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Introduction: Nephrotic syndrome (NS) is a characterized by massive proteinuria, edema, hypo-

albuminemia, and dyslipidemia. Glucocorticoids (GCs), the primary therapy for >60 years, are ineffective

in approximately 50% of adults and approximately 20% of children. Unfortunately, there are no validated

biomarkers able to predict steroid-resistant NS (SRNS) or to define the pathways regulating SRNS.

Methods: We performed proteomic analyses on paired pediatric NS patient plasma samples obtained

both at disease presentation before glucocorticoid initiation and after approximately 7 weeks of GC

therapy to identify candidate biomarkers able to either predict steroid resistance before treatment or

define critical molecular pathways/targets regulating steroid resistance.

Results: Proteomic analyses of 15 paired NS patient samples identified 215 prevalent proteins, including

13 candidate biomarkers that predicted SRNS before GC treatment, and 66 candidate biomarkers that

mechanistically differentiated steroid-sensitive NS (SSNS) from SRNS. Ingenuity Pathway Analyses and

protein networking pathways approaches further identified proteins and pathways associated with SRNS.

Validation using 37 NS patient samples (24 SSNS/13 SRNS) confirmed vitamin D binding protein (VDB)

and APOL1 as strong predictive candidate biomarkers for SRNS, and VDB, hemopexin (HPX), adiponectin

(ADIPOQ), sex hormone–binding globulin (SHBG), and APOL1 as strong candidate biomarkers to mech-

anistically distinguish SRNS from SSNS. Logistic regression analysis identified a candidate biomarker

panel (VDB, ADIPOQ, and matrix metalloproteinase 2 [MMP-2]) with significant ability to predict SRNS at

disease presentation (P ¼ 0.003; area under the receiver operating characteristic curve ¼ 0.78).

Conclusion: Plasma proteomic analyses and immunoblotting of serial samples in childhood NS identified

a candidate biomarker panel able to predict SRNS at disease presentation, as well as candidate molecular

targets/pathways associated with clinical steroid resistance.
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S
teroid resistance is a major clinical challenge for
both physicians and patients with a wide array of

diseases, including NS, asthma, rheumatoid arthritis,
and other inflammatory conditions primarily treated
with steroids. NS is one of the most common forms of
glomerular disease and one of the leading causes of
end-stage kidney disease in both children and adults.
Although GCs have been the primary therapy for NS
for >60 years, they unfortunately induce remission
of NS in only approximately 50% of adults and
approximately 80% of children,1,2 with unresponsive
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Figure 1. Study hypothesis and design. The present studies were
designed to test the hypothesis that proteomic analyses with sub-
sequent validation in paired plasma samples from children with
steroid-sensitive nephrotic syndrome (SSNS) and steroid-resistant
nephrotic syndrome (SRNS) can be used to identify biomarkers
able to (a) predict clinical steroid resistance, and (b) mechanistically
define specific molecular pathways or targets associated with
clinical steroid resistance.

S Agrawal et al.: Proteomic Biomarkers of Steroid Resistance in NS TRANSLATIONAL RESEARCH
patients being labeled as having SRNS. Unfortunately,
no validated biomarkers have yet been identified that
are able to predict steroid resistance, leaving patients
at high risk for both toxic side effects of GC treatment,
as well as disease progression. Thus, the identification
and validation of biomarkers able to predict the clinical
response to GC before the initiation of treatment could
enable avoidance of GC-induced drug toxicity, and
rapid initiation of alternative treatments more likely
to induce remission and delay or prevent disease pro-
gression. In addition, the identification of candidate
biomarkers able to determine specific molecular path-
ways and targets associated with clinical steroid resis-
tance could enable the development of more effective
and less toxic targeted future therapies for NS.

Mass spectrometric-based discovery proteomic
methods have contributed significantly to our under-
standing of idiopathic renal disease by identification of
proteins integral to disease processes.3,4 State-of-the-art
methods have the ability to characterize both high- and
low-abundant proteins and develop both qualitative
data to identify proteins and to suggest relative abun-
dance or absolute concentration differences.5–8 These
studies and other “omics” studies are providing valu-
able pilot and confirmatory information for the identi-
fication of disease biomarkers.9–15 Recently, a few
studies have approached urinary biomarker identifica-
tion using proteomics in patients with NS either clas-
sified by histology or by clinical response.16,17

The present studies were designed to test the pri-
mary hypothesis that proteomic analyses with subse-
quent validation of paired plasma samples from
children with SSNS and SRNS can be used to identify
biomarkers predictive of steroid resistance at the time
of disease presentation before therapy (Figure 1a). The
secondary aim of the present study was to identify
mechanistic molecular pathways or targets associated
with clinical steroid resistance in NS (Figure 1b). To
test this hypothesis, we analyzed paired plasma bio-
samples collected from 2008 to 2014 through the Mid-
west Pediatric Nephrology Consortium from children
with NS that were obtained both at the time of disease
presentation (before initiation of steroid therapy) and
an average of approximately 7 weeks post-GC treat-
ment, when the clinical determination of SRNS versus
SSNS was made by the treating nephrologist.
METHODS

Study Approval, Ethics Statement, Patients, and

Plasma Collections

All research protocols and consent documents were
approved by the institutional review board of
Nationwide Children’s Hospital as the coordinating
Kidney International Reports (2020) 5, 66–80
center (approval numbers IRB07–00400, IRB12–00039,
and IRB05–00544), as well as by each of the other
participating centers of the Midwest Pediatric
Nephrology Consortium. Paired plasma samples were
collected for each patient, with the first sample “pre-
treatment” at the time of disease presentation before
even a single dose of GC, and the second sample “post-
treatment” after 6 to 10 weeks of GC therapy when the
clinical determination of SSNS versus SRNS had been
determined by the treating nephrologist. See Table 1
for patient demographics and Supplementary
Methods for clinical data and sample collection details.

Proteomics Discovery Workflow

The proteomics workflow (Supplementary Figure S1)
addressed the label-free comparison of high mass accu-
racy data sets developed from 15 paired patient plasma
samples (n ¼ 30) using a fast protein liquid chromatog-
raphy antibody-based method to immune-deplete the 20
most common plasma proteins before trypsinization. To
address the limitation of small sample numbers and po-
tential gender variability, the discovery proteomics
dataset was developed with only female patient plasma
samples, whereas the confirmation cohort was expanded
to include both male and female patients. These data
were then filtered to identify predictive and mechanistic
biomarkers (Figure 1) and used for various other analyses
described in Supplementary Table S1. The data filtering
approaches were directed by absolute or relative differ-
ences in the protein abundance, unbiased statistical or
pathways approaches, and, last, expert review of the
proteomic data. These procedures of “Immuno-Depletion
of Highly Abundant Proteins from Plasma, Sample Pro-
teolysis and Liquid Chromatography–Mass Spectrometry
67



Table 1. Patient demographics for proteomic discovery and Western blotting validation study cohorts

n

Discovery (proteomics) Validation (immunoblotting)

Total SSNS SRNS

P value

Total SSNS SRNS

P value15 7 8 37 24 13

Weeks between pre- and post-treatment samples 6.0 � 0.5,
n ¼ 15

5.8 � 0.7,
n ¼ 7

6.3 � 0.7,
n ¼ 8

ns 6.9 � 0.4,
n ¼ 37

6.9 � 0.6,
n ¼ 24

6.7 � 0.5,
n ¼ 13

ns

Disease onset samples verified to be pretreatment 15 (100%) 7 (100%) 8 (100%) 37 (100%) 24 (100%) 13 (100%)

Age 8.7 � 1.0,
n ¼ 15

6.5 � 1.7,
n ¼ 7

10.6 � 0.9,
n ¼ 8

0.04a 7.0 � 0.7,
n ¼ 35

5.6 � 0.8,
n ¼ 22

9.5 � 1.1,
n ¼ 13

0.006b

Sex, n (%)

Male 0 (0) 0 (0) 0 (0) 15 (42) 11 (48) 4 (31)c 0.026c

(2-tailed)Female 15 (100) 7 (100) 8 (100) 21 (58) 12 (52) 9 (69)c

Not reported 1 1

Height 135.1 � 6.4,
n ¼ 15

118.8 � 9.2,
n ¼ 7

149.3 � 5.2,
n ¼ 8

0.01a 124.5 � 4.4,
n ¼ 36

114 � 4.5,
n ¼ 23

143.1 � 6.8,
n ¼ 13

0.0008d

Weight 43.9 � 6.0,
n ¼ 15

28.1 � 5.0,
n ¼ 7

57.6 � 7.5,
n ¼ 8

0.007b 35.9 � 3.9,
n ¼ 36

25.9 � 2.6,
n ¼ 23

53.5 � 7.6,
n ¼ 13

0.0002d

Race, n (%)

White 9 (60) 4 (57) 5 (62.5) 17 (46) 11 (45.8) 6 (46)

Asian 1 (7) 1 (14.3) 0 (0) 4 (10.8) 4 (16.7) 0 (0)

African American 4 (27) 1 (14.3) 3 (37.5) 10 (27) 4 (16.7) 6 (46)e <0.0001e

Biracial 1 (7) 1 (14.3) 0 (0) 2 (5.4) 1 (4.2) 1 (7.7)

Native American 0 (0) 0 (0) 0 (0) 1 (2.7) 1 (4.2) 0 (0)

Not reported 0 (0) 0 (0) 0 (0) 3 (8.1) 3 (12.5) 0 (0)

ns, not significant; SRNS, steroid-resistant nephrotic syndrome; SSNS, steroid-sensitive nephrotic syndrome.
Significance determined by at test, cbinomial test, and ec2 test.
aP < 0.05.
bP < 0.01.
dP < 0.001.
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(LCMS) Data Acquisition” are detailed in the
Supplementary Material.
Informatics Analysis of LCMS Datasets

Proteome Discoverer (Thermo Fisher Scientific, Wal-
tham, MA) v2.0.0.802 was used to analyze the data
collected by the mass spectrometer with SequestHT
searches performed using the July 7, 2015 version of
the UniprotKB. See Supplementary Methods for details.
Immunoblot Analyses for Differential Protein

Abundance

Plasma proteins were resolved on 6% to 20% gradient
gels by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis, transferred to nitrocellulose mem-
branes, and immunoblotted as described in detail in the
Supplementary Material. X-ray films were scanned
using a calibrated ArtixScan M1 transillumination
scanner (Microtek Lab, Cerritos, CA) controlled by the
ScanWizard Pro program (version 7.042, Microtek
International Inc., Hsinchu, Taiwan; Microtek Lab Inc.,
Carson, CA) using standard settings. Densitometry an-
alyses of the integrated band densities were performed
using ImageJ (version 1.39, National Institutes of
Health, Bethesda, MD, standard settings; http://rsb.
info.nih.gov/ij/) and values plotted using GraphPad
(LaJolla, CA) Prism software version 6.00 for Windows.
68
Statistical Evaluation of Trends in Protein

Abundance
Discovery Proteomic Studies

To determine trends in protein abundance, all censored
or missing values were replaced by a minimal global
protein abundance value divided by the square root of
2 (minimal observed label-free signal O O2) or
2280.3.18 The estimations for significance of the
between-group protein abundance differences were
calculated using medians of protein abundance and the
Mann-Whitney 1-way analysis of variance. Protein
name, gene name, accession numbers, and associated
protein abundance values estimated as intensity-based
absolute quantification values were exported into an
Excel file from Scaffold.19 See Supplementary Methods
for details.

Targeted Validation Studies

Statistical significance was determined by unpaired or
paired t tests using the GraphPad Prism software
version 6.00 for Windows. P values were considered
significant at P < 0.05. Data shown include represen-
tative blots as well as quantitation of all the samples
tested, and are displayed as means � SEM. The ability
of the quantified immunoblot data and patient sex to
classify patient samples as SSNS and SRNS was deter-
mined using backward stepwise logistic regression
analysis with �2log likelihood, Cox & Snell R2, and
Kidney International Reports (2020) 5, 66–80
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Nagelkerke R2 to assess goodness of fit for the reduced
terms. The sensitivity and specificity for the reduced
terms to classify patient samples was determined by the
area under the curve from a receiver operator charac-
teristic. Multivariate statistical tests were performed
using SAS version 9.4 (SAS Inc., Cary, NC) and SPSS
version 24 (IBM Corp., Armonk, NY).

Cluster Analysis With Heatmaps

To evaluate and illustrate group trends in protein
relative abundance, the intensity-based absolute
quantification data were analyzed by cluster analysis
with heatmap illustration. To address the dynamic
range differences across the proteomic data set, the
protein intensity-based absolute quantification scores
were normalized on a per protein level by conversion
to a mean abundance fractional value across patient
samples and rescaled to absolute values of 0 to 1 per
row. These normalized, fractional abundance values
were used for hierarchical clustering and heatmap
generation using MatLab (2016b) (MathWorks, Natick,
MA) and the function “clustergram.”

Pathways Analyses

The proteomic data (differentially regulated gene
products with the Log2 fold change of SRNS to SSNS
for both the pretreatment sample set and the post-
treatment sample sets) were qualitatively assessed to
provide approaches to functional annotation of data by
submitting lists of identified proteins and expression
patterns for pathways analysis using Ingenuity Path-
ways Analysis software (http://ingenuity.com). See
Supplementary Methods.

RESULTS

Patients and Demographics

Eighty-eight pediatric patients were enrolled over a
10-year period, although only approximately 50% of
these patients (n ¼ 45) were able to be enrolled before
they received even a single dose of steroids. Of these,
37 patients with paired samples verified to include
pretreatment samples and detailed clinical data were
included in this study (Table 1). Twenty-four of these
were clinically phenotyped as SSNS, because they
achieved complete remission of proteinuria within an
average of approximately 7 weeks of steroid therapy,
whereas 13 patients did not achieve remission and were
thus phenotyped as SRNS. Approximately equal
numbers of children with SSNS (n ¼ 7) and SRNS (n ¼
8) were used for the proteomics discovery studies, and
only female patients were analyzed to compensate for
potential gender variability. The validation cohort was
expanded to include all available male and female
patients. Children with SSNS were found to be
Kidney International Reports (2020) 5, 66–80
different from those with SRNS in age, height, and
weight, with SRNS patients presenting at a later age
than those with SSNS (9.5 vs. 5.6 years; P ¼ 0.006),
consistent with known mean ages of presentation for
these different forms of NS. To account for differences
in pharmacodynamics of steroids in children with SSNS
versus SRNS due to differences in weight, height, and
body mass index, we calculated the average prescribed
steroid dosage in the discovery cohort of these 2
groups. The differences in steroid dosage (SSNS, 1.81 �
0.23 mg/kg per day vs. SRNS, 1.24 � 0.14 mg/kg per
day) were found to be not significantly different
(nonparametric Mann-Whitney test; P > 0.05). More-
over, African American patients comprised a greater
percentage of SRNS patients than SSNS patients (46%
vs. 17%; P < 0.05).
Proteomic Profiling

Paired pre- and post-treatment plasma samples (n ¼
30 samples; SSNS, n ¼ 7 pairs; SRNS n ¼ 8 pairs)
were depleted of high abundant proteins, achieving a
95% high and moderate abundance protein depletion.
A total of 226 proteins were identified by high-
resolution 1D-liquid chromatography–mass spectrom-
etry in both pre- and post-treatment SSNS and SRNS
samples. Of the 20 immunodepletion targets, 9 (IgG,
Transferrin, IgA, IgM, a1-acid glycoprotein, IgD,
ceruloplasmin, plasminogen, and prealbumin) were
sufficiently depleted so as to not be observed within
the LCMS results. Three (haptoglobin, complement
C1q, and a1-antitrypsin) were observed at low
intensity-based absolute quantification scores across
less than 30% of samples. Eight (alpha-2 macroglob-
ulin; albumin; apolipoproteins-A1, -AII, and -B/;
complement 3; complement C4; and fibrinogen) were
observed in a large fraction ($75%) of samples,
although none achieved statistical difference between
sample groups.
Identification of Candidate Biomarkers Able

to Predict and Mechanistically Define Steroid

Resistance

Protein lists were curated by requiring observation in
at least 6 of 7 SSNS or 6 of 8 SRNS samples. This
requirement resulted in 119 and 122 proteins, respec-
tively, considered for subsequent statistical analysis.
Following Wilcoxon and Mann-Whitney testing, 13
predictive (Table 2 and Figure 1b) and 66 mechanistic
(Table 3 and Figure 1b) candidate biomarkers were
retained for pathways analysis. The effects of steroid
response on the relative abundance of the 13 predictive
proteins is also illustrated in Figure 2a.20
69
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Table 2. Candidate biomarkers with potential to predict steroid resistance before therapy

Name Protein
Detection
rate (SSNS)

Detection
rate (SRNS)

P value
(rank sum)

Area ratio
(SSNS:SRNS)

Log2
(SSNS:SRNS) Protein function

Collagen alpha-3(VI)
chain

COL6A3 86 50 0.02 9.1 3.2 Alpha chain of type VI Collagen that acts as a cell-binding
protein and is implicated in muscle and connective tissue

related diseases

Insulin-like growth
factor-binding protein 2

IGFBP2 100 63 0.04 9 3.2 Inhibits IGF-mediated growth and developmental rates. IGF-
binding proteins prolong the half-life of the IGFs and either
inhibit or stimulate the growth promoting effects of the IGFs by
altering the interaction of IGFs with their cell surface receptors

72 kDa type IV collagenase MMP2 86 63 0.03 2.3 1.2 Ubiquitous metalloproteinase that is involved in diverse
functions such as remodeling of the vasculature,

angiogenesis, tissue repair, tumor invasion, inflammation,
atherosclerotic plaque rupture, and degradation of

extracellular matrix proteins

Apolipoprotein Ea APOE 100 100 0.04 1.9 0.9 Mediates the binding, internalization, and catabolism of
lipoprotein particles

Adiponectin ADIPOQ 100 100 0.01 1.8 0.8 Important adipokine involved in the control of fat metabolism
and insulin sensitivity, with direct antidiabetic, anti-

atherogenic and anti-inflammatory activities

Sex hormone–binding
globulin

SHBG 100 100 0.03 1.8 0.8 Functions as an androgen transport protein and regulates the
plasma metabolic clearance rate of steroid hormones

EGF-containing fibulin-like
extracellular matrix
protein 1

EFEMP1 100 100 0.01 1.6 0.7 Binds EGFR, induces EGFR autophosphorylation and
activation of downstream signaling pathways

Inter-alpha-trypsin inhibitor
heavy chain H4

ITIH4 100 100 0.01 1.4 0.5 Also known as type II APP; it is involved in inflammatory
response to trauma

Hemopexin HPX 100 100 0 0.7 �0.5 Plasma protein with high affinity for heme and associates with
HDL and influences its inflammatory properties

Vitamin D binding protein VDB 100 100 0.03 0.7 �0.5 Belongs to albumin gene family and major role is transport of
various forms of Vitamin D metabolites; enhancement of the

chemotactic activity of C5 alpha for neutrophils in
inflammation and macrophage activation

Antithrombin-III SERPINC1 100 100 0.01 0.7 �0.5 Serine protease inhibitor in plasma

Zinc-alpha-2-glycoprotein AZGP1 100 100 0.03 0.6 �0.7 Stimulates lipid degradation in adipocytes

Fetuin-B FETUB 100 100 0.02 0.5 �1 Protease inhibitor

APP, acute-phase protein; EGFR, epidermal growth factor receptor; HDL, high density lipoprotein; IGF, insulin-like growth factor; SRNS, steroid-resistant nephrotic syndrome; SSNS,
steroid-sensitive nephrotic syndrome.
aEntry not observed in “mechanistic analysis.”
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Plasma Protein Abundance as a Function

of Steroid Resistance

A hierarchical clustering method with heatmap visu-
alization was used to guide analysis of the predictor
candidate biomarkers (Figure 2b). The visualization of
individual patients on heatmap is shown in
Supplementary Figure S2 and analysis of the entire
proteomic dataset is also included in Supplementary
Figures S3 and S4 as supplemental results.

Pathway Mapping and Interaction Networking

of Candidate Biomarkers

Ingenuity Pathway Analysis of predictive proteins (see
Table 2) suggested 10 canonical pathways (P < 0.01)
and 1 significant protein-protein network (Figure 2c
and d). The top 6 canonical pathways were as follows:
(i) Farnesoid X receptor/retinoid X receptor activation,
(ii) liver X receptor/retinoid X receptor activation, (iii)
airway pathology in chronic obstructive pulmonary
disease, (iv) acute-phase response signaling, (v) hepatic
fibrosis/hepatic stellate cell activation, and (vi)
extrinsic prothrombin activation pathway. The prin-
cipal network for the predictive biomarkers was built
70
using 8 of 13 submitted proteins, including ADIPOQ,
APOE, EFEMP1, HPX, IGFBP2, MMP-2, antithrombin-
III (SERPINC1), and SHBG. As shown in Figure 2d, 5
proteins (SHBG, EFEMP1, HPX, IGFBP2, and
antithrombin-III [SERPINC1]) were positioned at
network edges, whereas MMP-2, ADIPOQ, APOE, and
VEGF-A were positioned as network nodes, with
MMP-2 and APOE nodes under the indirect regulation
(dashed lines) of the cytokine tumor necrosis factor.

The top 5 canonical pathways identified by Ingenuity
Pathway Analysis of defining/mechanistic candidate
marker gene names were (i) liver X receptor/retinoid X
receptor activation, (ii) Farnesoid X receptor/retinoid X
receptor activation, (iii) acute-phase response signaling,
(iv) coagulation system, and (v) atherosclerosis
signaling. The top 3 networks assembled by Ingenuity
Pathway Analysis overlapped and had common disease/
functional attributions that included metabolic disease,
hematological system development and function,
inflammatory response, cell death, and survival.
Network 1, but not networks 2 and 3, contained candi-
date biomarkers as nodal components (Supplementary
Figure S5; MMP-2, IGFBP3, ADIPOQ, and F2).
Kidney International Reports (2020) 5, 66–80



Table 3. Candidate biomarkers with potential to identify mechanistic molecular pathways/targets of steroid resistance

No. Name
Gene
name

Difference
pretreatment SSNS post L prea SRNS post L prea

Change
with GC
therapy

Group trend[SSNS/SRNS]
Median proteomic
(iBAQ) signal area

P value
signrank

Median proteomic
(iBAQ) signal area

P value
signrank SSNS SRNS

1 Afamin (vitamin E binding protein) AFM 1.21Eþ08 0.016 1.80Eþ07 0.547 [b ns Increase in both

2 Angiotensinogen AGT 2.62Eþ08 0.031 1.45Eþ08 0.203 [b ns

3 Apolipoprotein D APOD 1.35Eþ07 0.813 1.07Eþ08 0.016 ns [b

4 Apolipoprotein L1 APOL1 7.98Eþ06 0.016 4.26Eþ06 0.055 [b ns

5 Alpha-2-glycoprotein 1, zinc-binding AZGP1 0.6 5.02ED08 0.031 3.63ED08 0.039 [b [b

6 Carboxypeptidase B2 CPB2 1.09Eþ07 0.016 2.40Eþ06 0.148 [b ns

7 Gelsolin GSN 8.40Eþ07 0.016 2.50Eþ06 0.945 [b ns

8 Hyaluronan-binding protein 2 HABP2 1.21Eþ07 0.016 2.85Eþ06 0.461 [b ns

9 Hemopexin HPX 0.7 4.85ED09 0.016 1.05ED08 0.461 [b ns

10 Insulin-like growth factor-binding protein complex
acid labile subunit

IGFALS 7.09Eþ07 0.016 3.95Eþ06 0.742 [b ns

11 Alpha-1-antichymotrypsin SERPINA3 3.65Eþ08 0.031 1.23Eþ08 0.383 [b ns

12 Kallistatin SERPINA4 4.54Eþ07 0.016 7.25Eþ06 0.25 [b ns

13 Plasma serine protease inhibitor SERPINA5 4.60Eþ06 0.016 5.58Eþ05 0.844 [b ns

14 Alpha-2-macroglobulin A2M �3.20Eþ09 0.016 �4.84Eþ08 0.383 Yb ns Decrease in both

15 Alpha-1 microglycoprotein (bikunin) AMBP �1.00Eþ09 0.016 �3.25Eþ08 0.039 Yb Yb

16 Apolipoprotein M APOM �2.25Eþ07 0.016 �1.50Eþ06 0.641 Yb ns

17 Attractin ATRN �3.18Eþ07 0.016 �1.94Eþ07 0.109 Yb ns

18 Cholinesterase (Butyrylcholine esterase) BCHE �1.94Eþ07 0.016 �8.72Eþ06 0.063 Yb ns

19 Complement C1r subcomponent C1R �1.11Eþ07 0.219 �5.45Eþ06 0.008 ns Yb

20 C4b-binding protein alpha chain C4BPA �1.80Eþ08 0.016 �2.77Eþ07 0.383 Yb ns

21 Monocyte differentiation antigen CD14 CD14 �2.90Eþ06 0.813 �1.18Eþ07 0.039 ns Yb

22 Complement Factor H CFH �3.90Eþ08 0.031 �2.20Eþ07 0.641 Yb ns

23 Clusterin CLU �5.50Eþ07 0.047 �6.80Eþ07 0.195 Yb ns

24 Collagen alpha-3(VI) COL6A3 9.1 L4.14ED04 0.031 L3.63ED03 0.188 Yb ns

25 Carboxypeptidase N catalytic chain CBPN1 �1.00Eþ07 0.016 �6.39Eþ06 0.313 Yb ns

26 Carboxypeptidase N subunit 2 CPN2 �6.16Eþ07 0.016 �9.10Eþ07 0.016 Yb Yb

27 Fibulin-2 (EGF-containing fibulin-like extracellular
matrix protein 1)

EFEMP1 1.6 L2.14ED07 0.016 L8.66ED06 0.008 Yb Yb

28 Fibulin-1 FBLN1 �3.73Eþ07 0.016 �2.41Eþ07 0.039 Yb Yb

29 Fibrinogen alpha chain FGA �4.39Eþ06 0.047 �4.69Eþ06 0.461 Yb ns

30 Insulin-like growth factor-binding protein 2 IGFBP2 9 L2.96ED07 0.016 L1.71ED06 0.094 Yb ns

31 Inter-alpha-trypsin inhibitor heavy chain H2 ITIH2 �4.56Eþ08 0.047 �3.70Eþ07 0.461 Yb ns

32 Inter-alpha-trypsin inhibitor heavy chain H3 ITIH3 �4.17Eþ07 0.016 �8.63Eþ06 0.078 Yb ns

33 Inter-alpha-trypsin inhibitor heavy chain H4 ITIH4 1.4 L4.80ED08 0.016 L2.27ED08 0.055 Yb ns

34 Phosphatidylcholine-sterol acyltransferase LCAT �1.52Eþ07 0.016 �8.65Eþ06 0.148 Yb ns

35 Galectin-3-binding protein LGALS3BP �3.73Eþ07 0.047 �3.84Eþ07 0.008 Yb Yb

36 Lumican LUM �1.87Eþ08 0.016 �9.11Eþ07 0.008 Yb Yb

37 72 kDa type IV collagenase MMP2 2.3 L1.30ED06 0.031 L5.69ED05 0.063 Yb ns

38 Prostaglandin-H2 D-isomerase PTGDS �1.54Eþ07 0.031 �7.10Eþ06 0.156 Yb ns

39 Sulfhydryl oxidase 1 QSOX1 �4.66Eþ05 0.297 �6.43Eþ05 0.039 ns Yb

40 Heparin cofactor 2 SERPIND1 �3.60Eþ07 0.078 �7.90Eþ07 0.039 ns Yb

41 Plasma protease C1 inhibitor SERPING1 �4.37Eþ08 0.016 �5.66Eþ08 0.016 Yb Yb

42 Sex hormone-binding globulin SHBG 1.8 L3.82ED08 0.016 L1.68ED07 0.008 Yb Yb

43 Alpha-2-HS-glycoprotein AHSG 4.30Eþ08 0.297 �1.06Eþ09 0.023 ns Yb Increase in SSNS
Decrease in SRNS

44 Complement Factor I CFI 1.99Eþ07 0.016 �1.75Eþ07 0.313 [b ns

45 Tetranectin CLEC3B 4.08Eþ07 0.016 �2.39Eþ07 0.25 [b ns

46 Coagulation factor XII F12 5.75Eþ07 0.016 �2.40Eþ06 0.945 [b ns

47 Prothrombin F2 3.60Eþ08 0.047 �2.65Eþ07 0.742 [b ns

48 Fetuin B FETUB 0.5 8.27ED06 0.109 L3.32ED06 0.039 ns Yb

49 Vitamin D-binding protein VDB 0.7 4.70ED08 0.031 L4.10ED08 0.055 [b ns

50 Insulin-like growth factor-binding protein 3 IGFBP3 3.50Eþ06 0.047 �4.75Eþ05 1 [b ns

51 Corticosteroid binding globulin SERPINA6 1.05Eþ08 0.016 �1.69Eþ07 0.461 [b ns

52 Thyroxine-binding globulin SERPINA7 5.20Eþ06 0.734 �1.05Eþ07 0.008 ns Yb

53 Antithrombin-III SERPINC1 0.7 3.85ED08 0.016 L4.75ED07 0.641 [b ns

(Continued on next page)
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Table 3. (Continued) Candidate biomarkers with potential to identify mechanistic molecular pathways/targets of steroid resistance

No. Name
Gene
name

Difference
pretreatment SSNS post L prea SRNS post L prea

Change
with GC
therapy

Group trend[SSNS/SRNS]
Median proteomic
(iBAQ) signal area

P value
signrank

Median proteomic
(iBAQ) signal area

P value
signrank SSNS SRNS

54 Pigment epithelium-derived factor SERPINF1 4.96Eþ07 0.031 �9.90Eþ06 0.945 [b ns

55 Alpha-2-antiplasmin SERPINF2 1.50Eþ08 0.031 �1.09Eþ08 0.188 [b ns

56 Vitronectin VTN 1.85Eþ08 0.156 �1.53Eþ08 0.016 ns Yb

57 Adiponectin ADIPOQ 1.8 L8.86ED07 0.016 1.99ED07 0.383 Yb ns Decrease in SSNS
Increase in SRNS

58 Apolipoprotein A1 APOA1 �9.00Eþ08 0.375 2.04Eþ09 0.047 ns [b

59 Apolipoprotein B APOB �2.50Eþ07 0.016 4.21Eþ06 0.844 Yb ns

60 Apolipoproten C1 APOC1 �5.57Eþ08 0.031 1.17Eþ08 0.133 Yb ns

61 Apolipoprotein C2 APOC2 �3.62Eþ08 0.016 6.50Eþ06 0.844 Yb ns

62 Complement factor H-related protein 1 CFHR1 �9.10Eþ07 0.016 2.35Eþ07 1 Yb ns

63 Properdin CFP �1.36Eþ07 0.016 6.01Eþ06 0.195 Yb ns

64 Hepatocyte growth factor activator HGFAC �9.69Eþ06 0.031 0.00Eþ00 0.25 Yb ns

65 Perlecan HSPG2 �1.49Eþ05 0.031 0.00Eþ00 0.5 Yb ns

66 Vasorin VASN �2.77Eþ06 0.031 4.55Eþ05 0.844 Yb ns

EGF, epidermal growth factor; GC, glucocorticoid; iBAQ, intensity-based absolute quantification; ns, not significant; SRNS, steroid-resistant nephrotic syndrome; SSNS, steroid-sensitive
nephrotic syndrome.
aValues represent difference in median values of post-treatment sample � pretreatment sample.
bP < 0.05.
Negative (�) values indicate a decrease in relative plasma abundance. Positive (þ) values indicate an increase in relative plasma abundance.
Bolded proteins are found in Table 2.
Italicized proteins known to be responsive to GCs.

TRANSLATIONAL RESEARCH S Agrawal et al.: Proteomic Biomarkers of Steroid Resistance in NS
Biomarker Validation

Thirty-seven patients (n ¼ 74 samples) comprising 24
SSNS and 13 SRNS patients were analyzed by immu-
noblotting with specific antibodies for the validation of
several of the predictive and mechanistic candidate
biomarkers discovered previously in the proteomics
analyses (Figure 3). Albumin levels were analyzed as a
reference protein and, as expected, it confirmed a sig-
nificant difference between SSNS and SRNS post-
treatment samples (Figure 3a and b). HPX was signifi-
cantly increased in the SSNS post-treatment group, but
not in the SRNS group (Figure 3a and b), thus
corroborating the proteomic results (Table 3 and
Figure 2). APOL1 was increased in both the SSNS and
SRNS groups post-treatment, while maintaining the
differences in its levels both pre- and post-treatment
between the 2 groups (Figure 3a and b). Although it
corroborated some of the proteomics results (significant
increase in SSNS and moderate increase in SRNS,
Table 3), its confirmation also underscored its relevance
as a predictive biomarker, as well as a biomarker of
disease remission (difference between SSNS and SRNS
both pre- and post-treatment, Figure 3). VDB was a
very strong predictive marker of steroid resistance on
validation, and it followed the same pattern between
pre- and post-treatment as observed in the proteomics
results (Table 3, Figure 2, and Figure 3a and b). SHBG,
apolipoprotein A1 (APOA1), and ADIPOQ did not show
differences in pretreatment between SSNS and SRNS,
although both SHBG and ADIPOQ levels were altered
72
differently in SSNS and SRNS. MMP-2 showed 2
bands, representing the active (lower band, 64 kDa)
and proenzyme (upper band, 72 kDa) forms. The rela-
tive active form of MMP-2 was significantly increased
in SSNS post-treatment, and thus appears to be a po-
tential marker to differentiate steroid sensitivity from
resistance (Figure 3a–c).

The immunoblot data for the variables sex (male/
female), SHBG, VDB, HPX, APOAI, ApoL1, albumin,
ADIPOQm and MMP2 were analyzed by logistic
regression using a backward stepwise regression. The
minimal features set remaining in the SSNS/SRNS
classification model included ADIPOQ, VDB, and
MMP2, but not sex. The ability of the immunoblot
densitometry data for these 3 plasma proteins to clas-
sify patient samples was significant (P ¼ 0.003), with a
net improvement by –2log likelihood ¼ 51.591 (Cox &
Snell R2 value ¼ 0.247; Nagelkerke R2 value ¼ 0.332).
Last, to evaluate the sensitivity and specificity for
these proteins identified by logistic regression, a
receiver operator characteristic curve was constructed
(Figure 4) and the area under the curve was calculated
to be 0.78.
Proteomic Landscape With Different

Approaches

Additional analyses approaches outlined in
Supplementary Table S1 were applied to the proteins
identified in the SSNS and SRNS pre- and post-
Kidney International Reports (2020) 5, 66–80
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Figure 2. Candidate biomarkers able to predict steroid resistance and their informatics analysis to examine emergent properties. (a) Median
intensity-based absolute quantification (iBAQ) areas (middle hash), interquartile range (IQR); boxed area and whisker for maximum and minimum
values for candidate biomarkers able to predict steroid resistance were plotted for pre- and post-treatment samples for children with steroid-
sensitive nephrotic syndrome (SSNS) and steroid-resistant nephrotic syndrome (SRNS) (SSNS Pre, light circle; SSNS Post, dark circle; SRNS
Pre, light triangle; SRNS Post, dark triangle). All the pretreatment samples were significantly different between the SSNS versus SRNS groups
(Table 2). Post-treatment time point comparator is added for illustration purposes (Table 3). *P< 0.05; **P< 0.01. (b) Candidate proteins (continued)
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treatment groups to develop candidate biomarker
protein lists (Supplementary Table S2).
CONCLUSION

NS is a kidney disease that affects both children and
adults, and 20% to 50% of patients present with or
subsequently develop clinical steroid resistance, which
is associated with greatly increased risks for treatment
side effects and disease progression. The current study
tested the hypothesis that paired plasma proteomic
sample analyses could identify candidate biomarkers
able to either predict steroid resistance before initial
treatment or mechanistically define critical molecular
pathways/targets that regulate clinical steroid resis-
tance. We used a pilot proteomic discovery approach in
30 paired plasma samples obtained before and after
initial steroid treatment and identified a panel of 13
candidate protein biomarkers predictive of steroid
resistance and several candidate biomarkers that
mechanistically define specific molecular pathways/
targets of clinical steroid resistance in NS. Candidate
biomarkers found to predict steroid resistance included
VDB, HPX, Fetuin-B (FETUB), and ADIPOQ (Table 4).
Candidate protein biomarkers found to mechanistically
define specific molecular pathways/targets associated
with steroid resistance included VDB, HPX, SHBG,
antithrombin-III (SERPINC1), Fetuin-B (FETUB), ADI-
POQ, MMP-2, and APOA1. Subsequent confirmatory
studies in 74 patient samples of several of these
candidate biomarkers by immunoblotting confirmed a
few auspicious biomarkers with high potential to be
able to either predict steroid resistance or to mecha-
nistically define molecular pathways that regulate ste-
roid resistance in childhood NS (Table 4).

Proteome profiling of urine, and in some cases serum
or plasma, has been analyzed over the past decade in
patients with NS using various approaches.17,21–26

More recently, proteomic profiling of patients with
NS based on their histology and clinical phenotype has
yielded a panel of proteins able to distinguish between
Figure 2. (continued) (n ¼ 13) significantly differentiating pre-steroid exposu
abundance (iBAQ scores) were normalized and scaled by the clustergram
as a fractional value around the median. Gene names and fold-changes (
teins were submitted for (c) canonical molecular pathways analysis and (d
implications of abundance difference trends within the proteomic dataset
nificant enrichment, including 2 highly enriched pathways (Farnesoid X re
[LXR]/RXR activation). Ratio data demonstrate the fraction of the submitt
pathways. (d) The top canonical network included 2 downregulated (SSN
3 upregulated proteins (matrix metalloproteinase 2 [MMP-2], APOE, and ad
factor (TNF) is a central node within this network and inference based on
sion (Activation Z-score 0.152; overlap P < 0.0001). ADIPOQ, adiponectin; H
binding protein. (c,d) Copyright ª 2000–2017 Qiagen. The authors ackno
through the use of IPA (https://www.qiagenbioinformatics.com/products/in
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these different groups.16,17 These studies had important
differences from the current study. First, both of these
studies analyzed urine samples. Second, neither of
these studies included analyses of pretreatment samples
that could enable identification of truly predictive
biomarkers before initiation of any therapy. Third, the
NS classification of Choi et al.17 was based on histology
(minimal change disease, focal segmental glomerulo-
sclerosis, membranous nephropathy) and included only
adult patients, whereas the classification of Bennett
et al.16 was similarly based on SRNS versus SSNS in
children. From the discovery set, a few proteins, such
as VDB, antithrombin-III (SERPINC1), and HPX, were
common between our predictive markers of SRNS
versus SSNS, and the markers of Choi et al.,17 which
were able to distinguish among minimal change dis-
ease, focal segmental glomerulosclerosis, and membra-
nous nephropathy cases. However, none of these
markers were validated in the study by Choi et al.17 In
the Bennett et al.16 study (which had more common-
alties in study design), of their 13 identified proteins,
VDB, HPX, APOA1, TBG (thyroxine-binding globulin
or SERPINA7), a closely related protein to Fetuin-B
(Fetuin-A) and zinc-alpha 2 glycoprotein (AZGP1)
were commonly identified in our discovery sets of
either predictive or mechanistic biomarkers (Tables 2
and 3). Of these, VDB, HPX, APOA1, Fetuin-B, and
AZGP1 were also identified in our predictive set, of
which VDB was validated in both studies. The current
study extends these previous findings by combining
the use of a state-of-the-art proteomics approach with
analyses of paired plasma samples from highly pheno-
typed children presenting with NS in whom the pre-
treatment samples were fully verified to represent a
“disease-only” state before the administration of even a
single dose of steroids. Such careful phenotyping of
samples is critical, as we have previously found that
even a 30-minute exposure of podocytes to steroids can
significantly alter their proteomic profile.27 Our use of
paired samples obtained both pretreatment and post-
treatment, when patients had been clinically declared
re patient samples were analyzed by hierarchical clustering. Protein
function in MatLab (MathWorks, Natick, MA). Values are expressed
SSNS to SRNS) for significantly regulated pretreatment plasma pro-
) network analysis by Ingenuity Pathways Analysis (IPA) to consider
. (c) The top 10 canonical molecular pathways illustrated show sig-
ceptor FXR/retinoid X receptor [RXR] activation and liver X receptor
ed gene names to the gene names contained within the canonical
S < SRNS) and 6 upregulated (SSNS > SRNS) proteins, of which
iponectin [ADIPOQ]) occupied network node space. Tumor necrosis
its known regulation of ADIPOQ, APOE, IFGBP2, and MMP-2 expres-
PX, hemopexin; SHBG, sex hormone–binding globulin; VDB, vitamin D
wledge that the networks and functional analyses were generated
genuity-pathway-analysis/).20
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Figure 3. Biomarker validation studies of selected candidate biomarkers to predict or define steroid resistance in childhood nephrotic syn-
drome. (a) Validation graphs and (b) representative blots are shown from the analyses of 37 patients (n ¼ 74 samples) comprising 24 steroid-
sensitive nephrotic syndrome (SSNS) and 13 steroid-resistant nephrotic syndrome (SRNS) patients by immunoblotting with specified antibodies
for the validation of selected predictive and defining biomarkers outlined in Tables 2 and 3. A control sample was run on every gel, and test
patient samples were normalized to control by densitometry. (c) Western blot semiquantitative comparisons of the candidate biomarker matrix
metalloproteinase 2 (MMP-2). MMP-2 immunoblotting of 54 patient samples (16 SSNS and 10 SRNS patients) showed 2 bands, representing the
active (lower band, 64 kDa) and proenzyme (upper band, 72 kDa) forms of the enzyme. These were individually semiquantitated by densitometry
and the active versus proenzyme ratios measured. Statistical significance was determined by unpaired or paired t tests using the GraphPad
Prism software version 6.00 (LaJolla, CA) for Windows. P values were considered significant at P < 0.05 (*P < 0.05 vs. SSNS pretreatment; #P <
0.05 vs. SSNS post-treatment; $P < 0.05 vs. SRNS pretreatment). ADIPOQ, adiponectin; HPX, hemopexin; SHBG, sex hormone–binding globulin;
VDB, vitamin D binding protein.
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to have either SSNS or SRNS, enabled us to search for
potential biomarkers able to both predict subsequent
clinical steroid resistance, as well as to search for mo-
lecular pathways and targets associated with steroid
resistance versus steroid responsiveness.
Kidney International Reports (2020) 5, 66–80
HPX is a plasma protein with high affinity for heme.
A variety of biological activities have been attributed to
hemopexin, including both pro- and anti-inflammatory
activities.28 Regarding NS, hemopexin has been shown
to induce nephrin-dependent reorganization of the
75
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Figure 4. Receiver operating characteristic (ROC) curve. Logistic
regression analysis of confirmatory immunoblot studies identified
vitamin D binding protein (VDB), adiponectin (ADIPOQ), and matrix
metalloproteinase 2 (MMP-2) as a minimal, significant set of plasma
proteins predicting steroid response. An ROC analysis for these 3
proteins to classify steroid response in patients with NS (n ¼ 37
paired samples) returned an area under the curve of 0.78.

TRANSLATIONAL RESEARCH S Agrawal et al.: Proteomic Biomarkers of Steroid Resistance in NS
podocyte actin cytoskeleton,29 and to distinguish SRNS
via a urine proteomics approach, although it was not
identified as a candidate on validation by enzyme-
linked immunosorbent assay (ELISA).16 Our studies
showed that HPX could discriminate patients with SSNS
versus SRNS pretreatment, and that steroid treatment
significantly increased plasma HPX levels in SSNS (but
not SRNS) patients.
Table 4. Candidate protein biomarkers to predict or define
molecular pathways/targets of steroid resistance in pediatric
nephrotic syndrome

Protein Name

Predictive
biomarkera

Defining
biomarkerb

Proteomics IBc Proteomics IBc

COL6A3 Collagen alpha-3(VI) chain X X

IGFBP2 Insulin-like growth factor-binding protein 2 X X

MMP2 72 kDa type IV collagenase X X X

APOE Apolipoprotein E X

ADIPOQ Adiponectin X X X

SHBG Sex hormone–binding globulin X X X

EFEMP1 EGF-containing fibulin-like extracellular
matrix protein 1

X X

ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 X X

HPX Hemopexin X X X

VDB Vitamin D binding protein X X X X

SERPINC1 Antithrombin-III X X

AZGP1 Zinc-alpha-2-glycoprotein X X

FETUB Fetuin-B X X

APOL1 Apolipoprotein L1 X X X

a,bApproaches defined in Figure 1.
cImmunoblotting.
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APOA1 is an important component of HDL and it
has been shown to be present in more heterogeneous
forms in the plasma of patients with NS.30 Dyslipidemia
is also a prominent feature of NS, and our study
identified APOL1 and other apolipoproteins that could
distinguish children with SSNS versus SRNS, both
before and after steroid treatment.7,8,31–35

Adiponectin (ADIPOQ) levels have also been shown
to be increased in patients with NS.36 Our studies
found that although adiponectin levels started lower
and decreased with steroid treatment in children with
SSNS, adiponectin levels started higher and increased
further with steroid treatment in those with SRNS.

A few studies have implicated matrix metal-
loproteinases in the pathogenesis of NS.37,38 We found
a trend toward higher MMP-2 levels in children with
SRNS versus SSNS, both before and following steroid
treatment. MMP-2 comprises both an active and
a proenzyme form, and our studies underscored a
potential role for the relative ratios of these forms,
rather than absolute levels, in distinguishing SSNS
versus SRNS.39 Molecular weight forms consistent with
higher active/proenzyme ratios in SSNS versus SRNS
post-treatment, suggests that increases in this ratio may
play a beneficial role in the clinical response to steroids.

Nephrotic rats exhibit urinary loss of SHBG-bound
testosterone, and steroid-binding proteins such as
SHBG act as gatekeepers of steroid hormone action in
the plasma.40,41 Our studies showed that SHBG levels
increased with steroid treatment in SSNS but decreased
in SRNS. These findings may simply reflect reduced
urinary losses of SHBG in children with SSNS as they
enter remission. However, given the reported role of
SHBG in regulating steroid action, these findings may
also identify a novel potential opportunity to enhance
steroid responsiveness by supplementing or pharma-
cologically enhancing its production during steroid
treatment.

VDB has recently emerged as a urinary marker of
steroid resistance in NS, whereas vitamin D has also
been reported to have a role in the protection of
podocytes against NS-related injury.16,42,43 Our studies
in addition identified a 3-protein predictive candidate
biomarker panel (VDB, ADIPOQ, and MMP-2) with a
significant ability to differentiate at disease presenta-
tion patients who will develop SRNS from those who
will have SSNS (P ¼ 0.003; area under the receiver
operating characteristic curve ¼ 0.78; Table 4).

This study had several limitations and strengths.
Unlike some previous studies in which ELISA was used
for confirmation of identified biomarkers, we used an
immunoblotting confirmatory strategy. Although more
labor intensive, this strategy enabled significantly
improved specificity for the detection of proteins of
Kidney International Reports (2020) 5, 66–80
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interest. Many antibodies used in ELISAs and immuno-
blotting bind nonspecifically to other proteins, as we also
observed in our blots. Immunoblotting enabled us to
successfully circumvent this potential lack of specificity
by performing quantitative densitometric analyses of
bands, and identify only the proteins of interest. This
was specifically relevant for VDB, which belongs to the
same gene family and shares significant homology with
albumin, and thus could confound confirmatory results
using ELISA.44 This approach also allowed us to evaluate
the active versus proenzyme fractions of MMP-2, which
is a better marker of its activity than total MMP-2
levels.45 In addition, immunoblotting enabled the use
of small sample volumes compared with ELISAs. To
further enhance accuracy, we also used the same control
sample in every gel and blot, enabling us to directly
normalize all patient samples tested. A larger cohort will
be needed in the future to validate the other biomarkers
identified in the discovery analysis, as we were not able
to validate them all in the present study. Our validation
studies were targeted just toward the most relevant/
significant markers known in NS or differentially
expressed markers, and were also limited by commercial
reagent availability (specific antibodies). The predictive
and defining power of the identified proteins is likely to
benefit from expanding the validation list in future
studies.

Although most similar biomarker studies have been
performed using urine, our studies used plasma samples.
It would thus be of interest to attempt to further validate
our identified biomarkers in urine samples from a larger
and separate cohort in the future, and such studies are
under way. However, identification of biomarkers in
plasma is highly relevant, because it directly reflects the
true concentrations of these proteins in blood, without
perturbation by renal tubular secretion or reabsorption.
Furthermore, SRNS typically presents clinically at older
ages with higher average weight than children with
SSNS. Because this is a typical generalized difference
between the 2 groups, accounting for these confounders
was not found to be essential and clinically relevant.
Last, we are aware that some of the children with SRNS
may have had an underlying genetic cause of disease.
However, because these samples were collected over a
decade, there were no provisions to screen them for
monogenetic causes at that time. Despite this limitation,
this study emphasizes differences between children
with SRNS and SSNS that are clearly detectable at the
time of clinical presentation, regardless of underlying
genetic causes, and that would likely be more rapidly
available and thus more clinically useful to treating
physicians than genetic studies.

A major strength of this study was the evaluation of
paired samples from each patient, both before any
Kidney International Reports (2020) 5, 66–80
steroid treatment and following an average of approx-
imately 7 weeks of daily oral steroids. This enabled us
to use multiple approaches to analyze the dataset,
including identification of potential biomarkers pre-
dictive of the subsequent clinical response to steroids,
as well as to identify specific mechanistic molecular
pathways and/or targets associated with both steroid
response and steroid resistance. Because the discovery
studies were limited to an all-female subgroup, we
expanded our validation cohort to include male and
more female patients and using an orthogonal (anti-
body-based) method, as has been done previously in
similar studies.16 Logistic regression analysis for our
candidate predictor biomarker classification of male
and female patient samples did not identify sex as a
significant classification variable. These logistic
regression findings suggest additional studies on the
mechanistic candidate biomarkers are justified.
Notably, this same group of patient samples has also
undergone plasma metabolomics analyses,46 and future
studies will benefit from identification of additional
relevant molecular pathways and biomarkers of SRNS
using approaches that integrate the proteomics and
metabolomics datasets.

In summary, the current studies used paired plasma
samples from children with SSNS and SRNS obtained
both before and after approximately 7 weeks of daily
oral steroids to identify several candidate proteomic
biomarkers with the potential to predict subsequent
treatment response, and to define specific molecular
pathways or targets associated with both steroid
sensitivity and steroid resistance. In addition to NS,
steroids are also a primary therapy for many other
diseases, such as asthma, rheumatoid arthritis, auto-
immune hepatitis, and ulcerative colitis. Interestingly,
approximately 10% to 30% of these patients also pre-
sent with or develop steroid resistance during their
disease course, leading to increased risks for both drug
toxicity and disease progression. Thus, further vali-
dation of these results could greatly improve our
ability to predict the risk of clinical steroid resistance at
disease onset for a large and diverse group of patients.
These findings also could improve our understanding
of the molecular mechanisms that regulate the clinical
response to GCs and help identify potential future
molecular targets to improve the treatment of NS as
well as other conditions treated with steroids.
APPENDIX
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