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Abstract

Background

Confounding by indication is a serious threat to comparative studies using real world data.

We assessed the utility of automated data-adaptive analytic approach for confounding

adjustment when both claims and clinical registry data are available.

Methods

We used a comparative study example of carotid artery stenting (CAS) vs. carotid endarter-

ectomy (CEA) in 2005–2008 when CAS was only indicated for patients with high surgical

risk. We included Medicare beneficiaries linked to the Society for Vascular Surgery’s Vascu-

lar Registry >65 years old undergoing CAS/CEA. We compared hazard ratios (HRs) for

death while adjusting for confounding by combining various 1) Propensity score (PS) model-

ing strategies (investigator-specified [IS-PS] vs. automated data-adaptive [ada-PS]); 2)

data sources (claims-only, registry-only and claims-plus-registry); and 3) PS adjustment

approaches (matching vs. quintiles-adjustment with/without trimming). An HR of 1.0 was

used as a benchmark effect estimate based on CREST trial.

Results

The cohort included 1,999 CAS and 3,255 CEA patients (mean age 76). CAS patients were

more likely symptomatic and at high surgical risk, and experienced higher mortality (crude

HR = 1.82 for CAS vs. CEA). HRs from PS-quintile adjustment without trimming were 1.48

and 1.52 for claims-only IS-PS and ada-PS, 1.51 and 1.42 for registry-only IS-PS and ada-

PS, and 1.34 and 1.23 for claims-plus-registry IS-PS and ada-PS, respectively. Estimates

from other PS adjustment approaches showed similar patterns.
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Conclusions

In a comparative effectiveness study of CAS vs. CEA with strong confounding by indication,

ada-PS performed better than IS-PS in general, but both claims and registry data were

needed to adequately control for bias.

Introduction

Real-world data (RWD) including large electronic databases such as claims databases, elec-

tronic health records databases, and patient/procedure registries are rich sources of data for

conducting comparative effectiveness and safety studies. While these studies may be used to

complement findings from randomized clinical trials for cardiovascular disease, [1–6] con-

founding is one of the biggest challenges to study validity. Confounding by indication is partic-

ularly problematic when comparing the effectiveness of two or more alternative treatment

modalities because each modality may be indicated for clinically distinct patient groups. For

example, carotid artery stenting (CAS) was originally indicated only for patients with high sur-

gical risk when its use was first approved for reimbursement by CMS in 2004 [7]. It was not

until 2011 when a guideline recommended CAS for non-high risk patients based on later trials

such as CREST proving the efficacy in the non-high risk population [8, 9]. Thus, comparative

effectiveness studies of CAS vs. carotid endarterectomy (CEA) using early phase data would

likely be confounded by indication.

Most claims databases lack detailed clinical information to fully account for confounding

by indication, and adding clinical information through data linkage with registries has been

shown to greatly improve the validity of comparative studies in patients with cardiovascular

diseases [2, 3]. At the same time, registries may not be available or linkage may not be possible.

Various methodological developments such as propensity score (PS)-based data-adaptive

methods with automated variable generation and selection algorithms have been proposed to

improve the validity of results using RWD [10–14]. However, in the presence of linked clinical

information from a registry, the relative utility of such approaches vs. additional clinical infor-

mation in CER studies with strong confounding by indication has not been fully elucidated.

The aim of the present study was to evaluate the performance of the automated data-adap-

tive PS approaches for confounding adjustment in a CER study with strong confounding by

indication when claims data only, registry data only, and linked claims plus registry data are

available. We used the example of CAS vs. CEA using data from 2005–2008 when CMS cover-

age indication for CAS were limited to high surgical risk patients with predefined levels of ste-

nosis severity and symptoms [15].

Methods

Data sources

We used the Society for Vascular Surgery’s Vascular Registry (SVS-VR), 2005–2008 as well

as the denominator, institutional, non-institutional, and vital status Medicare files (2000–

2009). The design and protocols of SVS-VR have been described in detail elsewhere [16]. The

SVS-VR collects detailed information on medical history, pre-procedural diagnostics (includ-

ing degree of carotid stenosis, symptomatic status, and high surgical risk status), procedure-

related factors, and intra-operative and pre-discharge complications for patients undergoing

CAS as well as CEA, allowing for comparison of the two procedures. The SVS-VR data are
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audited to ensure that all cases of CAS and CEA are reported and to verify the accuracy and

completeness of the data [16].

From CMS, we obtained administrative claims data from January 1st, 2000 to December

31st, 2009 for patients who underwent CAS (ICD-9-CM codes: 00.61, 00.63, 00.64) or CEA

(ICD-9-CM codes: 38.12) in an inpatient setting, including information on patient demo-

graphics, eligibility, inpatient and outpatient facility services use, physician services use cov-

ered under Part B, and date of death.

Linkage of SVS-VR to the Medicare data has been previously described [17]. Briefly, we

deterministically linked CAS and CEA procedures in the registry to the Medicare institutional

file using date of birth, sex, facility, and the requirement that the procedure date in the registry

be between a hospital admission and discharge date for the same procedure in the Medicare

data.

Patients

The patient population included in this study has been described [3]. In short, the study sam-

ple included Medicare fee-for-service beneficiaries who had undergone CAS or CEA at

SVS-VR-participating facilities between 2005 and 2008, who were at least 66 years of age at the

time of the procedure, were eligible for Medicare for at least one year prior to the procedure,

and for whom Medicare was the primary payer. If patients underwent multiple procedures,

the first procedure was selected. We set the day of the procedure as the index date and the pre-

ceding 1-year period as the baseline period. We followed patients from the index date until the

earliest occurrence of one of the following events: death from any cause, loss of Medicare eligi-

bility, or the end of the study period (December 31st, 2009).

Outcome

The outcome of interest was death from any cause following carotid revascularization over the

study period.

Study variables

Medicare claims data. We extracted data on patient age, sex, and race from Medicare

denominator files. We also derived measures of healthcare utilization, such as number of past-

year hospitalizations, physician visits, and nursing home admissions [18]. Patients were cate-

gorized as having undergone elective CAS unless the hospital admission type was defined as

urgent, emergent, or of a traumatic nature in the institutional Medicare file. Patients were

categorized as having symptomatic carotid stenosis if they had recorded diagnoses of stroke,

transient ischemic attack, or amaurosis fugax in the year leading up the procedure. We also

defined comorbidities using the diagnoses and procedure codes recorded during the baseline

period.

SVS-VR. Information on the ipsilateral and contralateral degrees of carotid stenosis was

available from interpreted pre-procedural carotid ultrasound and angiogram exam results.

We categorized patients as having mild (<50%), moderate (50–69%), or severe (�70%) ipsilat-

eral carotid stenosis or contralateral stenosis�70% using information from ultrasound results

and, when ultrasound data were missing, from angiograms. We considered patients to be at

high surgical risk if they met any of the following criteria: age>80, New York Heart Associa-

tion (NYHA) class III or IV heart failure, left ventricular ejection fraction <30%, unstable

angina, myocardial infarction in the past 30 days, recurrent stenosis, prior radical dissection

or adiation, contralateral occlusion, contralateral laryngeal nerve palsy or injury, high ana-

tomic lesion, or other physiologic or anatomic surgical risk factors from investigational device

PLOS ONE Data-adaptive method for confounding by indication

PLOS ONE | https://doi.org/10.1371/journal.pone.0272975 August 15, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0272975


exemption trials of CAS. We classified patients as per the National Coverage Determination’s

indications for CAS [15]: high surgical risk with symptomatic stenosis 50–69%, high surgical

risk with symptomatic stenosis�70%, high surgical risk with asymptomatic carotid stenosis

�80%, or those not matching the conditions above. We also obtained information on comor-

bidities from the registry.

Propensity score modeling

We employed: 1) investigator-specified approach and 2) automated data-adaptive approach.

For investigator-specified PS model, the investigators preselected the list of variables based on

clinical knowledge and prior literature. For automated data-adaptive model, we chose high

dimensional (hd) PS, one of the most commonly used algorithms. Full lists of variables selected

for each model are described in the footnote of Table 2.

The hdPS algorithm empirically generates and selects covariates that collectively act as

proxies for the patient’s health status from the database for inclusion in the propensity score

modeling. The full description of this algorithm is available elsewhere [10, 19]. Briefly, the

algorithm consists of three parts: (1) empirical variable identification; (2) variable ranking (pri-

oritization); and (3) variable selection. First, the algorithm goes through each type of data such

as inpatient diagnosis, inpatient procedure, namely ‘data dimension’ and generates covariates

that represent the presence or absence of each code meeting a prespecified prevalence thresh-

old (e.g. 1% or more). Second, the generated variables are ranked based on its potential to

cause confounding, measured by its association with the outcome and the exposure [17].

Third, top 500 (or the number the investigators select) of these empirically selected variables

are included to develop a PS model. In our study, ‘data dimensions’ considered for hdPS

included inpatient, outpatient, non-institutional (carrier), and nursing home diagnosis and

procedure codes. We also categorized variables in the registry into registry-based ‘data dimen-

sions’ including medical history, symptomatic status, diagnostic imaging results, pre-proce-

dural medications, and high-surgical risk status.

We constructed three propensity score models in each of the investigator-specified and

hdPS approach using data dimensions in claims data only, with all SVS-VR variables only, and

with claims data and SVS-VR variables (Table 2). We also included an additional PS model

(4th model in hdPS approach) using both registry and claims data but excluding the informa-

tion on patients’ high surgical risk status to assess the importance of the high surgical risk sta-

tus in confounding adjustment (Table 2).

Statistical analysis

We evaluated the baseline characteristics of the study cohort undergoing CAS or CEA using

both registry and claims data. We report crude cumulative risks and 95% confidence intervals

for 3-year mortality, derived from Kaplan-Meier estimators. We used multiple imputation to

maximize power and handle missing covariate information from the SVS-VR (less than 5% of

data were missing for all variables except contralateral carotid occlusion [5.4%], modified Ran-

kin Scale score [5.5%], creatinine level [9.8%], NYHA class [17.6%], and hyperlipidemia/dysli-

pidemia [33.2%]).

Hazard for all cause death following CAS compared to CEA were derived using Cox pro-

portional hazards regression models. The propensity score was included in the Cox model in

three ways: using 1:1 nearest-neighbor matching with a caliper of 0.2 times the logit of the pro-

pensity score, and grouping patients into propensity score quintiles with and without imple-

menting 5% asymmetric trimming [20]. We used the sandwich variance estimator to account

for clustering of patients at the physician and hospital levels. The hazard ratios from these
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models were compared to the benchmark risk ratio of 1.0 based on the findings reported in

randomized clinical trials [9, 21]. All analyses were performed using SAS version 9.2 (SAS

Institute, Cary, NC). The study was approved by the Institutional Review Board of Brigham

and Women’s Hospital.

Results

We successfully linked 2867 SVS-VR CAS records and 4381 SVS-VR CEA records to Medicare

claims data [3]. After applying inclusion and exclusion criteria, 1999 CAS patients and 3255

CEA patients were included in the study cohort (Fig 1).

The full characteristics of the population is described in the previous article by Jalbert and

colleagues [3]. Briefly, the distribution of age, sex and race of the patients were similar between

the two groups (Table 1). CAS patients were more likely to be symptomatic (CAS 38.5% vs.

CEA 30.7%) and had a higher prevalence of high surgical risk factors (96.7% vs. 44.5%). Specif-

ically, patients undergoing CAS had higher percentages of patients with class III/IV heart fail-

ure (10.7% vs. 3.2%), left ventricular ejection fraction < 30% (4.9% vs. 1.0%), unstable angina

(3.6% vs. 0.5%), recurrent stenosis (27.4% vs. 1.8%), contralateral occlusion (16.7% vs. 7.1%),

prior neck radiation (6.3% vs. 0.2%), and high anatomic lesion (6.4% vs. 1.8%) than patients

undergoing CEA. CAS patients had a higher prevalence of cardiac comorbidities (e.g., coro-

nary artery disease, 62.1% vs. 52.1%; myocardial infarction, 21.9% vs. 16.2%), and slightly

Fig 1. Flow chart for creation of Medicare-linked SVS-VR CAS and CEA study cohorts. Abbreviations: CAS = Carotid stenting; SVS-VR = Society

of Vascular Surgeons Vascular Registry; CEA = Carotid endarterectomy; HMO = Health maintenance organization.

https://doi.org/10.1371/journal.pone.0272975.g001
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Table 1. Selected patient characteristics at baseline, by procedure.

Patient Characteristics CAS N (%) CEA N (%)

N 1999 3255

Data from SVS-VR
Age

66–69 362 (18.1) 539 (16.6)

70–74 538 (26.9) 890 (27.3)

75–79 600 (30.0) 976 (30.0)

80- 499 (25.0) 850 (26.1)

Woman 814 (40.7) 1358

(41.7)

White Race 1866

(93.3)

3060

(94.0)

Carotid Symptoms in Past 12 months��

Symptomatic 770 (38.5) 1000

(30.7)

Ipsilateral Stroke 250 (12.5) 346 (10.6)

Ipsilateral Transient Ischemic Attack 479 (24.0) 555 (17.1)

Ipsilateral Amaurosis Fugax 171 (8.6) 226 (6.9)

Carotid Stenosis Level�

<50% 17 (0.9) 19 (0.6)

50–69% 79 (4.0) 206 (6.6)

�70% 1899

(95.2)

2882

(92.8)

Contralateral stenosis�70%��� 457 (24.5) 542 (17.5)

High-Surgical Risk Criteria
High Surgical Risk 1934

(96.7)

1447

(44.5)

Age >80 520 (26.0) 832 (25.6)

NYHA Class III/IV Heart Failure 214 (10.7) 105 (3.2)

Left Ventricular Ejection Fraction<30% 97 (4.9) 33 (1.0)

Unstable angina 71 (3.6) 16 (0.5)

Recent MI (30 days) 25 (1.3) 8 (0.2)

Other Physiologic High-Surgical Risk from Investigational Device Exemption (IDE)

CAS trials

662 (33.1) 269 (8.3)

Other Physiologic High-Surgical Risk 240 (12.0) 84 (2.6)

Recurrent Stenosis 548 (27.4) 57 (1.8)

Radical Neck Dissection 56 (2.8) 3 (0.1)

Contralateral Occlusion 334 (16.7) 231 (7.1)

Prior Neck Radiation 125 (6.3) 5 (0.2)

Contralateral Laryngeal Nerve Injury or Palsy 14 (0.7) 1 (0.0)

High Anatomic Lesion (C2 or higher) 128 (6.4) 60 (1.8)

Other Anatomatic High-Surgical Risk from Investigational Device Exemption (IDE)

CAS trials

281 (14.1) 257(7.9)

Other Anatomic High-Surgical Risk 86 (4.3) 50 (1.5)

Cardiac Comorbidities
Cardiac Arrhythmia 328 (16.4) 478 (14.7)

Coronary Artery Disease 1242

(62.1)

1695

(52.1)

Heart Failure 302 (15.1) 267 (8.2)

Myocardial Infarction 438 (21.9) 528 (16.2)

(Continued)
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higher prevalence of non-cardiac comorbidities including cancer (17.6% vs. 14.0%), COPD

(19.3% vs. 17.8%), and renal failure (4.3% vs. 3.5%).

CAS patients were followed for a median of 909 days, during which time 446 deaths were

identified (incidence of 3-year mortality: 25.5% (95% CI: 23.3–27.6)) (Fig 2). Similarly, we

identified 424 deaths during 847 days of median follow-up among the CEA patients (incidence

of 3-year mortality: 16.8% (95% CI: 15.2–18.3)). The estimated crude hazard ratio was 1.82

(95% CI: 1.60–2.08).

Fig 3 shows the distribution of the propensity scores from the six models with different

combinations of data source and variable selection approach. All PS models that included

Table 1. (Continued)

Patient Characteristics CAS N (%) CEA N (%)

Other Comorbidities
Cancer 351 (17.6) 457 (14.0)

Chronic Obstructive Pulmonary Disease 385 (19.3) 579 (17.8)

Diabetes Mellitus 645 (32.3) 944 (29.0)

Renal Failure 86 (4.3) 113 (3.5)

Data from claims
Non-Elective Hospital Admission 478 (23.9) 432 (13.3)

Measures of Healthcare Utilization
Mean Number of Past-Year Physician Visits (SD) 12.7 (8.8) 11.4 (8.3)

Median (IQR) 11 (7–17) 10 (6–15)

Mean Number of Past-Year Hospitalizations (SD) 1.0 (1.4) 0.6 (1.0)

Median (IQR) 1 (0–1) 0 (0–1)

Past-Year Nursing Home Admission 127 (6.4) 116 (3.6)

Abbreviations: SD = Standard Deviation; IQR = Interquartile Range

�Missing 2.9%;

��Missing <1%;

���Missing 5.4%;
† Missing 33.2%

https://doi.org/10.1371/journal.pone.0272975.t001

Fig 2. 3-year cumulative incidence of death among the Medicare-linked SVR-VR patients, by procedure. Abbreviations: CAS = Carotid

Stenting; CEA = Carotid endarterectomy.

https://doi.org/10.1371/journal.pone.0272975.g002
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registry data (B, C, E, F) clearly separated the distribution between the CAS group and the

CEA group. The PS models using claims data only (A, D) resulted in much greater overlap

between the two groups, indicating less ability to discriminate between those receiving CAS

and those receiving CEA. The c-statistics of the propensity score models ranged from 0.69 to

0.96. The difference in the PS distributions and c-statistics for IS-PS and hdPS were identical

or nearly identical except for the models using claims data only (A, D) where the discrimina-

tion between the two groups was higher using hdps (c-statistic of 0.77 vs. 0.69). Among the 4

models using either registry data alone or registry plus claims data (B, C, E, F), the c-statistics

were similar regardless of whether investigator-specified variables or hdPS-selected variables

were used. All models with information on surgical risk had c-statistics of 0.94 and above,

while none without had such high c-statistics (�0.80) (Table 2).

In the PS-matched analysis, the largest number of patients were retained when the investi-

gator-specified PS model with claims data only was used (1674 patients each in the CAS and

CEA groups). The adjusted HR estimate in the matched cohort was 1.45 (95% CI: 1.24–1.69),

significantly different from the benchmark value of 1.0. The HR estimates were similar for

the models using either registry data only or claims only, with or without the use of hdPS

approach for variable selection. Investigator-specified propensity scores yielded a point esti-

mate slightly closer to the benchmark of 1.0 at 1.36 (1.02–1.81) when both claims and registry

data were used, and hdPS from claims plus registry data yielded a smaller HR estimate of 1.22

(0.92–1.63), which was the only estimate without statistical significance across the different

approaches compared. The hdPS model with exclusion of high surgical risk status yielded an

HR estimate of 1.32 (1.07–1.64) that was further away from the benchmark.

Fig 3. Distribution of the propensity scores estimated from the models with different combinations of data source and variable

selection approach. Abbreviations: PS = propensity score.

https://doi.org/10.1371/journal.pone.0272975.g003
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Table 2. Number of events, total cell sizes and hazard ratios for CAS relative to CEA based on different propensity score adjustment techniques across the different

propensity score models.

Propensity score models from investigator-specified

variables

propensity score models from automated data-adaptive approach

Data from

claims only

Data from

registry only

Data from both

claims and registry

Data from

claims only

Data from

registry only

Data from both claims and registry

excluding high surgical risk status

Data from both

claims and registry

Model c-statistic 0.69 0.95 0.96 0.77 0.95 0.80 0.94

PS quintiles

Adjustment–no

trimming

Events / Number of CEA

Patients

465 / 3255 465 / 3255 465 / 3255 465 / 3255 465 / 3255 465 / 3255 465 / 3255

Events / Number of CAS

Patients

528 / 1999 528 / 1999 528 / 1999 528 / 1999 528 / 1999 528 / 1999 528 / 1999

HR 1.48 (1.28–

1.70)

1.51 (1.22–1.86) 1.34 (1.07–1.69) 1.52 (1.31–

1.76)

1.42 (1.14–1.76) 1.39 (1.20–1.62) 1.23 (1.00–1.50)

PS quintiles adjustment

+ trimming

Events / Number of CEA

Patients

417 / 2886 175 / 1053 156 / 869 387 / 2650 196 / 951 371 / 2551 224 / 1181

Events / Number of CAS

Patients

396 / 1669 154 / 652 133 / 574 323 / 1494 168 / 670 320 / 1462 187 / 828

HR 1.47 (1.25–

1.71)

1.36 (1.05–1.76) 1.21 (0.92–1.59) 1.41 (1.19–

1.67)

1.38 (1.08–1.76) 1.32 (1.12–1.56) 1.18 (0.94–1.49)

Matching on PS

Events / Number of CEA

Patients

279 / 1,674 108 / 588 95 / 548 230 / 1446 103 / 575 224 / 1,332 112 / 668

Events / Number of CAS

Patients

381 / 1,674 144 / 588 127 / 548 320 / 1446 103 / 575 283 / 1,332 154 / 668

HR 1.45 (1.24–

1.69)

1.41 (1.09–1.83) 1.36 (1.02–1.81) 1.47 (1.21–

1.78)

1.40 (1.05–1.86) 1.32 (1.07–1.64) 1.22 (0.92–1.63)

Age, sex, race, and year of procedure were pre-specified variables included in the high-dimensional propensity score by the investigator.

Abbreviations: HR = hazard ratio; CAS = Carotid stenting; CEA = Carotid endarterectomy

Note: Investigator-specified propensity score using claims data includes: age, sex, race, year of procedure, recent myocardial infarction, heart failure, atrial fibrillation,

angina, pulmonary disease, cervical osteoarthritis, hypertension, ischemic heart disease, other atherosclerotic arterial disease, ventricular arrhythmia, peripheral vascular

disease, valvular heart disease, chronic kidney disease, anemia, hyperlipidemia, diabetes, chronic obstructive pulmonary disease, coagulopathies, cancer, gastrointestinal

bleed, glaucoma, osteoporosis, dementia, delirium, depression, bipolar disorder, anxiety, other psychiatric disorders, smoking history, alcohol abuse, drug abuse,

pressure ulcers, cardiomyopathy, flu vaccination, pneumococcal vaccination, mammography, occult fecal blood test, bone mass density test, prostate-specific antigen

test, prior carotid endarterectomy, prior CAS, prior radical neck dissection, prior open heart surgery, prior tracheostomy, prior percutaneous coronary intervention,

prior coronary artery bypass graft procedure, non-elective hospital admission, Elixhauser comorbidity score, past-year hospitalizations, past-year physician visits, and

past-year nursing home stay.

Investigator-specified propensity score using registry data includes: age, sex, race, year of procedure, CAS indication, medical history (coronary artery disease, cardiac

arrhythmia, myocardial infarction, valvular heart disease, heart failure, hypertension, diabetes mellitus, stroke, transient ischemic attack, amaurosis fugax, peripheral

vascular disease, renal failure, gastrointestinal ulcer or bleed, chronic obstructive pulmonary disease, current or past smoking, cancer, coagulopathy, hyperlipidemia/

dyslipidemia, kidney function as per estimated glomerular filtration rate), American Society of Anesthesiology grade, New York Heart Association heart failure class,

procedure side, carotid symptoms (carotid stenosis symptomatic in past year, past-year ipsilateral stroke, past-year ipsilateral transient ischemic attack, past-year

amaurosis fugax, ipsilateral stroke more than one year prior to the procedure, ipsilateral transient ischemic attack more than one year prior to the procedure, amaurosis

fugax more than one year prior to the procedure, modified Rankin Scale score), physiologic high surgical risk factors (age >80, NYHA class III or IV heart failure, left

ventricular ejection fraction <30%, unstable angina, myocardial infraction 30 days prior to the procedure, other physiologic high surgical risk criteria from

investigational device exemption CAS trials), anatomic high surgical risk factors (restenosis, radical neck dissection, contralateral occlusion, prior neck radiation,

contralateral laryngeal nerve palsy or injury, high anatomic lesion, other anatomic high surgical risk criteria from investigational device exemption CAS trials),

ipsilateral carotid stenosis (mild, moderate, severe), contralateral carotid stenosis�70%, and pre-procedural medication use (none, aspirin, clopidogrel, ticlopidine,

other antiplatelet medication).

Investigator-specified propensity score using claims and registry data includes all the variables listed in the investigator-specified propensity score using claims only and

registry data only.

https://doi.org/10.1371/journal.pone.0272975.t002
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The findings from the two PS adjustment approaches were similar to those from the

matched analysis. PS quintile adjustment without trimming yielded HR estimates slightly

larger (i.e., away from the benchmark) compared to the matched analyses, although the differ-

ence was small. On the other hand, PS quintile adjustment with asymmetric trimming yielded

point estimates that were generally similar or slightly smaller than those from the correspond-

ing matched analyses, despite having more patients in the cohort than the matched analyses.

In both adjustment approaches, hdPS from claims plus registry data yielded the smallest esti-

mated HR; hdPS without information on high surgical risk status yielded an HR further from

the benchmark. The HRs and 95% confidence intervals estimated from all of the PS model are

summarized in Fig 4.

The top 25 variables identified by the hdPS algorithm as having the greatest potential to

cause confounding from claims data, registry data and the combination of the two are listed in

Table 3. The variables selected from registry data were clinical factors, most of which matched

the investigator-specified PS variables. Variables selected from claims data included clinical

factors such as diagnoses for heart failure and pneumonia, as well as CPT codes indicating

health services use such as hospital care, electrocardiogram, and ambulance transportation.

The factors selected via the hdPS algorithm when both registry data and claims data were a

mix of these two.

Discussion

In a cardiovascular CER study with strong confounding by indication, we compared the per-

formance of various methods for confounding adjustment using propensity scores (both inves-

tigator-specified and automated data-adaptive method) and using both claims and registry

Fig 4. Hazard ratios comparing CAS vs. CEA from outcome models adjusting for investigator specific vs. automated data-adaptive propensity

score using covariates from claims only, registry only, or claims+registry. Abbreviations: PS = propensity score, CEA = carotid endoarterectomy,

CAS = coronary artery stenting, HR = hazard ratio.

https://doi.org/10.1371/journal.pone.0272975.g004
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data. The c-statistics for the propensity score models were high and were similar for models

from registry data with or without claims. However, propensity scores from claims data were

not sufficient to achieve adequate confounding adjustment, even with the use of automated

data-adaptive PS method. Clinical information on high surgical risk status from the registry

was needed to produce estimates similar to what was expected based on results from RCTs [9,

21].

Table 3. Top 25 variables identified by the high-dimensional propensity score algorithm as having the greatest potential to cause confounding.

All claims dimensions All registry dimensions All Claims and registry dimensions

4280 (ICD-9-CM; heart failure) High surgical risk–physiologic (registry) High surgical risk–physiologic (registry)

4280 (ICD-9-CM; heart failure) High surgical risk–other physiologic from CAS Investigational

Device Exemption trials (registry)

4280 (ICD-9-CM; heart failure)

4280 (ICD-9-CM; heart failure) Heart failure (registry) High surgical risk–other physiologic from CAS Investigational

Device Exemption trials (registry)

4280 (ICD-9-CM; heart failure) Left ventricular ejection fraction<30% (registry) 4280 (ICD-9-CM; heart failure)

99232 (CPT-4; subsequent hospital

care)

NYHA class IV (registry) 4280 (ICD-9-CM; heart failure)

99232 (CPT-4; subsequent hospital

care)

NYHA class III/IV (registry) 4280 (ICD-9-CM; heart failure)

4280 (ICD-9-CM; heart failure) History of stroke (registry) 99232 (CPT-4; subsequent hospital care)

99231 (CPT-4; subsequent hospital

care)

High surgical risk–anatomic (registry) 99232 (CPT-4; subsequent hospital care)

99232 (CPT-4; subsequent hospital

care)

Contralateral carotid occlusion (registry) 4280 (ICD-9-CM; heart failure)

99231 (CPT-4; subsequent hospital

care)

Carotid restenosis (registry) 99231 (CPT-4; subsequent hospital care)

4280 (ICD-9-CM; heart failure) High surgical risk–other physiologic (registry) Heart failure (registry)

93010 (CPT-4; electrocardiogram) Previous neck radiation (registry) 99232 (CPT-4; subsequent hospital care)

99233 (CPT-4; subsequent hospital

care)

Symptomatic carotid stenosis (registry) 99231 (CPT-4; subsequent hospital care)

71010 (ICD-9-CM; systemic

sclerosis)

Radical neck dissection (registry) 4280 (ICD-9-CM; heart failure)

4280 (ICD-9-CM; heart failure) History of myocardial infarction (registry) 93010 (CPT-4; electrocardiogram)

93010 (CPT-4; electrocardiogram) Contralateral carotid stenosis�70% (registry) Left ventricular ejection fraction <30% (registry)

A0425 (CPT-4; ambulance

transportation)

End-stage renal disease (registry) 99233 (CPT-4; subsequent hospital care)

99238 (CPT-4; hospital discharge) Modified Rankin scare score of 0 (registry) 71010 (ICD-9-CM; systemic sclerosis)

99223 (CPT-4; initial hospital care) History of stroke (registry) NYHA class IV (registry)

71010 (ICD-9-CM; systemic

sclerosis)

History of cancer (registry) 4280 (ICD-9-CM; heart failure)

A0425 (CPT-4; ambulance

transportation)

Transient ischemic attack in past year (registry) 93010 (CPT-4; electrocardiogram)

99231 (CPT-4; subsequent hospital

care)

Diabetes mellitus (registry) A0425 (CPT-4; ambulance transportation)

486 (ICD-9-CM; pneumonia) Modified Rankin scale score of 4 (registry) 99238 (CPT-4; hospital discharge)

99254 (CPT-4; initial inpatient

consultation visit)

Stroke in the past year (registry) NYHA class III/IV (registry)

486 (ICD-9-CM; pneumonia) Chronic renal failure (registry) 99223 (CPT-4; initial hospital care)

Note: Codes may appear more than once because codes are assessed for recurrence (once, sporadically, or frequently) in each dimension. For more information, see

Schneeweiss et al. [10].

Abbreviations: ICD-9-CM = International Classification of Diseases, Clinical Modification; CPT-4 = Current Procedural Terminology; NYHA = New York Heart

Association

https://doi.org/10.1371/journal.pone.0272975.t003
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Using the data-adaptive PS method, variables with high potential for confounding were

automatically identified based on their association with the exposure and the outcome. When

using the registry as the only data source, the top 25 potential confounders identified were

mostly clinical factors that constitute high surgical risk. These factors were strongly associated

with CAS, since CAS procedures were reimbursed by the CMS only for those with high surgi-

cal risk. On the other hand, when we used only claims data, the top 25 potential confounders

identified by data-adaptive PS method included heart failure, past hospitalizations, ambulance

transportations, and electrocardiograms. Data-adaptive PS method did not identify all of the

past diagnoses or treatments that constitute high surgical risk, most likely because they are

under- or mis-captured in claims data. For example, conditions such as contralateral occlusion

and contralateral nerve injury or palsy may not be captured accurately using the claims data as

the information on laterality is oftentimes missing. Factors such as high anatomic lesion (C2

or higher) and the level of stenosis cannot be captured using claims data, because the billing

codes are not designed to identify such detailed clinical information.

Confounding adjustment using registry information only also did not produce estimates

that were closer to the estimates from RCT and variables from claims data were needed to

achieve maximum confounding adjustment. This supports that claims databases may provide

important information on confounders not captured in disease or device registries. First, regis-

tries for specific diseases or devices tend to have limited information on comorbidities that are

not directly related to the main devices or diseases of interest (e.g., details on cancer or chronic

medication use for CAS/CEA registry) while claims data capture all clinical encounters of

patients regardless of the targeted diseases/devices. Second, claims data can provide proxies of

non-clinical health determinants, including use of services and therefore patients’ tendency to

seek health care, their socioeconomic status, or frailty [18]. Automated data-adaptive approach

may be especially useful in this context, as it can identify these proxies without investigators’

pre-specification. It is important to reiterate that despite the above, using claims data only did

not sufficiently adjust for confounding by indication in the case of CAS vs. CEA.

It is also worth noting that without detailed specification of variables by the researcher,

automated data-adaptive PS was able to identify and include potential confounders in the

model for the analysis for both registry-only and claims plus registry databases. This finding is

consistent with prior studies of hdPS using claims databases [10, 22–26] and underscores the

usefulness of the approach, especially in the absence of detailed pre-specification of confound-

ers in situations such as conducting a large number of comparisons (e.g. monitoring and signal

detection [27]), or when no previous assessment of potential confounders is available. Yet, at

the same time, automated data-adaptive approach was not able to overcome the lack of infor-

mation on patients’ high surgical risk status which was the most important confounding by

indication in the current study.

Limitations of our study should be noted. First, to assess the performance of different

adjustment approaches, we used the reported relative risk estimates from randomized clinical

trials as a benchmark. However, results from randomized studies may differ from comparative

effectiveness estimates obtained using routine care data due to differences in patient popula-

tions and possible effect measure modification. Second, the precision of our estimates was

poor, due to the limited number of patients and events in the linked cohort, and we were thus

unable to conduct meaningful statistical tests to compare the estimates. Third, the example

study we used is for a particular comparative analysis and may have limited generalizability.

While we expect combinations of claims database and registries with common characteristics

to show similar tendencies in terms of the usefulness of agsPS for other comparative effective-

ness research questions, additional studies with such combinations are needed to confirm our

findings.
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In summary, in a cardiovascular CER study with a high likelihood of confounding by indi-

cation, an automated data-adaptive approach for PS modeling performed well, with similar

results seen for individual claims, registry, and claims plus registry databases. Although the c-

statistics of propensity score models were similar across registry-based models with and with-

out additional claims data components, neither was sufficient to adequately control confound-

ing by indication by itself; both claims and registry variables were needed for better control. As

expected, among the different data dimensions in the registry and claims data, the most impor-

tant to control for confounding by indication was high surgical risk status data in the registry.

Despite its potential to control for unmeasured confounding, the automated data adaptive

approach itself was not sufficient to control strong confounding by indication when the infor-

mation is lacking in the data source.
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