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The target organ for anesthesia is the brain. All anesthetic 
agents focus on suppressing the brain function to ensure 
that the patient is unaware of the surgical insult and that 
the central control organ does not or minimally responds to 
this surgical stress. Standard monitoring mandated during 
anesthesia delivery entails monitoring the homeostasis and 
the secondary body responses to the surgical intervention, 
that is, the exchange of breathing gases, oxygenation, and 
cardiac function. Current monitoring guidelines are silent 
about the primary target organ of anesthesia—the brain. 
The supportive organ functions are only monitored with a 
presumption that if they are taken care of, the brain also 
will be taken care of.[1]

Brain function can be adversely hit during cardiac surgery 
as hemodynamic compulsions compel the anesthesiologist 
to alter the anesthetic depth often, exposing the brain 
to too light or too deep planes of anesthesia. Deep 
planes of anesthesia are associated with morbidities like 
postoperative nausea and vomiting, delayed recovery 
and cognitive dysfunction, while lighter planes can lead 
to intraoperative awareness and adverse hemodynamic 
alterations. A combination of a low bi‑spectral index (BIS), 
low blood pressure, and low minimum alveolar 
concentration of anesthetic is associated with higher 
mortality.[2,3] Most depth of anesthesia  (DoA) monitoring 
devices are electroencephalogram  (EEG)‑derived and use 
proprietary measures within a scale of 100  (fully awake) 
to 0 (flat or minimal EEG activity), with the target value 
between 40 and 60 in general anesthesia.

Anesthetic agents act by neuronal suppression in the 
brain. Evidence is mounting that excessive suppression 
of the neurons may cause neuronal degeneration and 
apoptosis after that.[4] Inhalational anesthetic use has 
been implicated in promoting Alzheimer’s disease in 
the elderly.[5] Anesthesia has also been linked to the 
development of delirium and postoperative cognitive 
dysfunction  (POCD), with several anesthetic agents 
implicated in promoting them.[6] Studies have demonstrated 
that limiting DoA ensures better outcomes and a lower 
incidence of perioperative neurological dysfunction. 
DoA monitoring has also been credited to reduce the 
consumption of inhalation and intravenous anesthetics.[7] 
The American Society of Anesthesiologists has recently 
launched the “Perioperative Brain Health Initiative” to 
address this problem.[8]

The use of DoA monitoring during anesthesia is gradually 
expanding. Elgebaly et al., in this issue of the journal, 
describe a reduction in consumption of agent for induction 
of anesthesia, with the help of DoA guidance (Entropy).[9] 
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The authors report a significant reduction in propofol dose 
requirement for induction of anesthesia in entropy group. 
The authors, however, also report a statistically significant 
change in haemodynamics after intubation in patients in 
non-entropy monitored group. Such a change has been 
reported earlier, too. The NAP5 audit report recommends 
the administration of a supplemental dose of the induction 
agent before tracheal intubation, as there is a redistribution 
of the intravenous agent and as an adequate concentration 
of volatile agents may not be reached, to prevent potential 
awareness.[10] DoA monitoring is relatively accurate in the 
steady‑state. However, it is not so sensitive in dynamic 
stages, such as induction of anesthesia, wherein anesthetic 
depth changes rapidly.[11]

Falsely low EEG‑derived DoA values are seen when cerebral 
metabolism is reduced (as in low cardiac output, hypovolaemia, 
cerebral ischemia, hypoglycemia, and hypothermia).[1] 
Caution must be exercised when used with several anesthetic 
agents  (ketamine, etomidate, halothane, and ephedrine) 
as falsely high values may be displayed.[12] EEG‑derived 
DoA values are inaccurate when electromechanical 
devices are used (such as pacemakers, navigation 
systems, endoscopic devices, and electrocautery) due to 
artifacts, and in patients with abnormal EEG activities 
(such as epilepsy and cerebral palsy).[1]

In 1993, BIS was the first DoA monitor to be commercially 
launched. Entropy is a new, useful and popular DoA 
monitor, which displays a high degree of specificity and 
sensitivity in assessing the level of consciousness.[13] 
Entropy is considered to be more accurate and reliable 
to assess the hypnotic effects of anesthetic and sedative 
drugs.[14] Entropy filters EEG signals that are irregular, 
complex and unpredictable. Entropy value is computed 
from the EEG of the frontal cortex using low impedance 
sensors. The state entropy  (SE) and response entropy  (RE) 
is derived from the conversion of EEG and frontal 
electromyography signal data to numerical values. The RE 
is based on both EEG and frontal electromyography signals 
and indicates the patient’s responses to external stimuli and 
early awakening. SE indicates levels of low‑frequency band 
EEG activity in the frontal cortex. SE is resistant to the 
tone of facial muscles, and thus it is used to assess hypnotic 
effects during general anesthesia. RE is always higher than 
or equal to the state entropy value. If RE is  ≥10 than SE, 
it indicates the need for analgesia or muscle relaxants 
supplement. Cochrane analysis of many studies, on the 
consumption of propofol, found that entropy guided drug 
administration was associated with lower propofol use, but 
the reduction was not clinically significant.[13]
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The objective of designing the initial DoA monitors was 
to prevent awareness during anesthesia. DoA monitoring 
has not gained full acceptance, however, because the 
available monitors are unable to meet the expectations of 
the users. The development of an acceptable DoA monitor 
is hindered by the complexity of analyzing EEG signals 
and developing algorithms based on them. Many DoA 
monitors are commercially available today, and many 
more are under development. A  major thrust to improve 
DoA monitoring modalities has opened new vistas, and 
the path may lead to DoA monitoring becoming ‘standard 
of care’ in the next few years. Computation technology 
has improved continuously and monitors are now more 
responsive to detecting the level of sedation and brain 
activity in real‑time.

The skeptics believe that the currently available devices 
are not sensitive and specific. Although DoA monitoring 
is still evolving, it is time clinicians get it into their 
armamentarium as there is an emergent need to address the 
risk of cognitive dysfunction after anesthetic exposure. DoA 
monitoring should be considered if the patient is high‑risk; 
has a history of awareness; hemodynamic responses 
mandate the use of large amounts of the anesthetic agent; 
blood pressures remain low despite low levels of the 
anesthetic agent; and when brain injury or neurological 
state impairs consciousness.[11] DoA monitoring in the 
future may involve multimodal methods, such as cerebral 
oximetry, end‑tidal anesthetic concentration and brain 
function monitoring.[15]
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