

antibody seroconversion or to a diagnosis of T1D).
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Extended Data Fig. 10. Kinetics of KAT2B expression during treatment of chronic HCV, malaria 
and influenza vaccination, during T1D development in the NOD mouse and in PBMC data from 
IBD and RA patients
(A) Expression of a type 1 interferon response signature (average eigenvalue of type 1 IFN 

response signature plotted for each response group at each timepoint, A, signature as defined 

in4) in a cohort of 54 patients during treatment of chronic HCV infection with pegylated 

interferon-α and ribavirin (as described in53 and Figure 4C), including 28 showing a marked 

response (red line, HCV titer decrease > 3.5 log10iu/ml by day 28) and 26 a poor response 

(HCV titer decrease <1.5 log10iu/ml by day 28), P = 2-way ANOVA. (B) Schematic 

McKinney et al. Page 31

Nature. Author manuscript; available in PMC 2016 January 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



representation of the vaccination (black) and transcriptome profiling (red) schedule for the 

adjuvanted RTS,S Malaria Vaccine Trial23 (as shown in Fig4D). (B-D) Heatmap (B) and 

line plot (C, D) illustrating temporal changes in expression of 404 genes representing the 

GO ‘inflammatory response’ module (C) or KAT2B expression (D) at each time-point 

during vaccination in patients with above (red) and below (blue) median KAT2B expression 

throughout the vaccination schedule outlined in (B). Subgroups defined at T2, immediately 

following booster vaccination as this equates to the period of most ‘active’ immune 

response. Plots = Mean +/− SEM. (E) Schematic representation of the vaccination (black 

arrows) and transcriptome profiling (red arrows) schedule for 28 vaccinees receiving the 

2008 seasonal influenza vaccination (combined trivalent inactivated influenza vaccine24 as 

shown in Fig 4E) with response assessed at d28 by HAI titer (green arrow). (F) Linear plot 

illustrating temporal changes in expression of 404 genes representing the GO ‘inflammatory 

response’ module at each time-point during vaccination (d0-d7 corresponding to microarray 

bleed points in E) for patients showing above (red) or below (blue) median expression of 

KAT2B at day 3 following vaccination. y = expression, log2, x = time-point, days post-

vaccination, P = 2way ANOVA. (G) Linear plot showing ratio of Kat2b expression in 

peripheral blood of NOD mice (y-axis, n=37 mice in total across 6 timepoints) prior to and 

during the induction and onset of insulitis and the development of overt diabetes (illustrated 

by black bars below). x-axis = age (days), y-axis = Kat2b expression log2 ratio v B10 

controls29. (H) Kaplan-Meier censored survival curve showing flare-free survival (y-axis) 

during follow-up (x-axis) of n=58 IBD patients stratified by KAT2B expression (red, above 

median, blue, below median). P = log-rank test. (I, J) Boxplots showing clinical response (% 

responders) 3 months post-treatment with anti-TNF therapy in two independent cohorts (I54 

and J55) of rheumatoid arthritis (RA) patients. P = Fisher’s exact test. Linear plots show 

mean+/− SEM throughout.
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Figure 1. Weighted gene co-expression network analysis of the T cell transcriptome and its 
correlation with clinical phenotype in AAV
(A, I) Heatmaps illustrating the correlation of CD8 (A) and CD4 (I) co-expression modules 

(colored blocks, y-axis) with clinical traits in AAV (n=44). Prognostic2 and random 

signature overlap with modules shown (A, right) (overlap = signature genes / module genes 

%). (B, F) Linear plots illustrating turquoise (B) and black (F) modules and summary 

eigengenes, y = expression (log2 ratio), x = samples. (C, D, G, H) Scatterplots showing 

normalized flare-rate (C, G) and disease activity (D, H, Birmingham Vasculitis Activity 

Score (BVAS), y-axis) against turquoise (C, D) or black (G, H) module eigengene 

McKinney et al. Page 36

Nature. Author manuscript; available in PMC 2016 January 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



expression (x-axis). (E) Scatterplot showing correlation between CD4 T cell black (x-axis) 

and CD8 T cell turquoise module eigengenes (y-axis). Pearson correlation, r, with P = 2-

tailed significance.
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Figure 2. A gene expression signature of CD8 T cell exhaustion predicts contrasting outcomes in 
infection and autoimmune disease
(A) Heatmap showing hierarchical clustering of AAV patients (n=44) by expression of the 

turquoise module (Fig.1B) with corresponding flare rates (flares/days follow-up, y-axis). (B) 

Windrose plot showing GSEA significance (increasing from center, −log10FDRq value) of 

CD8 T cell signatures tested between prognostic subgroups defined in (A). (C) Heatmap 

showing differential expression of exhaustion-associated coinhibitory receptors between 

prognostic subgroups identified in D, G, J. Blue = up, red = down in exhausted, grey = no 

change (FDR p <0.05). (D, G, J) Heatmaps showing hierarchical clustering of CD8 T cell 
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expression data isolated from patients with AAV (D, n=58), SLE (G, n=23) and IBD (J, 

n=58) using a murine CD8 exhaustion signature8. ‘Exhausted’ (blue) and ‘non-exhausted’ 

(red) patient subgroups defined from the primary division of the cluster dendrogram. (E, H, 

K) Kaplan-Meier curves showing censored flare-free survival and (F, I, L) scatterplots 

showing normalized flare-rate against duration of follow-up for patient subgroups defined in 

(D, G, J) for AAV (E, F), SLE (H, I) and IBD (K, L) cohorts. (E, H, K) P = log-rank test. (A, 

F, I, L) P = Mann-Whitney test.
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Figure 3. T cell costimulation with CD2 prevents development of an exhausted IL7RloPD1hi 

phenotype
(A) Schematic of the magnetic bead system providing variable TCR signal duration/

costimulation during in vitro culture. (B-F) Scatterplots illustrating IL7R expression by cell 

division in unstimulated CD8 T cells (B) and following each of three different costimulation 

cultures (C-F), as indicated. (G-I) Linear plots showing IL7Rhi population resulting from 

(G) 36h (black line) v 6d (blue line) anti-CD3/28 stimulation, (H) 6d anti-CD2/3/28 (red 

line) v 6d anti-CD3/28 (blue line) and from 6d anti-CD2/3/28 with (green line) and without 
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(I, red line) Fc-PDL1. (J) Heatmap showing unsupervized hierarchical clustering of murine 

CD8 T cell gene expression data8 before (naïve, grey), 8 days (effector, green) or 30 days 

(memory, red) after acute or >30 days (exhausted, blue) after chronic LCMV infection 

clustered by a CD2 response signature. (K, L) Scatterplots showing GSEA enrichment for 

genes up (red) and downregulated (blue) by CD2 in (K) memory v exhausted and (L) 

effector v exhausted CD8 T cells. (M-O) Heatmap showing unsupervized hierarchical 

clustering of AAV (M, n=58), SLE (N, n=23) and IBD (O, n=58) CD8 T cell expression 

data using the CD2 response signature. ‘Exhausted’ (blue) and ‘non-exhausted’ (red) 

subgroups were defined from the major division of the cluster dendrogram. Upper bar 

indicates comparison with patient subgroups produced using the murine LCMV exhaustion 

signature (as shown in Fig.2D, G, J). Enrichment by GSEA of CD2 signature in autoimmune 

subgroups < FDR q 0.1.
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Figure 4. A surrogate marker of CD4 costimulation in PBMC gene expression data correlates 
with clinical outcome in chronic viral infection, vaccination, infection and autoimmunity
(A) Scatterplot showing the top 100 genes ranked by ability to identify CD4 T cell 

costimulation subgroups in PBMC data. x-axis = variable importance. (B) Kaplan-Meier 

plots showing censored flare-free survival stratified by expression of KAT2B (red = above 

median, blue = below median) in AAV and SLE patients (n=37, training set) replicated on 

Affymetrix GeneST1.0 and in an independent cohort (test set, n=47), P = log-rank test. (D) 

Line and scatterplots showing serial KAT2B expression (n=54) following therapy of chronic 

HCV infection giving a marked (red, n=28) or poor response (blue, n=26). P = 2-way 
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ANOVA. (E) Boxplot showing post-vaccine malaria protection in a clinical trial (n=43) 

stratified by KAT2B expression (red = above, blue = below median), P = Fisher’s exact test. 

(F) Boxplot showing % protection (black) in vaccinees (n=28) following seasonal influenza 

vaccine stratified by KAT2B expression, P = Fisher’s exact test (G) Scatterplot showing 

neutralizing antibody titer following YF-17D vaccination, stratified by KAT2B expression 

(F, G red = above, blue = below median KAT2B). P = Mann-Whitney test. (H) Line and 

scatterplot showing serial KAT2B expression throughout dengue infection (n=78) stratified 

by progression to hemorrhagic fever (DHF, n=24) or uncomplicated course (UD, n=54). x-

axis = time (days) relative to defervescence. (H) Boxplot showing % IPF patients (n=75) 

progressing to transplantation/death (black) stratified by KAT2B expression (red = above 

median, blue = below median). P = Fisher’s exact test. (I-K) Scatterplots showing serial 

KAT2B expression in healthy age, sex and HLA-matched controls (I, blue) and in pre-T1D 

cases (n=5, red), 2 of which seroconvert to islet-cell antibodies (J, black line) and 3 of which 

develop T1D (K, black line).
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