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Rogue waves lead to the instability 
in GaN semiconductors
M. E. Yahia1,2, R. E. Tolba3, N. A. El-Bedwehy3, S. K. El-Labany4 & W. M. Moslem2,5

A new approach to understand the electron/hole interfaced plasma in GaN high electron mobility 
transistors (HEMTs). A quantum hydrodynamic model is constructed to include electrons/holes 
degenerate pressure, Bohm potential, and the exchange/correlation effect and then reduced to the 
nonlinear Schrödinger equation (NLSE). Numerical analysis of the latter predicts the rough  
(in)stability domains, which allow for the rogue waves to occur. Our results might give physical solution 
rather than the engineering one to the intrinsic problems in these high frequency/power transistors.

GaN physical characteristics have made it the ideal nominee for the high power, high temperature, and 
high frequency electronics applications1. GaN High Electron Mobility Transistors (HEMTs) is one of the 
most important examples application of GaN, which is characterized by very low noise figure because of 
the nature of the two dimensional electron gas 2DEG and the fact that there are less electron collisions. 
As a result of their noise performance they are increasingly in demand in low noise small signal wireless 
communications (mobile phones, satellite communications, TV broadcasting, broadband wireless inter-
net connection, transmitter base station amplifiers), military applications (radars, missile seekers), volt-
age converters, microwave radio frequency power amplifiers, high-voltage switching, microwave sources, 
and radio astronomy2,3. However, great concerns about the reliability of GaN HEMTs-based power elec-
tronic devices have been raised due to self-heating which severely degrades their performance and life-
time4. The transient drain current collapse and gate-lag are two more ruinous accompanying mechanisms 
that are theorized to have occurred because of trapping5,6. Although, many researchers overwhelmingly 
combine on the location of the GaN HEMT traps, but the strange thing is that, they always give fuzzy 
reasons basically depend on random localization distribution of causes like impurities, lattice defect, and 
dislocations. Besides, they often give an inaccurate depiction of the quantum tunneling effect.

Recent research shed the light on many anomalous phenomena that have been observed in a variety 
of systems, ranging from discrete lattices7,8, fluids9,10, plasmas11, ultracold quantum gases12,13, optics14–17, 
lasers18–20, optical fibers21–23. Their similar characteristics that are governed by the nonlinear Schrödinger 
equation (NLSE) solutions could be considered as the clue to understand their nature. Rogue waves 
are one of the most distinguished embodiments of extreme events in nonlinear dynamics, which are 
attributed to the modulation instability (MI). The MI or sideband instability is one of the most per-
vasive types of instabilities in nature24, it originates as an interaction between strong carrier harmonic 
waves and small sidebands. In this aspect, the MI plays a great role as an “intrinsic noise” in triggering 
a self-organization mechanism25. Instabilities and spontaneous pattern formation in numerous natural 
and artificial systems caused by rogue waves can have catastrophic consequences, but the situation could 
be better if we know their multiple scale hierarchies.

Quantum effects are also expected to play an important role in GaN HEMT under the conditions of 
extreme events. This situation becomes clear when the energy density of the plasma oscillations is equal 
or comparable to the Fermi electron thermal energy density. Even though the electron density is almost 
low in some applications for considering the typical quantum mechanical effects, such as tunneling, 
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the situation in other applications may be supposed to be of quantum nature. In this report, we are 
particularly interested in the theoretical description of the steady state instability with a direct current 
for ungated two-dimensional electron-hole plasma in the GaN HEMT. We are using quantum plasma 
hydrodynamics approach, which is characterized by small wave numbers and valid when the mean-free 
path for electron-electron collisions is smaller than both the device length and the mean-free path for 
collisions with impurities and phonons26. However, it gives qualitatively correct results even if those 
conditions are not fulfilled27,28.

The quantum fluid model is derived from the Wigner—Poisson system. It would be interesting to 
introduce different quantum effects, to examine the MI and to test the reaction of the quantum effects 
on the rogue wave profile. For this purpose, we focus our attention on the specific scenario of bal-
ancing between the group dispersion and the nonlinear effects caused by pressure force, Bohm and 
exchange-correlation potentials. It would be motivating to assess in more detail the spectra of an unsta-
ble mode zone, and it would be promising to benchmark our results with an experimental observation. 
Accordingly, the goal of our investigation is twofold: (i) to demonstrate the existence region of the acous-
tic rogue waves (ARWs) and (ii) examine how the ARWs are influenced by different quantum effects.

We consider the propagation of nonlinear electrostatic acoustic waves in a two-component collision-
less plasma composed of electrons and holes. The nonlinear dynamics of such disturbances is governed 
by the normalized fluid equations for electrons
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The system is closed by the Poisson equation
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Here, ne (ue) and nh (uh) stand for the density (velocity) of the electrons and holes, respectively, Vxce,h are 
the electrons and holes exchange-correlation potentials, and ϕ is the electrostatic potential. It is inter-
esting to clarify how the basic set of fluid equations describing the propagation of nonlinear acoustic 
solitons is obtained. Let us start with the velocity moment of the Boltzmann equation29
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where f is the velocity distribution function, F is the force acting on the particles, and (∂f/∂t)c is the time 
rate of change of f due to collisions. The continuity equations (1) and (3) are obtained by the lowest 
moment of Eq. (6), while the next moment of the Boltzmann equation is obtained by multiplying Eq. (6) 
by mv and integrating over dv. Then, we finally arrive at the momentum equations (2) and (4). Notice 
that the total force of the charged particles could be electric force, magnetic force, Bohm potential force 
(recoile force), exchange-correlation force, and pressure force. A detailed mathematical treatment of this 
issue can be found in Ref. [30].

The variables appearing in Eqs (1–5) have been appropriately normalized. Thus, ne and nh are nor-
malized by the unperturbed electron (hole) number density ne0(nh0), ue and uh are normalized by the 
Fermi electron speed = ( / ) /⁎V k T mFe B Fe e

1 2 in terms of Fermi temperature TFe, and ϕ is normal-
ized by kBTFe/e. The space and time variables are in units of the Fermi electron Debye radius 
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= /⁎ ⁎M m me h  is the electron-to-hole effective mass ratio, ε0 is the permitivity, e is the magnitude of the electron 
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The non-relativistic pressure law31 of the degenerate electrons/holes is used in Eqs (2) and (4), where 
=, , ,
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1 3 2 , ħ is the Planck constant divided by 2π. The 
exchange-correlation potentials for the electrons and holes are given by 
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2 2 and ε is 
the dielectric constant of the material.

To examine the dynamics of the one-dimensional ARWs propagating in an electron-hole plasma, we 
analyze the outgoing solutions of Eqs (1–5) by introducing the stretched coordinates32,33
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Here, k and ω are real variables representing the fundamental (carrier) wavenumber and frequency, 
respectively. Since ( )AL
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where the asterisk indicates the complex conjugate. Substituting (7) and (8) into Eqs (1–5) and collecting 
terms of the same powers of δ and different m and L, we obtain a system of equations where the com-
patibility condition yields the NLSE
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where P and Q are given in Ref. [32]. A detailed description of the mathematical method to obtain the 
NLSE can be found in Refs 32, 33.

The NLSE (9) has a rational solution that is located in a nonzero background and localized both in 
the ξ and τ directions33,34 as
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Solution (10) prognosticates the concentration of the ARWs energy into a small region that is caused 
by the nonlinear behavior of the plasma medium. Indeed, rogue waves are usually an envelope of a 
carrier wave with a wavelength smaller than the central region of the envelope. Rogue waves are able to 
focus (self-trapping) significant amounts of wave energy into a relatively small area, which may provide 
the basis for the illustration of the ARWs in semiconductor plasma.

It is interesting to mention that the NLSE (9) is a 1 +  1 dimensional evolution equation, which cannot 
fully describe the real physics of a multidimensional semiconductor device. However, due to the com-
plexity of the used mathematical method it is not possible to derive the 2 +  1 dimensional eqution (9). 
Of course, the rogue waves that exist in higher dimensions are affected by the extra dimensions. To the 
best of our knowledge, the multi-dimensional NLSE cannot be derived except for the case of the strong 
magnetic field. The latter, causes the fluid gyromotion to be treated as a higher order effect. So, it will 
be interesting to consider a weakly three-dimensional modulation of the envelope solitons, i.e. when the 
wave propagates in one direction with weak transverse perturbations in the other two directions, and 
hence the transverse velocity components also appear at higher orders with respect to the parallel velocity 
component (see e.g.35,36).

The analyses of the NLSE (9) disclose the existence of either unstable or stable pulses. The appropriate 
tool to examine the region of (in)stabitliy of the envelope pulse amplitude for external perturbations is 
the sign of the ratio P/Q. For a negative P/Q, the modulated envelope is stable, while for a positive P/Q 
the modulated envelope will be unstable against external perturbations. In the latter case, the carrier 
wave is modulationally unstable; so it may either “collapse”, due to (possibly random) external pertur-
bations, or lead to the formation of “bright” envelope modulated wavepackets, i.e. localized envelope 
“pulses” confining the carrier wave. The instability is usually saturated by the formation of a train of 
envelope pulses, the so-called bright solitons. These bright solitons can be stationary in time, but the sys-
tem can also oscillate periodically back and forth between the soliton state and an almost homogeneous 
state, usually referred to as the Fermi-Pasta-Ulam oscillation31. For a negative P/Q, the carrier wave is 
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modulationally “stable”, and dark solitons exist. Our aim is to study the case of an unstable solution for 
P/Q >  0, which is a typical situation for ARWs formations37.

In what follows, we analyze the parametric dependence of the rogue wave profile on the plasma den-
sity and wave number for GaN semiconductor bulk plasmas with typical parameters38–40 n0 ~ 1022 −  1026 m−3, 
= . ,⁎m m0 13e e  = . ,⁎m m1 3h e  and ε =  11.3. It is worthwhile to first clear why our basic Eqs (2) and (4) are 

missing the damping terms as in Ref. [27]. Indeed, considering the collisions between electron-phonon 
(hole-phonon) is interesting and may lead to a wave collapse that will have a crucial effect on the insta-
bility of the quantum acoustic rogue wave. However, considering this effect is important when the time 
scale of the propagating wave is of the order of the collision time scale. Otherwise, if the collision time 
scale is too long compared to the wave time scale, then the wave initiates and propagates before the 
beginning of the collsions. For GaN material, the electron plasma period is of the order of a picosecond. 
The electron-ion (phonon) collision is given by νei =  n0e2η/me, where η is the spesific resistivity41. Given 
the GaN parameters the collision period is of the order of a millisecond - microsecond. So, we can safely 
ignore the collision frequency in comparision to the plasma frequency and consider the plasma as 
collisionless.

First, the sign of the ratio P/Q is depicted in Fig.  1. The yellow region stands for P/Q >  0 and the 
white region stands for P/Q <  0. Figure  1a shows the positive region of P/Q for small wave numbers 
band (i.e. k =  0 −  7), which shows that there are three regions of instability. Increasing the wave number 
(k =  7 −  200) as depicted in Fig.  1b, it is obvious that if there is one cut-off region of instability (i.e. 
k ~ 40 −  100) then the instability region continuously exists. Of course, the ne0 −  k plan is an important 
tool to precisely define the propagation region of the rogue waves. Now, we know the expected region 
and parameters that may allow the existence of rogue waves in a GaN semiconductor. However, could 
the quantum effects such as Bohm potential or exchange-correlation terms change the ne0 −  k plan. In an 
analogous manner, we neglect/cancel the Bohm potential term (i.e. by putting He =  Hh =  0) and redrew 
the ne0 −  k graph as depicted in Fig. 1c. It is clear that there are only two narrow regions of instability at 
a low wave number band (i.e. k =  1 −  2). Furthermore, neglecting the exchange-correlation terms have 
no significant effect on the ne0 −  k plan, so we did not include that figure here. Therefore, the presence of 
Bohm potential is the main quantum factor for creating instability in the GaN semiconductor.

It would be interesting to notice that the rogue semiconductor waves can be generated within the unsta-
ble zone that is represented by the yellow part of the ne0 −  k plan. Creating a rogue wave as a self-trapping 
effect is due to sucking the energy/carriers from the background (as it depletes the 2-dimension electron 
gas (2DEG)) into a small area, which produces highly localized self-modulated pulses. The confinement 
of this energy/carriers cannot be produced without the tunneling effect of carriers (cf. Fig. 1c). The tun-
neling effect gives the electrons the way to penetrate the rogue wave trapping center, which will be near 
to the denser electron streams. This mechanism degrades pinch-off characteristics and decreases the GaN 
transconductance. These “bulk traps” in the GaN buffer region have been suggested to be the reason for 
dispersion in a GaN HEMTs, current collapse, and gate-lag42. Therefore, the relaxation time in current 
lag effects in HEMTs is increased.

Now, our aim is to numerically analyze the maximum ARWs envelope amplitude |ϕM| for the GaN 
and investigate how the plasma number density ne0 and the wave number k alter its profile. In order to 
gain some insight, we have depicted the rogue wave profile as well as the contour plot of |ϕM| with ne0 
and k as in Fig.  2. The rogue wave profile that may propagate for GaN plasma parameters within the 
yellow or unstable region is depicted in Fig. 2a. We have divided the instability regions into three parts 
A, B, and C (cf. Fig. 1a,b). Figure 2a shows the region A, it is seen that an increase of the plasma number 
density would lead to the reduction of the rogue wave amplitude. However, for k 5 the wave amplitude 
has higher values than for k <  5. The same behavior is found in part B and is represented in Fig. 2b. The 
value of the maximum ARWs envelope amplitude |ϕM| is much greater than (even a hundred times) 
Fig.  2a. It means that for larger wave numbers the rogue waves suck more energy, which causes high 
amplitude pulses. This analysis could give rise to the self-heating mechanism, where this localized enve-
lope attracts and compresses more charged carriers energies in a very small bulk size. Then, the higher 
the carrier density, the more the temperature increases. Figure 2c corresponds to part C, it is clear that 
for a high plasma number density ne0 the maximum envelope amplitude decreases, but for a higher wave 
number the amplitude increases up to very high values.

The rogue waves depend on the carrier density and its profile is represented in Fig. 3. For example, its 
full wave growth-time (ω−1 ~ t) can be approximately calculated for k =  15 and ne0 ~ 1025 m−3 to be ~10 fs, 
which corresponds to the tranisent collapse in the carrier density. Finally, it is important to assign the 
collapse of the drain current to the rogue waves that are considered as attractors to self-trap the carrier’s 
energy into the GaN bulk. We think that, the self-heating region is produced gradually as the tunneling 
electrons exchange their energy with the lattice. This causes an increase of the resistance in the GaN edge 
(2DEG region). In order to avoid the consequences of the rogue wave trapping, one should manage the 
operation of the GaN in the stable zones.

In conclusion, we have shown that rogue waves can be exclusively responsible for the production 
and concentration of very high wave energy in the GaN semiconductor and its consequences related to 
the operation of the HEMTs. Analysis of the NLSE provides us with the existence regions for the rogue 
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Figure 1. The ratio P/Q contour is depicted against the wave number k and electron number density ne0; 
the yellow (white) color represents the region where the unstable (stable) waves set in. (a) and (b) with 
all quantum effects and (c) without Bohm potential effect.
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Figure 2. Maximum rogue wave amplitude |ϕM| contour is depicted against the wave number k and 
electron number density ne0 for different regions of k. Light-colored regions correspond to high values of 
|ϕM|.
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waves. The analysis is also able to qualitatively explain the transient collapse of the transconductance and 
the self-heating of the GaN.
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