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Abstract

Hedgehog (Hh) signaling is highly conserved in all metazoan animals and plays critical roles in many developmental
processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key
components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of
individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from
an in vivo RNA interference (RNAi) screen in Drosophila. By selectively targeting critical genes functioning in post-
translational modification systems utilizing ubiquitin (Ub) and Ub-like proteins, we identify two novel genes (dUba3 and
dUbc12) that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and
dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the
ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex,
which in turn promotes the degradation of Cubitus interruptus (Ci), the downstream transcription factor of the Hh pathway.
Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the
complex post-translational regulations in Hh signaling.
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Introduction

Hedgehog (Hh) signaling is an evolutionarily conserved

pathway that governs many crucial developmental events

(reviewed in [1], [2]). Dysregulation of the Hh signaling pathway

in humans often results in birth defects as well as tumorigenesis in

adult organs (reviewed in [3], [4]). Key components of the Hh

signaling cascade were initially identified through extensive genetic

studies in Drosophila melanogaster, among which Hh (the ligand),

Patched (Ptc, the receptor), Smoothened (Smo, the activator) and

Cubitus interruptus (Ci, the transcription factor) are the most

studied. The hh gene encodes a secreted protein that triggers a

complex cascade of signaling events that are largely conserved

from flies to mammals [1–4]. In the absence of Hh ligand, Ptc

functions to suppress the activity of Smo. Due to this inhibition,

Smo protein is retained in the cytoplasm, where it forms an

inhibitory signaling complex with Costal2 (Cos2, a kinesin-like

protein), Fused (Fu, a serine/threonine kinase) and Suppressor of

Fused (SuFu, a novel regulator). This complex inhibits the activity

of the transcription factor Ci by promoting its phosphorylation.

Phosphorylated full-length Ci (CiFL, also known as Ci155) is

subsequently processed into an N-terminal fragment (CiR, also

known as Ci75) through partial degradation of the C-terminal

portion of CiFL. CiR, lacking the co-activator binding domain,

then moves into the nucleus to repress target gene transcription. In

the presence of the Hh ligand, Hh signaling is initiated upon

binding of Hh to Ptc, which releases Smo from Ptc inhibition. As a

consequence, Smo protein is phosphorylated and relocalizes to the

plasma membrane. This leads to dissociation of Ci from the

inhibitory signaling complex, thus allowing CiFL to function as a

transcription factor to activate the transcription of various Hh

target genes ([1–4], and references therein).

Increasing evidence highlights a role of the ubiquitin-protea-

some system (UPS) in the regulation of the stability and activity of

Ci [5–13]. The majority of cellular protein degradation is subject

to the UPS control, in which three different enzyme complexes, in

a step-wise fashion, conjugate Ub to specific substrates. E1 (Ub-

activating enzyme) and E2 (Ub-conjugating enzyme) are respon-

sible for activating and conjugating Ub proteins, respectively. E3

functions as a Ub protein ligase to transfer Ub protein from the E2

enzyme onto specific substrates. Ubiquitinated substrates are

subject to proteolysis in the 26S proteasome, and Ub proteins are

recycled from the substrate by the deubiquitinating enzyme (DUB)

(reviewed in [14–17]). It is well established that E3 ligases control

the substrate specificity in the UPS [16], [17]. Genetic studies in

Drosophila have identified two distinct E3 ligases for modulating Hh

signaling, presumably targeting Ci for cleavage and/or degrada-

tion [5–8], [10–12]. Through a poorly understood mechanism, the

Slimb (Supernumerary limbs)-Cul1 E3 complex is believed to

regulate the activity of CiFL by promoting its partial degradation
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[5–8]. A second E3 complex, the Rdx (Roadkill)-Cul3 based E3

ligase, was shown to degrade Ci in Hh-responding cells [6], [10–

12]. However, whether additional UPS components are involved

in the regulation of Ci protein stability remains to be determined.

Furthermore, the mechanism by which E3 ligases regulate Ci

stability is not known.

Recent studies have revealed various ways in which the activity

of these E3 ligase complexes is controlled. One such pathway relies

on the covalent attachment of the Ub-like Neural precursor cell

Expressed Developmentally Down-regulated protein 8 (NEDD8)

to scaffolding Cullin proteins (reviewed in [18]). NEDD8 is

conjugated to a conserved C-terminal lysine residue in Cullin

proteins through the sequential action of a unique set of E1, E2,

and E3 enzymes, a process known as neddylation [18–20].

Neddylated Cullins stimulate the ubiquitination activity of the E3

complex and prevents its association with the inhibitor CAND1

[21]. Neddylated Cullins are also subject to self-ubiquitination and

degradation, thus providing a self-regulatory mechanism to

maintain a proper level of ubiquitin ligase activity [22].

Drosophila wing morphogenesis is one of the most intensively

investigated developmental processes for understanding Hh sig-

naling. The stereotypical wing patterning and ample genetic tools

make it a favorable system for genetic screens. Several genome-

wide screens, using classical forward genetic strategies, have been

reported and several novel regulators of the Hh signaling pathway

were successfully identified [23–26]. Recently, large-scale in vitro

RNAi screens have also been performed in cultured fly cells with

promising outcomes [27], [28]. However, in vivo RNAi screens,

aimed at identifying novel Hh signaling regulators, have not been

reported. This lack of investigation is in contrast to what has been

done for Notch signal transduction [29], [30].

Here, we report an in vivo RNAi screen to identify novel UPS

regulators of Hh signaling. By assessing CiFL protein stabilization

and dpp-lacZ reporter activity as simple but efficient readouts for

Hh signaling, we identified two novel negative regulators of Hh

signaling, each belonging to functionally distinct (E1 and E2) UPS

complexes. Utilizing in vivo genetic and in vitro biochemical assays,

we characterized these novel E1 and E2 genes as essential

components of the neddylation pathway, which control the activity

and stability of Cullin proteins and thereby regulate Ci protein

stability and Hh signaling activity.

Results

The stability of endogenous Ci protein is regulated by
the ubiquitin- proteasome system (UPS)

Ample genetic evidence highlights a role for UPS in the

regulation of CiFL protein stability and activity, however, a

previous report suggests that CiFL could also be degraded in the

lysosome [31]. To distinguish the roles of these degradation

pathways in the regulation of endogenous CiFL protein stability,

we specifically prevented either UPS- or lysosome-mediated pro-

tein degradation, utilizing inhibitors in cultured fly cells as well as

genetic manipulation in wing imaginal discs.

First, we examined the half-life of endogenous CiFL protein in

cl-8 cells, a fly cell line that is responsive to Hh signaling [27], [28],

[32], [33]. When treated with cychloheximide (CHX), an inhibitor

of nascent protein synthesis, CiFL protein exhibited a rapid

turnover with a half-life of approximately two hours (Figure 1A

and B). Next, we tested whether CiFL protein degradation is

regulated by a UPS- or lysosome-mediated process. cl-8 cells were

incubated with specific UPS inhibitors (MG132, ALLN or

lactacystin) or lysosomal inhibitors (E64, leupeptin or NH4Cl) for

three hours followed by CHX treatment for an additional six

hours. We found that UPS inhibitors, but not lysosomal inhibitors,

were able to protect CiFL protein from CHX treatment-induced

degradation in cl-8 cells (Figure 1C). To demonstrate physiological

relevance of UPS-mediated CiFL degradation, we examined the

effect of these inhibitors in cl-8 cells without CHX treatment.

Significant accumulation of CiFL was observed when the UPS

Figure 1. The stability of endogenous Ci is regulated by the UPS in vitro. (A) Lysates extracted from cl-8 cells that were treated with 50 mg/
ml cycloheximide (CHX) for the indicated hours (hrs) were immunoblotted (WB) with the 2A1 antibody, which specifically recognizes full-length Ci
(CiFL) [87]. b-Tubulin detection served as the loading control in all figures. All immunoblotting data presented in the figures are representative of
independent experiments that were performed at least three times. (B) Endogenous CiFL degraded rapidly with a half-life of approximately two
hours (indicated by dashed lines) as determined by Image J densitometry. (C) CHX-induced CiFL degradation was rescued upon pre-incubation with
UPS inhibitors (MG132, ALLN and Lactacystin), but not with DMSO or lysosomal inhibitors (E64, Leupeptin and NH4Cl). (D) In the absence of CHX
treatment, incubation with UPS inhibitors alone resulted in significant accumulation of CiFL, while lysosomal inhibitors had no effect, thus suggesting
a physiological relevance of the UPS-mediated Ci degradation in Hh signaling.
doi:10.1371/journal.pone.0024168.g001
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activity was attenuated (Figure 1D). Taken together, our results

suggest that the UPS played a major role in regulating CiFL

stability in vitro.

To investigate whether the stability of endogenous Ci is also

subject to UPS control in vivo, we exposed Drosophila wing discs to

inhibitors specific for either the UPS or the lysosome system. Hh

protein is produced from cells present in the posterior compart-

ment of the wing disc, and moves across the anterior/posterior (a/

p) boundary to form a Hh morphogen gradient, thereby activating

downstream target genes in anterior cells [1–4]. Those anterior

cells abutting the a/p boundary receive the highest Hh signaling,

while less signaling is transduced in the anterior-most cells. As a

consequence, CiFL accumulates at a much higher level in anterior

cells close to the a/p boundary (marked by the dashed line in

Figure 2A), and levels sharply decline in more anterior cells.

Consistent with our in vitro results, only the UPS inhibitors were

sufficient to protect Ci protein from degradation in wing discs

(Figure 2B and C; data not shown).

To further validate the results obtained from inhibitor studies,

we specifically disrupted UPS or lysosome function in wing discs

by genetic manipulation. First, we overexpressed a UAS-ubp trans-

gene, which encodes a yeast DUB enzyme that has been used in

Figure 2. The stability of endogenous Ci is regulated by the UPS in vivo. (A–C) UPS inhibition protected CiFL from degradation in the wing
disc. CiFL, detected with the 2A1 antibody, accumulated abutting the anterior/posterior (a/p) boundary (marked by the dashed line) of a wildtype
wing disc treated with DMSO (A). Incubation with the UPS inhibitor MG132 led to accumulation of CiFL in more anterior cells in the wing disc (B),
while the lysosomal inhibitor E64 had no obvious effect (C). (D and E) Blockage of ubiquitination in the wing disc by overexpressing UAS-ubp
resulted in accumulation of CiFL in more anterior cells (E). MS1096-Gal4 (G4), which was used in Figures 2, 3, 4 and 6 to drive transgene expression at
a much higher level in the dorsal compartment of the wing disc (indicated by a box bracket), did not alter the stability of CiFL (D). (F–O) Genetic
manipulation to disrupt UPS- or lysosome-mediated protein degradation in wing discs. Knockdown of the 19S proteasome subunit Mov34 by RNAi (F)
or disrupting the function of the 20S proteasome core particle b2 subunit by expression of a dominant negative temperature-sensitive DTS7
transgene (G) in the dorsal compartment of wing discs (indicated by box brackets) resulted in significant accumulation of CiFL. In contrast, the
expression pattern of CiFL was not altered when the lysosomal function was disrupted by Hrs RNAi (H, box bracket) or in HrsD28 loss-of-function
somatic clones (J–L, arrowheads). As a control, accumulation of Delta protein (Dl), which normally undergoes endocytosis to the lysosome, was
observed when Hrs function was disrupted (I, M–O). HrsD28 loss-of-function clones were negatively marked by nuclear GFP (nGFP; K and N). Note that
the MS1096-Gal4 driver alone did not alter the expression patterns of CiFL or Dl in wing discs (see Figure S1).
doi:10.1371/journal.pone.0024168.g002
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several Drosophila studies to efficiently remove Ub from ubiquiti-

nated substrates [34–36]. As expected, CiFL was stabilized in the

dorsal compartment of the wing disc (indicated by a box bracket)

when ubp transgene expression was driven by the MS1096-Gal4

driver (Figure 2E; cf. Figure 2D); MS1096-Gal4 driver confers

transgene expression at a much higher level in the dorsal

compartment of the wing disc (Figure S1C). This experiment

suggests that CiFL is ubiquitinated under normal physiological

conditions and degraded in the cells away from the Hh signaling

source.

Since the UPS and lysosome can both recognize ubiquitinated

proteins as substrates for degradation, we further distinguished

these two pathways by directly inhibiting either the proteasomal or

lysosomal pathway. The most common form of the proteasome is

the 26S complex, which is composed of two major subcomplexes:

the 19S regulatory particle and the 20S proteolytic core particle

(reviewed in [15]). RNAi-mediated knockdown of two well-

conserved 19S proteasome regulatory particle subunit genes,

Mov34 and Rpn6 [37], resulted in significant accumulation of CiFL

protein (Figure 2F; data not shown). Similarly, when the function

of 20S proteasome core particle b6 (Pros26) or b2 (Prosbeta2)

subunit was disrupted in the dorsal compartment of the wing disc

by the expression of dominant negative temperature-sensitive

mutants DTS5 or DTS7 [38], CiFL protein was stabilized in more

anterior cells (Figure 2G; data not shown). In contrast, when the

essential lysosomal components, car (carnation) [39], dor (deep orange)

[40], Hrs (Hepatocyte growth factor regulated tyrosine kinase substrate) or

Stam (Signal transducer adaptor molecule) [41], [42], were specifically

knocked down by RNAi, little if any effect on CiFL stability was

observed (Figure 2H; data not shown). To rule out the possibility

that the lack of Ci accumulation in the wing disc was due to the

inefficiency of RNAi transgenes used, we generated loss-of-

function somatic clones of lysosomal mutant alleles; clones were

negatively marked by GFP (Figure 2K and N, arrowheads).

Similar to our RNAi results, we found that the expression level of

CiFL protein was un-altered in cells present in mutant clones

(indicated by arrowheads) for dor, Hrs or Stam genes (Figure 2J–L;

data not shown). As a control, Notch signaling ligand Delta (Dl)

protein, which is normally endocytosed through lysosomal

components [43], accumulated in the cells (i.e. dotted pattern,

cf. Figure S1A) where lysosomal function was disrupted by Hrs

RNAi or in loss-of-function Hrs mutant clones (Figure 2I and M–

O). Taken together, the results from our in vitro and in vivo

experiments strongly support a major role of UPS in regulating

CiFL protein stability in Drosophila.

Targeted in vivo RNAi screen to identify novel UPS genes
in regulating Hh signaling

To study the function of UPS regulators in Hh signaling, we

searched the fly genome and identified a set of proteins that

contain UPS-related domains [44]. A single E1 (Uba1, CG1782)

[45], [46] and a single E2 (UbcD6, CG2013) [47], [48] enzyme

are believed to function in UPS-mediated protein degradation in

Drosophila. Seven additional E1s and 33 E2s have been identified

based on the presence of signature protein domains [44], [49],

[50]. Among those, Uba2 (CG7528) and Aos1 (CG12276) are

believed to form a dimer and activate the Small Ub-like Modifier

(SUMO) protein in Drosophila [51], [52], while Ubc9 (CG3018)

functions as the E2 conjugating enzyme in the fly SUMO pathway

[52], [53]. The function of other E1s or E2s are largely unknown

in Drosophila. In contrast to limited numbers of E1s and E2s, there

is a large array of E3 ligases that are responsible for targeting

specific substrates for degradation. Based on sequence homology

of their E2-binding domains, E3s can be generally classified into

two major subfamilies: HECT (the homologous to E6-AP carboxyl

terminus) domain- and RING (the really interesting new gene)

finger domain-containing E3s [17], [44]. We identified 14 HECT-

and 134 RING-containing proteins in the fly genome. We also

found a set of proteins containing other domains that normally

contribute to the formation of the E3 complex, including the F-

box domain, Cullin domain, N-recognin domain, SKP1 domain

and U-box domain. In total, we identified 8 E1, 34 E2 and 207 E3

genes in the fly genome (Table 1).

The availability of two collections of transgenic RNAi libraries

housed in the VDRC (Vienna Drosophila RNAi Center, Austria)

[54] and the NIG-Fly Stock Center (National Institute of Genetics,

Japan), makes it possible to screen nearly all UPS regulators that

we identified for their effects on Hh signaling in vivo. We obtained

414 RNAi lines targeting 238 genes out of a total of 248 UPS

genes (Table S1). Hh signaling functions as an important

morphogen as well as a powerful mitogen during fly wing

development. We therefore examined adult wing blade patterning

and larval wing disc development as efficient and reliable readouts

in our in vivo RNAi screen to identify Hh signaling-specific UPS

genes.

We first knocked down the expression of individual UPS genes

in wing discs by RNAi using the MS1096-Gal4 driver, and then

examined the resulting adult wing blade phenotypes. We found

that reducing the expression of 72 UPS genes altered adult wing

morphology (Table S1). As several developmental signaling

systems, including Hh, Wnt, TGF-b and Notch signaling,

collaborate to control wing morphogenesis, a secondary screen

was conducted to identify Hh signaling-specific UPS regulators.

We evaluated the distribution patterns of CiFL in wing discs

overexpressing UPS RNAi. To correlate Ci expression with Hh

signaling activity, we also examined the expression of a

decapentaplegic (dpp)-lacZ enhancer trap reporter; dpp is a direct

transcriptional target of Hh signaling in the wing disc. To further

validate our screen results, we investigated whether the effect of

UPS regulation is direct by examining CiFL stability in UPS RNAi

overexpressing clones (i.e. flip-out clones) [55], [56]. Only those

UPS genes that cell-autonomously affect CiFL protein were

chosen as true Ci regulators.

Our RNAi screen successfully identified E3 Ub ligase members

which are known UPS regulators of CiFL stability [5–8], including

slimb, Cul1 (lin 19), and Roc1a (Figure S2; data not shown). These

genes encode Slimb-Cul1 complex components that have been

Table 1. UPS genes identified in the fly genome.

Gene class IPR domain
Number
of genes

Number of
RNAi lines

E1 IPR000594 8 12

E2 IPR000608 34 61

E3 (HECT) IPR000569 14 25

E3 (RING) IPR001841 134 219

E3 (Cullin) IPR001373 7 14

E3 (F-Box) IPR001810 37 59

E3 (SKP1) IPR001232 8 13

E3 (U-Box) IPR003613 5 9

E3 (N-recognin) IPR003126 2 4

In total 248* 414*

*Note that CG15437 protein contains both an E2 domain and a F-Box domain.
doi:10.1371/journal.pone.0024168.t001
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shown to destabilize CiFL by promoting proteasomal degradation.

In addition, we identified two novel genes (CG13343 and CG7375)

that regulate CiFL stability and Hh signaling activity. To date,

these genes are uncharacterized and their functions poorly

understood. We therefore conducted genetic and biochemical

studies to understand the molecular functions of these novel genes

in Drosophila.

CG13343 functions as a neddylation E1-activating
enzyme in Drosophila

The CG13343 transcript was uniformly expressed in the wing

disc (Figure S3B). Reduced expression of CG13343 by RNAi in

wing discs at 29uC resulted in lethality at the pupal stage. At 25uC,

several escapers survived into adulthood, with their wing blades

folded and damaged (data not shown). To accurately determine

whether CG13343 played a role in Hh signaling, we investigated

the effect of CG13343 knockdown in the wing disc, a primordium

of the adult wing. During patterning in the developing wing,

distinct target genes are activated in response to different strengths

of Hh signaling activity (Figure 3A–C) [33]. Low-threshold Hh

signaling stabilizes CiFL. The expression of one of these targets,

dpp, is induced by intermediate-threshold Hh signaling, whereas

two other targets, ptc and collier (Col), respond to high-threshold Hh

signaling. Here, we examined the effects of reduced CG13343

activity on CiFL, dpp-lacZ reporter and Col protein in the wing

disc.

Knockdown of CG13343 expression by RNAi in the wing disc

resulted in the stabilization of CiFL (Figure 3D) and the activation

of Hh signaling: dpp-lacZ (Figure 3E) and Col protein (data not

shown) were ectopically expressed. Notably, CG13343 RNAi had

little effect on the abundance of Ci75, the repressor form of Ci

(Figure S4A). Further analyses of cells in CG13343 RNAi

overexpressing clones, which were positively marked by mCD8-

GFP (Figure 3H and K), confirmed that CG13343 functions cell

Figure 3. CG13343 negatively regulates CiFL stability and Hh signaling. (A–C) Stabilization of CiFL (A), induction of Hh signaling reporter
dpp-lacZ (B) and Col protein (C) abutting the a/p boundary (indicated by the dashed line in A) in wing discs correlate with low-, intermediate- and
high-threshold Hh signaling activity, respectively. Box brackets mark the dorsal compartment of wing discs where MS1096-Gal4 exhibits a much
higher activity (also see Figure S1C). (D–O) CG13343 negatively regulates Hh signaling. RNAi knockdown of CG13343 in the dorsal compartment of
the wing disc (box bracket) led to accumulation of CiFL protein (D) and expansion of dpp-lacZ activity (E). Similarly, CiFL stabilization (G) and ectopic
Col expression (J) were observed in CG13343 RNAi-overexpressing cells (positively marked by mCD8-GFP in H and K) in anterior clones (G–L,
arrowheads), but not in posterior clones (arrow). Ectopic Col activation was also evident in CG13343SH2028 somatic clones (negatively marked by nGFP
in N) located in the anterior compartment of the wing disc (M, arrowheads). Note that Ci and Col are not expressed in posterior cells.
doi:10.1371/journal.pone.0024168.g003
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autonomously to regulate CiFL stability (Figure 3G, arrowheads)

and Col activation (Figure 3J, arrowheads). Three independent

RNAi transgenic lines were tested and similar effects on CiFL

stabilization and target gene activation were observed (Figure 3;

data not shown). The efficiency and specificity of CG13343 RNAi

was examined by semi-quantitative RT-PCR (Figure S5A).

To validate the CG13343 RNAi knockdown results, we generated

loss-of-function somatic CG13343SH2028 mutant clones in the wing

disc, which were negatively marked by nGFP (Figure 3N). The

CG13343SH2028 is a recessive-lethal mutant that arose from a P-

element insertion at the position 34 bps immediately after the ATG

start codon in the CG13343 locus [57]. RT-PCR results indicated

that CG13343SH2028 represented a null mutation for CG13343

(Figure S5C). Consistent with the CG13343 RNAi results, we found

that CiFL was stabilized (Figure 4M) and Col was ectopically

expressed in CG13343SH2028 clones (Figure 3M, arrowheads),

indicating that CG13343 was required to control both low- and

high-threshold Hh signaling.

Utilizing a protein domain search, we found that the CG13343

protein was highly conserved from yeast to human, and contain a

Ub-activation domain normally found in Ub-activating E1 enzymes

(Figure S6). Uba3 is the CG13343 ortholog in yeast and human,

which functions as the NEDD8 activating E1 enzymes in the

neddylation process [58]. The best-characterized substrates for

neddylation are Cullin family proteins [18–22], [58]. Neddylation of

Cullin proteins results in Cullin activation, but also leads to its own

destabilization [18–22]. To investigate whether the function of

CG13343 mimicked its yeast and vertebrate counterparts we

examined the stability of Cullin proteins in wing discs. RNAi-

mediated knockdown of CG13343 was carried out in the dorsal

compartment of wing discs using an ap-Gal4 driver (expression

pattern of ap-Gal4 is shown in Figure 4C). Notably, only one

commercially available antibody raised against vertebrate Cullins

(i.e. a-Cul1) worked for immunohistochemistry in wing discs. As

expected, Cul1 accumulated in dorsal compartment cells (marked by

box brackets) where CG13343 expression was down-regulated

(Figure 4F, cf. Figure 4B). Consistent with this outcome, increased

Cul1 protein expression (Figure 4J) was observed in clones

overexpressing CG13343 RNAi (i.e. mCD8-GFP-positive cells in

Figure 4K) as well as in loss-of-function somatic CG13343SH2028

clones (i.e. nGFP-negative cells in Figure 4N).

To investigate whether CG13343 protein was required for

Cullin neddylation in vivo, we exploited the fact that neddylated

Cullin migrates slower than its unmodified counterpart on

SDS-PAGE [7], [22], [59]. To examine the extent of Cullin

neddylation, antibodies specific for Cul1 and Cul3 were used. In

wildtype wing disc lysates, both Cul1 and Cul3 proteins were

neddylated (Figure 5A, lane 1). When CG13343 expression in wing

discs was knocked down by RNAi, which stabilized CiFL, we

found that neddylation of Cul1 or Cul3 was largely reduced (lane

2). These results are consistent with previous reports illustrating

that neddylated Cullins are required for Ci degradation [22], [59].

As neddylated and activated Cullins are less stable, we observed

that wing disc lysates overexpressing CG13343 RNAi had higher

levels of Cul1, presumably resulting from stabilization of un-

neddylated Cul1. However, it is interesting to note that the

amount of un-neddylated Cul3 was not obviously changed in cells

expressing CG13343 RNAi. The different sensitivity between Cul1

and Cul3 stabilization in response to CG13343 RNAi could be due

to incomplete depletion of CG13343. To address this possibility,

we examined the neddylation and stabilization of Cul3 in pro-

tein lysates extracted from first-instar larve homozygous of

CG13343SH2028. As predicted, the accumulation of un-neddylated

Cul3 protein was evident in the CG13343SH2028 mutant (Figure 5B,

Figure 4. The stability of Cul1 is regulated by CG13343. (A–D) Uniform expression of Cul1 protein (B) in a wing disc expressing the ap-Gal4
driver. UAS-mCD8-gfp expression (C) reflects the ap-Gal4 activity in the dorsal (d) compartment (marked by the box bracket). (E–P) Regulation of Cul1
protein stability by CG13343. Knockdown of CG13343 expression by RNAi in the dorsal compartment of the wind disc resulted in significant
accumulation of CiFL (E) and Cul1 (F). Analysis of CG13343 RNAi-overexpressing clones (positively marked by mCD8-GFP in K) in the anterior
compartment (arrowheads) confirmed that the stability of CiFL (I) and Cul1 (J) was cell-autonomously regulated by CG13343. Similarly, stabilized CiFL
(M, arrowheads) and Cul1 (N, arrowheads and arrow) were observed in CG13343SH2028 loss-of-function somatic clones (negatively marked by nGFP in
O) in the wing disc.
doi:10.1371/journal.pone.0024168.g004
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lane 2). These results confirmed that CG13343 played a role in the

neddylation pathway. To definitively demonstrate that CG13343

protein functioned as a neddylation E1 enzyme, we examined

Cullin neddylation using a cell-free neddylation assay. Minimal

neddylation on Cul1 or Cul3 was detected in fly cl-8 cell lysates

after one-hour incubation in the presence of purified E2 enzyme,

NEDD8 and ATP (Figure 5C, lane 1). This approach provided a

relatively clean system for testing the capacity of CG13343 as a

neddylation E1 enzyme in vitro. When V5-tagged CG13343

(CG13343-V5) was overexpressed in cl-8 cells, we observed obvious,

albeit weak, neddylation on Cul1, but not on Cul3 (lane 2).

Structural studies reveal that human Uba3 forms a hetero-

dimer with b-Amyloid precursor protein binding protein 1

(APPBP1), and together they function as an active neddylation

E1 complex [18–21]. Genetic evidence suggests that the Drosophila

homolog of APPBP1 (dAPPBP1) may participate in the neddylation

process [59]. We found that, when co-expressed in cl-8 cells,

CG13343 protein was able to form a complex with dAPPBP1

(Figure 5D). Furthermore, this complex sufficiently acted as a

potent neddylation E1 enzyme to neddylate both Cul1 and Cul3

(Figure 5C, lane 3; cf. lane 2). Taken together, our genetic and

biochemical assays provide strong evidence that CG13343

protein was a functional homolog of Uba3 as it acted together

with dAPPBP1 to function as a NEDD8 E1-activating enzyme.

Hence, we propose the renaming of CG13343 to dUba3

(Drosophila Uba3).

CG7375 functions as a neddylation E2-conjugating
enzyme in Drosophila

The second gene identified from our targeted RNAi screen was

CG7375. Similar to CG13343, CG7375 is uniformly expressed in

the wing disc (Figure S3E). knockdown of CG7375 expression by

Figure 5. CG13343 protein functions as the E1 enzyme for Cullin neddylation. (A) Immunoblot analysis (WB) of lysates extracted from
wildtype (WT) wing discs (lane 1) or wing discs overexpressing CG13343 RNAi driven by the MS1096-Gal4 driver (lane 2). CG13343 RNAi led to
accumulation of both CiFL and Cul1 (lane 2). Furthermore, stabilized Cul1 was predominantly un-neddylated (lane 2). Neddylation of Cul3, another
Cullin family protein, was also reduced. However, there was no accumulation of un-neddylated Cul3 (lane 2). Note that this Cul3 antibody does not
work for immunohistochemistry in wing discs. (B) Immunoblot analysis of lysates extracted from wildtype (lane 1) or homozygous loss-of-function
CG13343SH2028 first-instar larvae (lane 2). Neddylation of Cul3 protein was abolished and un-neddylated Cul3 was stabilized. (C) The E1 activity of
CG13343 for Cullin neddylation. In an in vitro neddylation assay, purified human Ubc12 was used as E2 and cl-8 cell lysate provided the source for
Cullin proteins. In the absence of added CG13343-V5, minimal neddylation activity was observed (lane 1). Overexpressed CG13343-V5 in cl-8 cells was
sufficient to function as an E1 enzyme to neddylate Cul1, but not Cul3 (lane 2). The neddylation activity of CG13343-V5 was greatly enhanced when
CG13343-V5 was co-expressed with dAPPBP1-HA in cl-8 cells (lane 3), resulting in the neddylation of both Cul1 and Cul3. Note that equal amounts of
plasmid DNA were transfected in cl-8 cells, i.e. half amount of CG13343-V5 plasmid was transfected in lane 3 compared to that in lane 2. (D) CG13343
protein forms an E1 complex with dAPPBP1. cl-8 cells were transiently transfected with dAPPBP1-HA and CG13343-V5, and 0.5% of the cell lysate was
loaded as input (lane 1). An anti-HA antibody was used for immunoprecipitation (IP) (lane 2).
doi:10.1371/journal.pone.0024168.g005
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RNAi in the dorsal compartment of wing discs activated Hh

signaling: elevated CiFL protein stabilization (Figure 6A and

Figure S4B) as well as expanded dpp-lacZ (Figure 6B) and Col

expression (data not shown) were observed. Analysis of cells in

CG7375 RNAi overexpressing clones revealed that CG7375 acted

cell autonomously to regulate CiFL stability (Figure 6D, arrow-

head) and Col expression (Figure 6G, arrowhead).

To validate the CG7375 RNAi knockdown results, we generated

loss-of-function somatic CG7375LL04684 mutant clones in the wing

disc, which were negatively marked by nGFP (Figure 6K). The

CG7375LL04684 is a recessive-lethal mutant that arose from a

piggyBac insertion at the position 19 bps immediately after the

ATG start codon in the CG7375 locus [60]. RT-PCR results

indicated that CG7375LL04684 represented a null mutation for

CG7375 (Figure S5D). Consistent with the CG7375 RNAi results,

we found that CiFL was stabilized (Figure 7I) and Col was

activated in CG7375LL04684 clones (Figure 6J, arrowheads). These

results suggested that CG7375 behaved similarly to CG13343 to

regulate Ci stability and Hh signaling activation.

CG7375 protein harbors two distinct functional motifs: the E1

binding motif and E2 activity core (Figure S7). Recently, CG7375

has been predicted to be involved in neddylation, most likely

acting as an E2 NEDD8 conjugating enzyme [61]. This hypothesis

partially relies on the fact that CG7375 contains a small N-

terminal extension shared only by E2 Ubc12 family members

specific for NEDD8 conjugation [62]. However, to date, no

functional studies have been conducted to demonstrate that

CG7375 acts as the Drosophila NEDD8 E2 enzymes [61], [63].

To determine whether CG7375 protein functions in fly

neddylation, we first examined the expression pattern of Cul1 in

wing discs where CG7375 expression was reduced. Both CiFL and

Cul1 protein levels were significantly increased in the dorsal

compartment of the disc where CG7375 RNAi was overexpressed

by the ap-Gal4 driver (Figure 7A–D). Utilizing CG7375 RNAi

overexpressing clones (Figure 7E–H, arrowhead) as well as loss-of-

function somatic CG7375LL04684 clones (Figure 7I–L, arrowheads),

we demonstrated that the effect of CG7375 on the stabilization of

Ci and Cul1 was cell autonomous.

To examine whether the elevated Cullin expression in wing

discs was due to reduced neddylation, we compared Cullin

neddylation in protein lysates extracted from wing discs with or

without overexpressed CG7375 RNAi. As expected, Cul1 neddyla-

tion was significantly reduced (Figure 8A, lane 2; cf. lane 1), which

resulted in significant accumulation of Cul1 in wing discs expressing

CG7375 RNAi (Figure 7). However, CG7375 RNAi had little effect

on the stabilization of un-neddylated Cul3 (lane 2). Consistent with

the result observed in dUba3 loss-of-function larvae (Figure 5B), we

found that un-neddylated Cul3 accumulated in protein lysates

extracted from the loss-of-function CG7375LL04684 mutant larvae

(Figure 8B, lane 2).

To demonstrate that CG7375 protein functions as a neddyla-

tion E2 enzyme, we tested whether CG7375 protein could transfer

NEDD8 to Cullin proteins in an in vitro cell-free assay. Cullins were

provided from lysates extracted from wing discs whose endogenous

CG7375 mRNA was significantly reduced by CG7375 RNAi

(Figure S5B). In this situation, neither Cul1 nor Cul3 was notably

Figure 6. CG7375 negatively regulates CiFL stability and Hh signaling. RNAi knockdown of CG7375 in the dorsal compartment of the wing
disc (box bracket) led to accumulation of CiFL (A) and expansion of dpp-lacZ (B). Analysis of CG7375 RNAi-overexpressing clones (positively marked
by mCD8-GFP in E and H) confirmed that CiFL stability (D, arrowhead) and Col expression (G, arrowhead) were cell-autonomously regulated by
CG7375 in the anterior compartment of the wing disc. Similarly, ectopic Col expression (J, arrowheads) was observed in loss-of-function CG7375LL04684

somatic clones (negatively marked by nGFP in K) in the wing disc.
doi:10.1371/journal.pone.0024168.g006
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neddylated (Figure 8A, lane 2). Addition of GST protein alone to

the lysates did not result in Cullin neddylation (Figure 8C, lane 1).

In contrast, addition of purified GST-CG7375 fusion protein was

sufficient to conjugate NEDD8 to almost all Cul1 protein present

in wing disc lysates (lane 2). Furthermore, neddylation was

dependent on the presence of a functional E1 enzyme complex

(lane 3) and ATP (lane 4). The ability of CG7375 to conjugate

NEDD8 was also true for Cul3, although the overall degree of

Cul3 neddylation was weaker than that of Cul1 (lane 2).

Recent crystal structure studies on the human E2 neddylation

enzyme, Ubc12, suggest that a unique motif present in the N

terminus of the proteins (Figure S7) is crucial for recruiting

NEDD8’s E1 enzyme to promote thioester formation between

Ubc12 and NEDD8 [62]. We therefore tested whether this motif

plays a conserved role in Drosophila. We found that deletion of the

characteristic N terminal motif (CG7375DN) completely abolished

CG7375 protein’s neddylation E2 activity (Figure 8D, lane 2).

Together, our genetic and in vitro biochemical analyses demon-

strate that CG7375 is a bona fide NEDD8 E2-conjugating enzyme.

Thus, we propose the renaming of CG7375 to dUbc12.

In vertebrates, both Uba3-APPBP1 and Ubc12 are required for

NEDD8 conjugation to Cullin proteins. Consistent with this,

CG13343-dAPPBP1 E1 complex (Figure 8E, lane 2) or purified

GST-CG7375 alone (lane 3) was unable to promote Cul1 or Cul3

neddylation in a cell-free neddylation assay, unless both enzymes

were present (lane 4). These experiments indicate that dUba3 (i.e.

CG13343) and dUbc12 (i.e. CG7375) function together in an

enzyme cascade for neddylation in Drosophila.

Discussion

In this study, we utilized a targeted RNAi screen and identified

several candidate UPS regulators in patterning of the Drosophila

wing. Focused investigation on two candidate genes, CG13343 and

CG7375, demonstrated that they played a critical role in Hh signal

transduction by controlling the stability of Hh signaling transcrip-

tion factor Ci to regulate both low- and high-threshold Hh

signaling. Importantly, we provided genetic and biochemical

evidence that protein products of these two genes participated in a

conserved protein degradation process in Drosophila, functioning as

the NEDD8 E1-activating and E2-conjugating enzymes in

neddylation, respectively. Consistent with our biochemical anal-

ysis, reduction of dNEDD8 modifier was able to elicit a full

spectrum of Hh pathway responses in the wing disc (Figure S8).

Thus, we propose a model whereby the neddylation pathway

negatively regulates Hh signaling at the level of Ci stability (Fig.

S9). The activity of Cul1-based E3 ubiquitin ligase complex is

activated by neddylation, which in turn promotes proteolytic

cleavage of CiFL to Ci75, thereby antagonizing low-to-interme-

diate threshold Hh signaling. On the other hand, neddylation

activates Cul3-based E3 ubiquitin ligase complex, which degrades

CiFL to prevent high-threshold Hh signaling.

A general requirement of the UPS in the regulation of Ci
protein stability

Hh signaling activates downstream target genes in a de-

repression manner, thereby protecting the transcription factor Ci

from degradation and/or processing. Two distinct ubiquitin ligase

complexes, Slimb-Cul1 and Rdx-Cul3, have been identified as key

regulators of Ci stability [5–13]. Both complexes recognize CiFL

as the substrate, targeting it for either partial or complete

degradation. Two subcellular compartments, the lysosome and

proteasome, are important for regulated protein degradation.

Although there is general consensus that Ci degradation takes

place in the proteasome, in vivo evidence directly demonstrating the

requirement of the proteasome for endogenous Ci degradation is

lacking.

Here, we examined the stability of endogenous CiFL when the

UPS or lysosome function was disrupted either by treating cultured

fly cells with specific inhibitors or by genetically manipulating wing

discs. Our data, consistent with previous studies on Ci degradation/

processing [5–13], strongly support a major role of the UPS in

controlling endogenous CiFL stability. However, this conclusion is

in direct conflict with a previous study by Dai et al., suggesting that a

multivesicular body-localizing protein Debra (Dbr) might direct

CiFL degradation to the lysosome [31].

To solve this apparent discrepancy, we carefully compare the

experimental conditions we employed to examine CiFL stability in

cl-8 cells with those in Dai et al. Ectopically expressed HA-CiFL in

Dai et al. exhibits a half-life of 15 hours, which is significantly

longer than that of endogenous CiFL (approximately two hours,

Figure 7. CG7375 controls Cul1 protein stability. (A–D) Knockdown of CG7375 expression by RNAi in the dorsal compartment of the wing disc
(marked by mCD8-GFP expression in C) resulted in significant accumulation of CiFL (A) and Cul1 (B). (E–L) Cell-autonomous stabilization of CiFL (E
and I) and Cul1 (F and J) was observed when CG7375 function was disrupted in CG7375 RNAi-overexpressing clones (arrowhead in E–H; positively
marked by mCD8-GFP in G) or in CG7375LL04684 loss-of-function somatic clones in wing discs (arrowheads in I–L; negatively marked by nGFP in K).
doi:10.1371/journal.pone.0024168.g007
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Figure 1B) in this study as well as that of the overexpressed Myc-

CiFL (approximately three hours) demonstrated by Jia et al. [64].

Thus, it is not surprising that ectopic HA-CiFL was unable to

respond to either UPS inhibitor MG132 or lysosomal inhibitor

E64 treatment in cl-8 cells unless additional Dbr proteins were

provided. In contrast, endogenous CiFL in cl-8 cells (Figure 1) and

in wing discs (Figure 2), as well as over-expressed Myc-CiFL in cl-8

cells [7], [10], [64] can be readily protected from degradation by

inhibiting the UPS function. Our conclusion is further supported

by the fact that, overexpressed Gli1, one of the vertebrate

orthologs of Ci, is also subject to proteasomal regulation [65]. We

suspect that the Dbr-mediated lysosomal degradation of HA-CiFL

may reflect a backup/alternative mechanism when UPS regula-

tion is overwhelmed by highly overexpressed HA-CiFL in vitro. In

the future, it will be interesting to investigate the molecular

mechanism of Dbr-mediated degradation of endogenous Ci, and

Figure 8. CG7375 protein functions as the E2 enzyme for Cullin neddylation. (A) Immunoblot analysis (WB) of lysates extracted from
wildtype (WT) wing discs (lane 1) or wing discs overexpressing CG7375 RNAi driven by the MS1096-Gal4 driver (lane 2). CG7375 RNAi led to
accumulation of both CiFL and un-neddylated Cul1 (lane 2). Similarly, neddylation of Cul3 was reduced, but the amount of un-neddylated Cul3 was
not obviously changed (lane 2). (B) Immunoblot analysis of lysates extracted from wildtype (lane 1) or homozygous CG7375LL04684 first-instar larvae
(lane 2). Neddylation of Cul3 protein was abolished and un-neddylated Cul3 was stabilized. (C and D) The E2 activity of CG7375 for Cullin
neddylation. In an in vitro neddylation assay, purified human Uba3/APPBP1 complex was used as E1 and lysates extracted from wing discs expressing
CG7375 RNAi provided the source for Cullin proteins. CG7375 RNAi wing disc lysates did not display neddylation activity (as 90% endogenous CG7375
was knocked down by CG7375 RNAi; Figure S5C), unless purified GST-CG7375 protein was added (lane 2 in C; lane 3 in D): both Cu1 and Cul3 were
neddylated. Purified GST protein was used as a negative control (lane 1 in C and D). The neddylation activity of GST-CG7375 was dependent on the
presence of purified E1 complex (lane 3 in C) and ATP (lane 4 in C). The N-terminus of human ortholog of CG7375 (Ubc12) is required to selectively
recruit NEDD8’s E1 to promote thioester formation between E2 and NEDD8 (Figure S7). Deletion of this conserved N terminal motif in GST-CG7375DN
abolished its neddylation E2 activity (lane 2 in D). (E) In vitro reconstitution of Drosophila neddylation cascade. Cul1 and Cul3 were neddylated when
both E1 complex (CG13343-V5 and dAPPBP1-HA produced in cl-8 cells) and E2 enzyme (GST-CG7375) were added to cl-8 lysates, which provided the
source of Cullins (lane 4). Adding E1 (lane 2) or E2 (lane 3) alone did not result in neddylation of Cul1 or Cul3.
doi:10.1371/journal.pone.0024168.g008
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more importantly, the relationship with the UPS-regulated Ci

degradation in vivo.

Differential neddylation of Cul1 and Cul3 in Hh signaling
Our work, together with other studies [22], [59], [66], [67],

demonstrates that the activities of both Cul1 and Cul3 are

controlled by neddylation in Drosophila. However, it should be

noted that there are differences in their respective neddylation

patterns in response to reduced neddylation. In hypomorphic

dUba3 or dUbc12 RNAi-expressing wing discs, reduced neddyla-

tion led to high-level accumulation of un-neddylated Cul1,

consistent with the notion that neddylated Cullin proteins are

unstable [20]. However, the levels of un-neddylated Cul3 in this

sensitized background seemed to be unaffected in wing disc lysates,

although the reduction of neddylated Cul3 was evident (Figure 5A

and Figure 8A). In contrast, when the neddylation process was

compromised in dUba3 or dUbc12 mutant larvae, both Cul

proteins were stabilized (Figure 5B and Figure 8B; data not

shown). Similarly, much less neddylation of Cul3 is observed than

that for Cul1 in our in vitro neddylation assays (Figure 5C and

Figure 8C–E) as well as in vertebrate Cullins when tested in an in

vitro assay [68]. This differential regulation of Cul1 and Cul3 is also

observed in the fly mutants of CSN5 and Int6, two genes that are

essential for de-neddylation [22], [66]. Although our results could

simply reflect that Cul3 neddylation requires a much higher

neddylation activity than Cul1, we believe that intrinsic differences

may exist between Cul1 and Cul3 proteins. Neddylated Cul3

might degrade more rapidly than neddylated Cul1, which could

explain distinct behaviors of Cul1 and Cul3 in our study. Indeed,

the percentage of neddylated Cul3 in the total pool of Cul3

proteins in wildtype wing discs (i.e. 50% lower as determined by

Image J densitometry in this study) and in brain lobes and eye discs

[67] is significantly lower than that of Cul1, suggesting differential

stability of neddylated Cullins. Further analyses are required to test

this hypothesis and to elucidate the functional significance of

differentially regulated Cullin proteins.

Cul1 and Cul3 are required for regulating Ci stability, but they

function in very different manners (Figure S9). The Slimb-Cul1

complex destabilizes Ci in the absence of Hh signaling through

direct binding between Slimb and phosphorylated Ci [6], [7]. Hh

signaling prevents Ci phosphorylation and thus protects Ci from

Slimb-Cul1 mediated degradation, as seen in the cells in the

anterior compartment of wing and eye discs that receive Hh from

the posterior compartment. The Rdx-Cul3 complex, on the other

hand, constitutively degrades Ci independent of phosphorylation

modifications even in the presence of Hh signaling [9], [10], [69]–

[71]. Therefore, the activity of the Rdx-Cul3 complex has to be

strictly controlled to ensure a proper Hh signaling outcome. One

way to restrict Rdx-Cul3 activity is to utilize Rdx as a direct Hh

signaling target [9], [10], [70]. In cells receiving low to

intermediate levels of Hh signaling, Rdx is not expressed. In cells

receiving the highest level of Hh signaling, Rdx expression is

induced, thus allowing the formation of Rdx-Cul3 complex to

degrade un-phosphorylated Ci. As the result, cells abutting the a/p

boundary in the wing disc and posterior to the morphogenic

furrow in the eye disc express much lower levels of Ci.

Maintaining a low but steady level of Ci in these cells is crucial

for transducing high-threshold Hh signaling, as further downreg-

ulation or abnormal accumulation of Ci proteins leads to

patterning defects in the wing and eye [9], [10], [69], [70]. Our

hypothesis that neddylated Cul3 is highly labile may, in part,

provide a solution. We believe that neddylated Cul3 could act as

an intrinsic brake to prevent Ci from complete degradation by the

Rdx-Cul3 complex. Interestingly, a similar mechanism may also

exist in the regulation of the cyclin E activity. Phosphorylated

cyclin E is subject to Cul1-mediated degradation [72–75], whilst a

Cul3-based complex targets cyclin E for ubiquitination indepen-

dent of protein phosphorylation [76], [77]. Further studies will

reveal the impact of such differential activity of neddylated Cul1

and Cul3 in Hh signaling as well as cell cycle control.

A conserved role of the neddylation process in regulating
developmental signaling

NEDD8 was originally identified as one of a set of genes that is

highly expressed in the embryonic mouse brain and was found to

be down-regulated during development [78]. Subsequently, it was

realized that NEDD8 is a Ub-like (UBL) protein, and is highly

conserved in eukaryotes (reviewed in [79]). NEDD8 is ubiquitously

expressed in most tissues and is essential for the viability of most

model organisms (reviewed in [80]). Among the UBL family

proteins, NEDD8 exhibits the highest protein sequence similarity

with Ub and is conjugated to substrate proteins through a very

similar enzyme cascade. However, the neddylation process utilizes

its own set of enzymes to insure a specific conjugation pathway.

Contrary to Ub, which is processed by a single E1 protein Uba1, a

heterodimer of APPBP1 and Uba3 is required for NEDD8

activation. APPBP1 is homologous to the N-terminus of the Uba1

protein, whereas Uba3 is to the C-terminus [18–20], [49]. Studies

in several organisms indicate that Ubc12 functions exclusively as

the NEDD8 E2 enzyme [50], [78]–[80]. Much is known about the

importance of the neddylation pathway in the regulation of

developmental processes in Drosophila [6], [22], [59], [63], [66],

[67], [69], but neither the identities nor the mechanisms of the fly

NEDD8 E1 and E2 enzymes are known.

Our genetic and biochemical analyses demonstrate that

CG13343 and CG7375 are functional orthologs of Uba3 and

Ubc12 in Drosophila. Ubiquitous knockdown of either dUba3 or

dUbc12 by driving RNAi transgenes with tub-Gal4 or act-Gal4

results in early larval lethality (data not shown). Similarly,

homozygous mutants of the CG13343SH2028 or CG7375LL04684

allele die at early larval stages (data not shown). Our results are

consistent with observations that null mutants of dNEDD8,

dAPPBP1, or components of the de-neddylation CSN complex

also die in early larval stages [6], [13], [22], [59], highlighting a

critical role of neddylation in normal animal development.

The best-characterized neddylation substrates are the Cullin

family proteins, which serve as the scaffold for the SCF ubiquitin

E3 complexes. The SCF E3s regulate numerous developmentally

important substrates, such as cell cycle regulator cyclin E [72–77]

and signaling transduction effectors, including Ci [5–13] and

Armadillo/b-catenin [81], [82]. NEDD8 has also been implicated

in transcriptional regulation, by neddylating another substrate, the

p53 tumor suppressor protein; neddylated p53 inhibits its own

transcription activity [83], [84]. The number of identified NE88-

target proteins is growing and interestingly a recent study in

Drosophila indicates that many non-Cullin proteins can be

neddylated in vivo [85]. The mechanisms regulating the neddyla-

tion pathway and the roles these processes in modulating animal

development is more complicated than we previously anticipated.

Further studies of dUba3 and dUbc12 in a highly amenable genetic

model system, like Drosophila, will contribute substantially to our

understanding of how neddylation functions in development.

Materials and Methods

Fly genetics
Act5C.yw.Gal4, ap-Gal4, MS1096-Gal4, and dpp-lacZ were

described previously [33], [55]. Transgenic RNAi flies targeting
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predicted UPS genes (Table S1) were obtained from the Vienna

Drosophila RNAi Center (VDRC) [54] and the Fly Stocks of

National Institute of Genetics (NIG-Fly). Targeted RNAi screen

was conducted by crossing individual RNAi lines with MS1096-

Gal4 at 29uC for altered adult wing blade morphogenesis. For

those lines displaying defective wing patterning, CiFL protein

stabilization and dpp-lacZ induction were examined in third-instar

larval wing discs for their effects on Hh signaling.

Specific fly strains and cross conditions as shown in the figures

are listed below. For Figure 2E and F, UAS-ubp (gift of Liqun Luo)

[34], UAS-Mov34 RNAi (V26183) or UAS-Rpn6 RNAi (V18021)

was crossed with MS1096-Gal4 at 18uC. For Figure 2G, UAS-

DTS5 or UAS-DTS7 [38] was crossed with MS1096-Gal4 at 29uC.

For Figure 2H and I, UAS-Hrs RNAi (Bloomington 28964 and

28026), UAS-dor RNAi (V33733 and V107053), UAS-car RNAi

(TRiP HMS00972) or UAS-STAM RNAi (V22497) was crossed

with MS1096-Gal4 at 29uC. For Figure 2J–O, second-instar larvae

from the crosses hs-flp;; ubi-gfp, FRT40A6HrsD28, FRT40A/Gla,

Bc (gift of Hugo Bellen) [41], or hs-flp;; ubi-gfp, FRT40A6S-

TAM2L3297, FRT40A/CyO (gift of Markus Affolter) [42], or ubi-

gfp, hs-flp, FRT19A6dor8, FRT19A/FM7 (gift of Helmut Krämer)

[39] were heat-shocked at 37uC for one hour to generate loss-of-

function somatic clones in the wing disc. For Figure 3D–F, UAS-

CG13343 RNAi lines (V17137, V17139 and V105141) were

crossed with MS1096-Gal4; dpp-lacZ/CyO at 29uC. For

Figure 3G–L and Figure 4 I–L, overexpressing (‘‘flip-out’’) clones

were generated by heat-shocking second-instar larvae from the

crosses of hs-flp; Act5C.yw.Gal4, UAS-mCD8-gfp6UAS-CG13343

RNAi lines at 37uC for one hour. For Figure 3M–O and 4M–P,

late second-instar progeny of the cross hs-flp; FRT42D, ubi-

gfp6FRT42D, CG13343SH2028/CyO (Drosophila Genetic Resource

Center at Kyoto, 122114) were heat-shocked at 37uC for one

hour. For Figure 4E–H, UAS-CG13343 RNAi lines were crossed

with ap-Gal4, UAS-mCD8-gfp at 29uC. For Figure 6D–I and

Figure 7E–H, the same heat-shocking condition was used as for

Figure 4I–L. For Figure 6A–C, UAS-CG7375 RNAi (V35219,

V35220 and V100761) was crossed with MS1096-Gal4; dpp-lacZ/

CyO at 29uC. For Figure 7A–D, UAS-CG7375 RNAi lines were

crossed with ap-Gal4, UAS-mCD8-gfp at 29uC. For Figure 6J–L

and 7I–L, late second-instar progeny of the cross hs-flp;; ubi-gfp,

FRT2A6CG7375LL04684, FRT2A / TM6B (Drosophila Genetic

Resource Center at Kyoto, 141316) were heat-shocked at 37uC for

one hour. For Figure S8, late second-instar progeny of the cross hs-

flp; ubi-gfp, FRT40A6dNEDD8AN015, FRT40A / CyO (gift of

Cheng-Ting Chien) [6] were heat-shocked at 37uC for one hour.

Molecular biology
Standard PCR method was used to amplify CG13343, CG7375

and dAPPBP1 coding sequences using cDNAs synthesized with

mRNAs extracted from yw third-instar larvae. CG13343-V5 and

dAPPBP1-HA were cloned into pIZ-V5 vector (Invitrogen) for

overexpressing in cl-8 cells. CG7375 or CG7375DN (amino acids 2–

23 were deleted) were cloned into pGST- parallel2 vector for

generating GST-fusion proteins. Primers used are listed as follows:

59-GTACGAATTCATGTCTGTCCACTCACCC-39 and 59-C-

TGATCTAGATAGACCATCTCCACCTCATT-39 for CG13343;

59-ATGCGAATTCTATGTCCTCGCCAGCCCCC-39 and 59-

TCAGTCTAGATTAGAGGCTAGCGTAATCAGGAACGTC-

GTAAGGGTATAGCTTCAATGTGACACT-39 for dAPPBP1;

59- AGTCGAATTCAAATGATTAAACTATTCACG-39 and

59-CATGCTCGAGTCACTTGAGCAGACAGCACTC-39 for

CG7375; 59-AGTCGAATTCAAATGGCGTCCGCCGCCCA-

GCTG-39 and 59- CATGCTCGAGTCACTTGAGCAGACAG-

CACTC-39 for CG7375DN.

RT-PCR was used to measure the abundance of CG13343 and

CG7375 mRNA after RNAi manipulation or in loss-of-function

mutant alleles. To test RNAi efficiency, RNA were extracted from

wing discs (100 pairs per sample) of third-instar larvae that

expressed RNAi transgene under the control of the MS1096-Gal4

driver at 29uC. For characterization of loss-of-function alleles,

RNA were extracted from GFP-negative first-instar larvae

(40 larvae per sample) of CG13343SH2028/CyO, Kr-gfp or

CG7375LL04684/TM3, twi-gfp flies. Total RNA was isolated with

TRIzol reagent (Invitrogen) according to the manufacturer’s

protocol. Contaminated DNA was digested using RNase-free

DNase followed by a phenol/chloroform extraction to remove

protein. First strand cDNA was synthesized from 1 mg of each

sample using SuperScript III reverse transcriptase (Invitrogen).

Semi-quantitative PCR was performed utilizing 20–35 cycles. The

linear amplification stage for each primer set was determined by

running the same volumes of amplified products on an agarose gel.

a-tubulin primers were used for loading control. Primers used are

listed as follows: 59-GGCGTTGTCAAGCACATCATTC-39 and

59-TTTATCACATCCTCCAGCGTGG-39 for CG13343 RNAi;

59-GTACGAATTCATGTCTGTCCACTCACCC-39 and 59-

CTGATCTAGATAGACCATCTCCACCTCAT-39 to amplify

full-length CG13343 cDNA in CG13343SH2028 mutant; 59-G-

GAARCCAGTGCTGAACATCAACTC-39 and 59-ACGCAT-

CGCCTTCTTTACATTG-39 for CG7375 RNAi; 59-AGTC-

GAATTCAAATGATTAAACTATTCACG-39 and 59-ATGC-

TCTAGACACTTGAGCAGACAGCACT-39 to amplify full-

length CG7375 cDNA in CG7375LL04684 mutant; 59-GATCGTC-

GATCTGGTTCTGGACAG-39 and 59-CCAGTGGACGAAG-

GCACGCTT-39 for a-tubulin.

cl-8 cells and wing disc cultures
Hh-responsive, Drosophila wing disc-derived clone-8 (cl-8) cells

[86] were cultured at 25uC as described [33]. Effectene trans-

fection reagent (Qiagen) was used for all transfection experiments.

Cycloheximide (50 mg/ml; Sigma) was used to inhibit nascent

protein synthesis in cl-8 cells. MG132 (50 mM; Sigma), ALLN

(50 mM; Sigma) and lactacystin (20 mM; Boston Biochem) were

used to inhibit the UPS activity. E64 (50 mM; Sigma), leupeptin

(50 mM; Sigma) and NH4Cl (50 mM; Sigma) were used to inhibit

lysosome function. In some experiments, cl-8 cells were pre-treated

for 3 hours (9 hours in total) with lysosomal or UPS inhibitors

prior to cycloheximide treatment for 6 hours. Third-instar larvae

were dissected and incubated at 25uC for 4 hours in cl-8 cell

medium supplemented with either lysosomal or UPS inhibitors

before fixation.

In situ hybridization, immunofluorescence staining,
immunoblotting and immunoprecipitation

The coding regions of CG13343 and CG7375 were used to

generate RNA probes for in situ hybridization as described

previously [33]. Wing discs from third-instar larvae were fixed in

4% paraformaldehyde and labeled with the following primary

antibodies: rat anti-Ci (1:20; 2A1; gift of Robert Holmgren) [87],

mouse anti-Col (1:100; gift of Alain Vincent) [88], rabbit anti-Cul1

(1:100; Zymed) [6], mouse anti-Dl (1:200; C594.9B; DSHB) and

rabbit anti-b-galactosidase (1:4000; Cappel). Alexa fluor-conju-

gated secondary antibodies (1:400; Invitrogen) were used. The

fluorescence images were acquired with a Zeiss Axio Imager2

equipped with an ApoTome.

cl-8 cells, first-instar larvae or wing discs dissected from third-

instar larvae were lysed in NP-40 buffer (1% NP-40, 150 mM

NaCl and 50 mM Tris-Cl, pH 8) supplemented with protease

inhibitor cocktail (Roche). Protein concentrations of the cell lysates
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were measured using a BCA Protein Assay (Thermo). The

following antibodies were used for immunoblotting: rat anti-Ci

(1:10; 2A1), rabbit anti-Ci (1:20000; AbN; gift of Thomas

Kornberg) [89], rabbit anti-Cul1 (1:1000; Zymed), mouse anti-

Cul3 (1:1000; BD Transduction Lab.) [13], mouse-anti-GST

(1:20000; B-14; Santa Cruz), rabbit anti-HA (1:1000; Y-11; Santa

Cruz), mouse anti-b-Tubulin (1:6000; Covance), and mouse anti-

V5 (1:2000; Invitrogen). Note that Cul1 and Cul3 antibodies for

this study have been extensively used to reveal migratory

differences between neddylated and un-neddylated Cullin proteins

on immunoblots [7], [22], [59]. Anti-HA-conjugated agarose

(Vector Lab.) was used to immunoprecipitate dAPPBP1-HA

complexes in cl-8 cells.

In vitro neddylation assay
Cell-free in vitro neddylation assays were carried out with a

NEDDylation kit according to the manufacturer’s instructions

(Enzo; UW0590). Typically, a 20 ml neddylation reaction includes

human (supplied with the kit) or fly E1 and E2 enzymes,

supplemented with 2 ml 106 NEDDylation buffer, 2 ml 106
NEDD8 (supplied with the kit), 1 ml 106Mg-ATP (Sigma), 0.4 ml

50 mM DTT (Sigma) and 4 ml 100 U/ml IPP (NEB). For

experiments shown in Figure 5C, 9.6 ml cl-8 cell lysates with or

without transfected CG13343-V5 and dAPPBP1-HA, and 1 ml 206
human Ubc12 (supplied with the kit) were used as E1 and E2,

respectively, to neddylate Cullin proteins present in cl-8 cell

lysates. For experiments shown in Figure 8C and D, 2 ml 106
human NEDD8 E1 complex (supplied with the kit) and 2 mg GST

or GST-CG7375 proteins bound on Glutathione Sepharose 4B

beads (GE Healthcare) were used. For experiments shown in

Figure 8E, 10.6 ml cl-8 cell lysates overexpressing the fly E1

complex, and 2 mg GST-CG7375 proteins bound on GST beads

were used as E1 and E2, respectively, to constitute the fly

neddylation cascade in vitro. All immunoblotting data presented in

the figures are representative of independent experiments that

were performed at least three times.

Supporting Information

Figure S1 Expression pattern of the MS1096-Gal4 driver
in the wing disc. MS1096-GAL4-driven mCD8-gfp was ex-

pressed at a much higher level in the dorsal (d) compartment of the

wing disc (C). MS1096-Gal4 driver alone had no effect on the

expression of Dl (A) or CiFL (B). Merged image is shown in (D).

(TIF)

Figure S2 Slimb as a negative regulator of CiFL
stability. Inhibition of slimb function by RNAi in the dorsal

compartment of the wing disc (indicated by a box bracket) led to

accumulation of CiFL protein (A) and expansion of dpp-lacZ

activity (B). Similarly, knockdown of slimb expression cell-

autonomously stabilized CiFL in an anterior clone (D–F,

arrowhead), but was incapable of inducing de novo Ci expression

in a posterior clone (D–F, arrow). Note that ci transcript is not

expressed in posterior cells.

(TIF)

Figure S3 Expression patterns of CG13343 and CG7375
in the wing disc. Endogenous CG13343 (B) and CG7375

transcripts (E) were detected by in situ hybridization in wildtype

(WT) wing discs using antisense RNA probes specific to CG13343

and CG7375, respectively. Sense RNA probes (A and D) were used

as the negative control. Ectopic expression of CG13343 (C) and

CG7375 (F) was detected in the dorsal compartment of the wing

disc (indicated by a box bracket) from ap-Gal4 driven EP[G8197]

and EY[22840] flies, respectively. Note that the UAS-containing

P-elements in EP[G8107] and EY[22804] are inserted on the 59

UTR of CG13343 and CG7375, respectively. Elevated CG13343 or

CG7375 expression in the wing dics was not sufficient to disrupt

adult wing development (data not shown), presumably due to a

limited amount of Cul proteins or NEDD8 modifier in the

neddylation pathway.

(TIF)

Figure S4 The effect of CG13343 and CG7375 on the
amounts of CiFL and Ci75 in wing discs. (A) Lysates

extracted from wildtype (lane 1) or CG13343 RNAi overexpressing

wing discs (lane 2) were immunoblotted (WB) with a Ci antibody

(AbN), which recognizes both CiFL (ie. Ci155) and Ci75 [89].

Overexpression of CG13343 RNAi led to a significant accumula-

tion of CiFL. However, the amount of Ci75 was not obviously

changed. b-Tubulin was used as the loading control. (B) Lysates

extracted from wildtype (lane 1) or CG7375 RNAi overexpressing

bwing discs (lane 2) were immunoblotted with a Ci antibody

(AbN). Overexpression of CG7375 RNAi resulted in a significant

accumulation of CiFL. However, the amount of Ci75 was slightly

reduced.

(TIF)

Figure S5 Reduced expression of CG13343 and CG7375
transcripts by RNAi and in loss-of-function alleles. (A and

B) The levels of CG13343 (A) and CG7375 mRNAs (B) in wing

discs overexpressing RNAi transgenes were evaluated by semi-

quantitative RT-PCR. PCR products were quantified by Image J

densitometry. RNAi overexpression resulted in significant reduc-

tion of the expression of CG13343 (70% reduction) and CG7375

(90% reduction) in wing discs. In contrast, the expression of

CG11020, which is an off-target of the CG13343 RNAi transgene,

did not change. a-tubulin was used as the internal control. (C and

D) The levels of full-length transcripts of CG13343 (C) and

CG7375 (D) in first-instar larvae were examined by RT-PCR. Full-

length transcripts of CG13343 (C) and CG7375 (D) were not

detected in CG13343SH2028 and CG7375LL04684 homozygous

mutants, respectively. a-tubulin was used as the internal control.

(TIF)

Figure S6 ClustalX alignment of CG13343 protein and
its Uba3 orthologs in Homo sapiens (Hs), Mus musculus
(Mm) and Schizosaccharomyces pombe (Sp). Sequences

used are Dm NP_610913.1, Hs NP_003959.3, Mm NP_ 035796.1

and Sp NP_ 592940.1. The UBA/THIF-type NAD/FAD binding

domain (IPR000594) is shaded in yellow. The ubiquitin-activating

enzyme repeat (IPR000127) is shaded in blue. The Nedd8

specificity determination residue is shaded in grey. The catalytic

cysteine residue of E1-activating enzyme is shown in green. Purple

shade marks the E2 binding domain (IPR014929).

(TIF)

Figure S7 ClustalX alignment of CG7375 protein and its
Ubc12 orthologs in Homo sapiens (Hs), Mus musculus
(Mm) and Schizosaccharomyces pombe (Sp). Sequences

used are Dm NP_648187.1, Hs NP_003960.1, Mm NP_663553.1

and Sp NP_588256.1. The ubiquitin-conjugating enzyme E2

activity core (IPR000608) is shaded in blue. The N-terminal E1

binding motif specific for neddylation [62] and the E2-conjugating

enzyme catalytic cysteine residue are shaded in yellow and green,

respectively. The N-terminal E1 binding motif was deleted in

GST-CG7375DN (amino acids 2–23).

(TIF)

Figure S8 Reduced dNEDD8 expression regulates Cul
stabilization to elicite a full spectrum of Hh signaling
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responses. Hypomorphic dNEDD8AN015 somatic clones (nega-

tively marked by nGFP in B, E and H) were induced in wing discs.

Cul1 protein (A) was stabilized in dNEDD8AN015 clones located at

the anterior (arrowheads) and posterior (arrow) compartments of

the wing disc. However, ectopic CiFL (D) and Col (G) were

induced only in anterior clones (arrowheads).

(TIF)

Figure S9 A model illustrating that dUba3 and dUbc12
control the stability and activity of Cul1 and Cul3 to
regulate a full spectrum of Hh signaling.
(TIF)

Table S1 Targeted in vivo RNAi screen to identify the
UPS regulators in Hh signaling.
(PDF)
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