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Reservoir Computing Beyond 
Memory-Nonlinearity Trade-off
Masanobu Inubushi1 & Kazuyuki Yoshimura2

Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven 
dynamical system, in particular harnessing common-signal-induced synchronization which is a widely 
observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can 
be expected to shed light on how information is stored and processed in nonlinear dynamical systems, 
potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, 
from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity 
trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical 
mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored 
in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir 
endowed with both linear and nonlinear dynamics and show that it improves the performance of 
information processing. Interestingly, for some tasks, significant improvements are observed by adding 
a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, 
the effect of the mixture reservoir is numerically verified for a simple function approximation task and 
for more complex tasks.

A variety of dynamical systems, including recurrent neural networks, soft material, and optoelectronic and 
quantum systems, exhibit common-signal-induced synchronization1–4. These dynamical systems have a kind of 
reproducibility to a repeated input signal, and remarkably, can serve as a resource for information processing 
in principle. This framework is referred to as reservoir computing (RC)5 which was proposed originally in the 
research fields of machine learning6 (called Echo State Network) and computational neuroscience7 (called Liquid 
State Machine). Recent implementations of RC with the dynamical systems mentioned above have shown excel-
lent performances in the processing of practical tasks such as time series forecasting and speech recognition8–18.

In the framework of RC, an input signal drives a dynamical system (called a reservoir), and we obtain a desired 
output through ‘careful’ observation of the transient states of the system. Specifically, as we describe below, a 
processed signal is obtained as a linearly weighted readout of the states. The linear weight is determined by using 
supervised machine learning (simply the least-squares method); therefore, the training procedure is computa-
tionally inexpensive, which allows us to utilize dynamical systems with a huge number of degrees of freedom for 
RC. Implementing RC with an optical system, which is of a large number of degrees of freedom, accomplishes fast 
information processing with low energy consumption8–12, 14–17, and it could potentially outperform conventional 
information processing technologies.

However, many aspects of RC remain unknown. For example, little is known about its working principle, 
and there are few theoretical answers to the following fundamental question: what characteristics of a dynamical 
system are crucial for high-performance information processing? Progress in theoretical research on RC could 
uncover not only a reservoir design principle, but also deepen our understanding of information processing in 
dynamical systems, in particular give an answer to the question, such as how dynamical systems store and process 
information, discussed in a community of nonlinear physics19. And also, it can be expected that some insights of 
working principles in RC may lead to progress in theoretical neuroscience.

We here study the roles of linear and nonlinear dynamics in RC which are still not fully understood. Focusing 
on the linear memory capacity, i.e., the ability to reconstruct the past input signal from the present reservoir state, 
Jaeger conducted pioneering studies on short-term linear memory capacity (MC) and showed theoretically that 
MC ≤ N for a reservoir with i.i.d. input signal, where N is the number of nodes (see Proposition 2 in ref. 20). 
Interestingly, they also showed that generically MC = N for a reservoir with a linear activation function and 
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concluded with an open question: “Are linear networks always optimal for large MC”? Linear memory capacity 
increasing with the number of nodes linearly (i.e. MC ∝ N) is called extensive memory. Ganguli et al. introduced 
the total memory Jtot as an integrated Fisher memory curve that is independent of the input signal history and 
clarified that a certain type of the linear reservoir with a non-normal connection matrix can achieve the extensive 
memory: Jtot = N. On the other hand, they showed ∝J Ntot  at best for a reservoir subject to saturating nonline-
arity21 (see ref. 22 for the relation between the two memory capacities; MC and Jtot). The best memory lifetime 
achieved by a nonlinear network reported so far is O(N/logN), i.e., nearly extensive, as rigorously estimated by 
Toyoizumi, where the nonlinearity is harnessed for the error-correcting23. In summary, extensive memory capac-
ity can be realized by a linear reservoir, and memory capacity seems to be degraded by introducing nonlinearity 
into the reservoir dynamics.

Previous studies suggest that nonlinear dynamics might degrade the memory capacity; however, nonlinear 
dynamics is apparently important for RC. For instance, the so-called linearly inseparable problem24, which often 
appears in practical tasks, cannot be solved without the nonlinear transformation of the input signal. In other 
words, the nonlinear dynamics of the reservoir is essential for general information processing. Therefore, it can 
be expected that there exists some trade-off relation between linearity and nonlinearity in reservoir dynamics, 
which is required respectively for memory capacity and for the general information processing. In the seminal 
paper25, Dambre et al. introduced a computational capacity of a dynamical system which is a natural general-
ization of the linear memory capacity to the nonlinear one, by employing a complete orthonormal basis of a 
function space. Importantly, by using the computational capacity, they suggested that there exists the universal 
memory-nonlinearity trade-off relation, and moreover, demonstrated it numerically for some dynamical systems 
with different types of nonlinearity25. And also, other numerical studies have concluded that linear nodes are 
effective for linear memory capacity and the linear-like reservoir becomes optimal for a task requiring longer 
memory26–28.

In the present work, we introduce a simple task which has controllable memory and nonlinearity and clearly 
demonstrate the memory-nonlinearity trade-off on the task, using the echo state network (random network) 
model as a simple reservoir. Moreover, focusing on the variational equation from the viewpoint of information 
theory, we give a theoretical interpretation that reveals a dynamical mechanism illustrating how the nonlinear 
dynamics degrades memory as observed in the previous studies25–27. The theoretical interpretation will imply the 
trade-off is indeed universal in the sense that the memory degradation occurs independently of the form of the 
nonlinearity of the dynamical system.

What sort of dynamical system is preferable for the reservoir that realizes the universal (nonlinear) transfor-
mation of the input signal and possess the appropriate memory capacity? The pioneering works in this direction 
tackled to find the answer; Butcher et al.29–31 introduced RC with random static projection (R2SP) and Extreme 
Learning Machines with a time delay based on the discussion on the trade-off, and reported these architectures 
improves performance well for some tasks compared with the standard echo state network model. The trade-off 
suggests that coexistence of linearity and nonlinearity in RC will improve its performance. Actually, Vinckier et al.15  
introduced a linear optical dynamics on a photonic chip with nonlinear readout and showed that it possesses a 
remarkably high (total) memory capacity, and interestingly, exhibits high-performances for the complex tasks.

Here, we consider the coexistence of linearity and nonlinearity in RC in a different way. Namely, we propose 
a novel reservoir structure endowed with both linear and nonlinear activation functions, which is referred to 
as mixture reservoir. We show that introducing the mixture reservoir improves the performance of information 
processing for a variety of simple tasks. Interestingly, for some tasks, significant improvements are observed 
by adding a few linear dynamics to the nonlinear dynamical system. Finally, we verify the effect of the mixture 
reservoir for more practical and complex tasks: time series forecasting of the Santa Fe Laser data set32 and the 
NARMA task.

Results
Formulation.  We here consider the echo state network model, which uses a random recurrent neural net-
work as a reservoir. Its time evolution is given by

φ+ =x t a t( 1) [ ( )] (1)i i
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where ∈ = …x t i N( ) ( 1, , )i  denotes the state variable of ith unit of the network at time ∈t , ∈s t( )  is an 
input signal, and g, ε ∈  are control parameters. The function  φ →:  is a so-called activation function. We 
use N = 100 and φ[a] = a or φ =a a[ ] tanh  in the numerical experiments. Elements Jij of the connection matrix 
are independently and identically drawn from the Gaussian distribution with mean zero and variance 1/N; 
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1. To evaluate the 
performance of RC, we use the generalization error E(w*) throughout this paper, where its relation to the capacity 
C of the dynamical system defined by Dambre et al.25 is C = 1 − E(w*). In the present formulation, the reservoir 
has two parameters, (g, ε), so the error depends on them; E(w*|g,ε). Hereafter, the error   represents 

ε= ε ∈
⁎E w g: min ( , )g P( , ) , where P is a region in the parameter space ε ε= ∈ . . ∈ . .P g g: {( , ) [0 1, 3 0], [0 2, 6 0]}. 

The minimum value of the error is obtained numerically by calculating the error in the parameter region P dis-
cretely with step size Δg = 0.1, Δε = 0.2. We checked the main results of this paper are insensitive to the choice of 
the parameter space P and step sizes in the Supplemental Information.

Common-signal-induced synchronization.  When employing a signal-driven dynamical system 
x(t + 1) = T(x(t), s(t)) as a reservoir, there is at least one necessary condition: the dynamical system has to exhibit 
common-signal-induced synchronization. Let us consider two different initial states x(t0) and x̂ t( )0  (≠x(t0), see 
Fig. 1(a)). If these two states converge to the same state asymptotically under the action of the same dynamical 
system T and the common signal ≥s t{ ( )}t t0

, i.e. − → → ∞ˆx t x t t( ) ( ) 0 ( ), the signal-driven dynamical system 
T is said to exhibit common-signal-induced synchronization. This condition is also referred to as echo state prop-
erty6 or consistency33. This condition means, if the transient state is discarded, the asymptotic state x t t t( ) ( )0  
depends not on the initial condition x(t0) but only on the sequence of the input signal ≥s t{ ( )}t t0

. If the dynamical 
system (reservoir) does not satisfy this condition, different results will be obtained from the same input, depend-
ing on the initial condition of the reservoir.

A key quantity determining whether the reservoir satisfies these conditions is the conditional Lyapunov expo-
nent λ({s(t)}) for a given signal sequence ∈s t{ ( )}t . Let δ(t0) be an infinitesimally small difference in the initial 
states, δ = − ˆt x t x t( ) ( ) ( )0 0 0 . Then, the time evolution of the perturbation δ(t) is described by the variational 
equation δ(t + 1) = DT(x(t), s(t))δ(t), where DT(x(t), s(t)) is Jacobian matrix = ∂ ∂DT x t s t T x x t s t[ ( ( ), ( ))] : / ( ( ), ( ))ij i j . 
The conditional Lyapunov exponent is given by λ δ= →∞s t t({ ( )}) lim ln ( )t t

1 . Therefore, if λ({s(t)}) < 0 holds, 
the norm of the perturbation converges to zero asymptotically ||δ(t)|| ∝ eλ({s(t)})t → 0 (t → ∞), i.e., the negative 
conditional Lyapunov exponent implies the common-signal-induced synchronization.

In the above formulation, the variational equation of the dynamical system (2) is as follows:

∑δ δ φ+ = = .
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Figure 1(b) shows the contour line of the conditional Lyapunov exponent for the echo state network (2) with the 
activation function φ[a] = tanh a in the parameter space (g, ε). The input signal s(t) is independently and identi-
cally drawn from the uniform distribution in the interval (−1, 1), and we write the distribution as −( 1, 1) . The 
red line represents λ({s(t)}) = 0, and hence, if the parameters are in the upper left region of this line, the dynamical 
system shows common-signal-induced synchronization and can be used for RC.

It is known that ref. 34, considering the deterministic case (i.e. ε = 0), the origin is a stable fixed point when 
g < 1 and chaotic behavior appears when g > 1. Moreover, it is also known that, the conditional Lyapunov 

Figure 1.  Conditional Lyapunov exponent. (a) The upper panel: schematic illustration of time evolution of the 
states x(t) and x̂ t( ) (the red and blue lines) in a state space and perturbation vectors (the black dot arrows). The 
lower panel: schematic illustration of the input signal sequences {s(t)}t and ŝ t{ ( )}t for later use. (b) Contour lines 
of a (maximal) conditional Lyapunov exponent in parameter space (g, ε). The red line denotes the contour of the 
zero conditional Lyapunov exponent. (c) Conditional Lyapunov spectrum. For ε = 0.5, the red circles, purple 
triangles, and blue squares denote the conditional Lyapunov spectrum for g = 0.5, 1.0, and 2.0 respectively. The 
blue crosses denote ln |σi(gJ)| where σi(gJ) are eigenvalues of the connection matrix gJ with g = 0.5. The 
eigenvalues of J in a complex plane are shown in the subset (Circular Law of random matrix).
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exponent decreases when the input signal (noise) is added, i.e. the noise suppresses chaos. The numerical results 
are consistent with the theoretical results obtained by using the mean field approximation34. Figure 1(c) shows the 
conditional Lyapunov spectrum of the dynamical system (2) with the activation function φ[a] = tanh a for some 
parameter values (see Supplementary Information for the details).

Memory-nonlinearity trade-off.  First, we introduce a simple function approximation task. Although 
practical tasks such as time series forecasting are important, it is difficult to recognize in such complex tasks how 
an input signal should be transformed in a nonlinear way and how much memory capacity is required. Therefore, 
for a basic understanding of RC, we study the simple function approximation task first, which allows us to control 
the degree of the nonlinearity and the memory required in the tasks separately.

The simple function approximation task requires computation y(t) = f(s(t − τ)), where f is a nonlinear function 
such as f(x) = sin x, tan x, and x(1 − x2) and s(t − τ) is the input signal of τ-step before. For all results shown in this 
paper for the simple approximation tasks, the input signal s(t) is independently and identically drawn from the 
uniform distribution  −( 1, 1). In Fig. 2, we show results in the case of y(t) = f(s(t − τ)) = sin (νs(t − τ)), where (τ, 
ν) are task parameters that control respectively the ‘depth’ of the required memory and ‘strength’ of the required 
nonlinearity.

We compare the linear function φ[a] = a and the nonlinear function φ[a] = tanh a to study the roles of 
the linearity and nonlinearity of the activation function in RC. We refer to the reservoir employing φ[a] = a 
(φ[a] = tanh a) as a linear (nonlinear) reservoir. As described in detail in the Supplemental Information, the linear 
reservoir can be interpreted as ε → 0 limit of the nonlinear reservoir.

Figure 2(a) shows a diagram summarizing the results of the direct comparison of the two activation functions 
in the task parameter space. For some parameters (τ, ν), if the error with the linear reservoir, L , is lower than that 
with the nonlinear reservoir, NL, i.e., <L NL  , we mark a red square at (τ, ν) in the diagram. Otherwise, if 
 >L NL, we mark a blue circle. The green crosses represent draw, i.e.,   ∈ . ./ (0 95, 1 05)NL L . The errors   for 
log ν = 0.0, −0.4, −1.0 along τ (blue strips depicted in Fig. 2(a)) are shown in Fig. 2(b) from top to bottom. As a 
reference, typical examples of time series and ‘function approximation plots’, which illustrate how the function 
approximation is performed, are depicted in Fig. 2(c). While these results are obtained by employing a particular 
realization of random matrix J and a particular task f(x) = sin x, we confirmed that qualitatively the same results 
are obtained by employing other realizations of J and other tasks f(x) = tan x and x(1 − x2).

These results indicate that, if the task requires ‘strong’ nonlinear transformation with ‘short’ memory 
( ν τ> − . <∼



log 0 5, 4), the nonlinear reservoir outperforms the linear one. If the task requires ‘long’ memory 
with ‘weak’ nonlinear transformation ( ν τ< − . >∼



log 1 0, 4), the linear reservoir outperforms the nonlinear one. 
The linear dynamics is suitable for tasks requiring memory, although the linear dynamics cannot perform nonlin-
ear transformation. On the other hand, the nonlinear dynamics is suitable for the tasks requiring nonlinear trans-
formation, although the nonlinearity of the dynamics seems to degrade the linear memory capacity. In this sense, 
the above direct comparison clearly shows the memory-nonlinearity trade-off, which is consistent with previous 
studies25, 27.

Why nonlinear dynamics degrades memory.  The nonlinearity of the dynamics seems to degrade memory. 
We show that it can be interpreted by employing the variational equation with the viewpoint of information theory. 
First, we introduce two sequences of the input signals, {s(t)}t and ŝ t{ ( )}t, and assume that they are the same except for 
t = t0 − 1, i.e. =ŝ t s t{ ( )} { ( )}t t for t ≠ t0 − 1 and − = − + ∆ŝ t s t( 1) ( 1)0 0 , where Δ represents a small difference in 
the two sequences (see Fig. 1(a)). For simplicity, let us consider the case of N = 1 (see Supplementary Information for 
general dimensional case (N ≥ 1)). The difference in the input signal Δ leads to a difference in states; the state driven 

Figure 2.  Memory-nonlinearity trade-off. (a) Diagram summarizing results of the direct comparison of the 
linear and nonlinear activation functions in the task parameter space ν τ(log , ). If <L NL   ( >L NL  ), we mark 
a red square (a blue circle). Each green cross represents draw, i.e.   ∈ . ./ (0 95, 1 05)NL L . (b) The error   versus τ 
for log ν = 0.0, −0.4, −1.0 from top to bottom. The blue lines (red broken lines) denote the error for the 
nonlinear (linear) reservoir. The left figure in (c) shows the time series of the target y(t) and the answer y t( ) for 
the task (log ν, τ) = (0, 2), and the right one shows function approximation plots where the horizontal axis is 
s(t − τ) and the vertical axis is y(t) and ŷ t( ). The upper (lower) figure corresponds to the results by the linear 
(nonlinear) reservoir.
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by the input sequence ŝ t{ ( )}t is described by φ ε δ= − + − = +ˆ ˆx t g Jx t s t x t( ) [ ( ( 1) ( 1))] ( )0 0 0 0 0 in the range of 
linear approximation, where δ εφ= ′ − ∆g a t: [ ( 1)]0 0  and x(t0) is the state driven by {s(t)}t. The sequence 
δ δ δ δ= …={ } ( , , , )k k

n
n0 0 1  represents the difference between two orbits x(t0 +  k) and +x̂ t k( )0 , i.e., 

δ = + − + ≥x̂ t k x t k k( ) ( ) ( 0)k 0 0 .
Let us consider the ability to reconstruct the initial difference δ0 from the later difference δn as memory. If there 

exists some relation between δ0 and δn (e.g., they are functionally dependent on each other), we could reconstruct 
the initial difference δ0 from δn. In other words, it is potentially possible to readout some information about the 
past difference in the input sequences from the present reservoir state. In that case, it can be interpreted that the 
reservoir stores memory. On the other hand, if there is no relation between δ0 and δn (e.g., they are independent of 
each other), we cannot reconstruct the initial difference δ0 from the later difference δn. In other words, we cannot 
readout any information about the past difference in the input sequences from the present reservoir state. In that 
case, it can be interpreted that the reservoir forgets memory.

The relation between δ0 and δn is given by the variational equation,

δ φ δ= Π + ≥=
− ′( )gJ a t j n( ) [ ( )] ( 1), (5)n

n
j
n

0
1

0 0

in the range of linear approximation. In the linear reservoir case, we obtain a deterministic relation δn = (gJ)nδ0 
since φ′[x] = 1. Therefore, there exists a strong relation between δ0 and δn, which is suitable for storing memory. 
In the nonlinear reservoir case, the product term φΠ ′ +=

− a t j[ ( )]j
n

0
1

0 , which depends on the sequence + =
−x t j{ ( )} j

n
0 0

1 
and + =

−s t j{ ( )} j
n

0 0
1, is a kind of ‘noise’ in view of preserving the information of δ0, because the product term does 

not correlate with δ0. Hence, the product term due to the nonlinearity always weakens the relation between δ0 and 
δn, implying that introducing nonlinearity degrades memory. In brief, it can be interpreted that the nonlinear 
dynamics degrades memory, while the linear dynamics preserves it.

To study the above statement more quantitatively, we measure the strength of the relation using the mutual 
information I(δ0; δn). Then, simply by using the fundamental inequality (data-processing inequality) in information 
theory, we can show δ δ δ δ≥I I( ; ) ( ; )n

L
n
NL

0 0  below, where δ φ δ= Π ′ +=
−gJ a t j: ( ) ( [ ( )])n

NL n
j
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0
1

0 0 and δ δ= gJ: ( )n
L n

0. 
To define the mutual information, we introduce a joint probability density function δ = =

−
p s({ } , { } )x i i

n
i i

n
0 0

1
0

. Here, δ0 
denotes the random perturbation at the initial point x0 in the state space of the signal-driven dynamical system 
xk+1 = T(xk, sk). Let us consider that δ0 is drawn from p(δ0) independently of the initial point x0. We write the per-
turbation vector at xn as δn. The mutual information can be defined by δ δ δ δ δ= −I h h( , ) ( ) ( )x n x x n0 0 00 0 0

 by using 
the marginalized probability density function
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where hx0
 represents differential entropy defined by δ δp ( , )x n 00

.
The inequality implying ‘nonlinearity degrades memory’ can be shown by simply employing the data- 

processing inequality (Theorem 2.8.1 in ref. 35). Let δ∼X p( )0  and Y = (gJ)nX be random variables. Finally, we 
introduce φ= = Π ′ + ⋅=

−Z g Y a t j Y( ) : [ ( )]j
n

0
1

0 . Then, X → Y → Z can be considered as a Markov chain. The data 
processing inequality implies I(X; Y) ≥ I(X; Z), and from the variational equation, δ δ =I I X Y( ; ) ( ; )x n

L
00

 and 
δ δ =I I X Z( ; ) ( ; )x n

NL
00

. Therefore, we obtain δ δ δ δ≥I I( ; ) ( ; )x n
L

x n
NL

0 00 0
 and this inequality holds for each x0 in the 

state space, i.e., nonlinearity degrades memory.
Note that the above argument is general in two senses. First, it does not assume any particular function form 

of the map T defining dynamical system x(t + 1) = T(x(t), s(t)). Therefore, we conclude that introducing any form 
of nonlinearity in the reservoir dynamics degrades memory, which suggests a positive resolution of the ‘Jaeger 
conjecture’20: linear networks are always optimal for large memory capacity. Second, the above argument does not 
assume linear readout, which is specific to RC. Thus, the above statement, nonlinearity degrades memory, holds for 
general signal-driven dynamical systems.

Beyond the trade-off.  We showed the memory-nonlinearity trade-off in our numerical experiment, and 
gave the dynamical mechanism behind the trade-off. With this trade-off, it is natural to use both linear and 
nonlinear activation functions with an expectation of storing memory by linear dynamics and realizing general 
transformation by nonlinear dynamics. We show numerically that a reservoir endowed with both linear and 
nonlinear activation functions, hereafter referred to as a mixture reservoir, is superior to the linear or nonlinear 
reservoir. Here the effect of the mixture reservoir is demonstrated for the simple function approximation task 
y(t) = sin (νs(t − τ)).

We extend the standard echo state network as follows:

φ φ+ = =





∈
∈x t a t x x i V

x i V( 1) [ ( )] where [ ] ( )
tanh [ ] ( ), (7)i i i i

L

NL

where ai(t) is the same as in the equation (2). VL is an index set corresponding to the set of nodes utilizing linear 
activation function (linear nodes): VL = {1, …, Np}, VNL is that utilizing nonlinear activation function (nonlinear 
nodes): VL = {Np + 1, …, N}. Let p be ‘mixture rate’ of the linear and nonlinear reservoir: p = 1 − Np/N, i.e., p = 0 
(resp. p = 1) means all of the activation functions are linear (resp. nonlinear), and 0 < p < 1 means the reservoir 
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consists of the linear and nonlinear activation functions. Here, we use again the random matrix Jij as the connec-
tion matrix, and therefore, the mixture reservoir we introduce is the network with linear and nonlinear nodes that 
are randomly coupled. Throughout this paper, for each fixed mixture rate p, the error   is obtained with the opti-
mal parameter (g, ε) in the parameter space P as described in the Formulation.

Figure 3 shows the approximation error   versus the mixture rate p for some tasks. As an example of a task 
requiring nonlinear transformation, the error in the case of log ν = 0 is depicted in Fig. 3(a) with τ = 1, 3, 5. As 
seen in the above results (Fig. 2), the nonlinear reservoir outperforms the linear one for this task, and, corre-
spondingly, the error   at p = 1 is less than that at p = 0 in Fig. 3(a) (see Supplementary Information for the 
enlarged view of these figures). Furthermore, the error   at p ∈ (0, 1) is less than those two cases, i.e., the mixture 
reservoir outperforms both the linear and nonlinear reservoir. Note that the errors of the mixture reservoir at 
p = 0.1 are considerably less than those of the linear reservoir (p = 0.0). Moreover, for the case of τ = 1, the errors 
of the mixture reservoir at p = 0.8 are considerably less than those of the nonlinear reservoir (p = 1.0). It is inter-
esting that introducing only a few nonlinear (linear) nodes to the linear (nonlinear) reservoir improves its perfor-
mance remarkably. For other tasks as well, the same remarkably improvements can be found qualitatively (see 
Fig. 3(b,c)).

An optimal mixture rate depends on the task, i.e., ν τ ν τ=.
∈

p p( , ): arg min ( , )
p

opt
[0,1]

, where  ν τp( , ) denotes the 

error with a mixture rate p for a given task (ν,τ). To study this dependency, we show the optimal mixture rates  
in the diagram in the Fig. 4(a). As in the diagram in Fig. 2(a), for a set of given task parameters (ν, τ), we  
indicate the optimal mixture rate popt.(ν, τ) with different symbols, where the minimal value is numerically  
found in the set p ∈ {0.00, 0.05, 0.15, 0.25, 0.50, 0.75, 1.00}. The crosses represent draw again, i.e. 

ν τ ν τ| | ∈ . .p pmin ( , )/max ( , ) (0 95, 1 00]p p  . As in Fig. 2(b,c), the error  , time series, and function approxima-
tion plots are shown in Fig. 4(b,c).

The diagram indicates that the optimal mixture rate depends on the task gradually, and, importantly, the 
mixture reservoir (0 < p < 1) outperforms the linear and nonlinear reservoir (p = 0, 1) over a broad region in the 
task parameter space.

Figure 3.  Performance improvement by the mixture reservoir. The error   versus the mixture rate p. The task 
parameters are (a) log ν = 0.0, (b) log ν = −0.4, and (c) log ν = −1.0. The red squares, green circles, and blue 
triangles correspond to the task parameters τ = 1, 3, 5, respectively. (See Supplementary Information for the 
enlarged figures around p = 0).

Figure 4.  The mixture reservoir is effective for a broad region in the task parameter space. (a) Diagram 
summarizing results of the optimal mixture rate popt.(ν, τ). The different symbols represent the different optimal 
mixture rates in p ∈ {0.00, 0.05, 0.15, 0.25, 0.50, 0.75, 1.00}. (b) The error   versus τ for log ν = 0.0, −0.4, −1.0 
from top to bottom. The different lines represent the different mixture rates as in (a). (c) Time series of the target 
y(t) and the answer y t( ) for the task (log ν, τ) = (0, 2) (left) as shown in Fig. 2(c). The function approximation 
plots (right). The upper (lower) panel corresponds to the case for the mixture rate p = 0.75 (p = 0.25).
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More complex tasks.  The simple function approximation task y(t) = sin (νs(t − τ)) allows us to explicitly 
decompose the degree of the nonlinearity and memory required for the task. However, practically important 
tasks such as time series prediction are much more complicated than the tasks employed above. Here, we study 
the effect of introducing the mixture reservoir for two more practical tasks: time series forecasting of the Santa 
Fe Laser data set32, 36 and the NARMA task. These tasks are frequently used in the RC studies26–28, 36 to assess the 
performance of the reservoir.

The Santa Fe Laser data set is a time series {y(t)} obtained from chaotic laser experiments. Given the past data 
… − −y t y t y t( , ( 2), ( 1), ( )), the task is to predict future values y(t + k) (k ≥ 1), which is referred to as a k-step 

ahead prediction. We show the prediction errors for the k = 1, 2, 3, 4, 5 versus the mixture rate p(∈ . .[0 25, 1 0]) in 
Fig. 5(a), where the error with p = 0 is not depicted because of its large value, i.e., the linear reservoir does not 
work at all for this task. The time series of the original data y(t) and the predicted data ŷ t( ) are depicted in 
Fig. 5(b). In each case of k, introducing the mixture reservoir suppresses the error. Let us define the error suppres-
sion rate as  = = =.R p p p: ( )/ ( 1)opt  for a fixed task. Then, the error suppression rate R attains its minimum for 
the three-step ahead prediction ( .R 0 5), while R > 0.5 for the one-step and five-step ahead predictions. The 
optimal mixture rate popt. depends on k in this task as well, and, interestingly, popt.(k) decreases with increasing k, 
i.e., to accomplish a prediction of a more distant future, the reservoir needs more linear dynamics.

The NARMA task is to emulate a signal-driven dynamical system with a highly nonlinear auto-regressive 
moving average as follows: α β= − + − ∑ −=y t y t y t y t i( ) ( 1) ( 1) ( )i

m
1  + γ δ− +s t m s t( ) ( ) , where α = 0.3, 

β = 0.05, γ = 1.5, and δ = 0.1. Note that the parameter m changes simultaneously both the required memory and 
nonlinearity. The signal s(t) is independently and identically drawn from the uniform distribution .[0, 0 5] , 
which drives both the NARMA system and the reservoir. Figure 6(a) shows the error in the emulation of the 
NARMA system with parameters m = 1, 2, 5, 10 by the mixture reservoir p ∈  . .[0 25, 1 0]. Correspondingly, typical 
time series are depicted in Fig. 6(b). For the task m = 10, the errors with several mixture rates p are almost the 
same (or the mixture reservoir with p = 0.5 is slightly better than the others). However, for the tasks m = 1, 2, 5, 
the error is clearly reduced by introducing the mixture reservoirs. Furthermore, the smaller parameter m is, the 
more effective the mixture reservoir becomes, e.g., the error suppression rate .R 0 5 when m = 5, and, moreover, 

.R 0 008 when m = 1.

Discussion
In the present work, we numerically demonstrated the memory-nonlinearity trade-off for the echo state network 
model. Namely, the linear dynamics is suitable for storing memory but useless for nonlinear transformation, 
while the nonlinear dynamics is suitable for nonlinear transformation but degrades memory.

We have uncovered the dynamical mechanism behind the memory-nonlinearity trade-off, using the varia-
tional equation from the viewpoint of information theory. The mechanism describes how the nonlinear dynamics 
degrades memory and the linear dynamics preserves it. In terms of information theory, storing memory with the 
nonlinear (resp. linear) dynamics corresponds to transferring message in a noisy (resp. noiseless) communication 
channel. The above theoretical interpretation assumes neither the function form of nonlinearity in the reservoir 
dynamics nor the linear readout. Hence, we conclude that, as a property of general signal-driven dynamical sys-
tems, introducing nonlinearity in the dynamics always degrades memory (Jaeger conjecture20).

Figure 5.  Time series forecasting of the Santa Fe Laser data set. (a) Error   versus the mixture rate p for the k-
step ahead prediction with k = 1, 2, 3, 4, 5 from left to right. The error bar represents the standard deviation of 
the prediction error for 10 different connection matrices J. (b) The upper panels show the time series of the 
target y(t) (i.e., the Santa Fe Laser data set) and the answer y t( ) (i.e., the predicted value), corresponding to the 
red line and blue dots, respectively. The left two panels are the time series for the one-step ahead prediction, 
with the mixture rate p = 0.95 (left) and p = 1.0 (right). The right two panels are the time series for the three-step 
ahead prediction, with the mixture rate p = 0.95 (left) and p = 1.0 (right). The lower panels show their error 
values corresponding to the upper panels.
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On the basis of the memory-nonlinearity trade-off, we proposed the mixture reservoir, which is endowed with 
both linear and nonlinear dynamics. We numerically showed that it reduces function approximation errors effec-
tively. Moreover, the observation shows that adding ‘a pinch of linearity’ considerably improves the performance 
of the nonlinear reservoir. This conclusion may be valuable for physical implementation of RC, since nonlinear 
dynamical systems are often used for the reservoir. While the both effects of adding ‘a pinch of linearity’ and ‘a 
pinch of nonlinearity’ to the RC performance are numerically observed for some tasks, the magnitudes of the 
effects may depend on how much nonlinearity or memory the task requires. For instance, in Fig. 3(a), adding ‘a 
pinch of linearity’ is not effective for τ = 5. It can be interpreted as the task τ = 5 requires ‘deep’ memory, and thus, 
adding a large amount of linearity is needed.

Finally, we verified the effect of the mixture reservoir in more practical and complex tasks, time series forecast-
ing of the Santa Fe Laser data set32 and the NARMA task. It is interesting to note that the optimal mixture rate p 
changes depending on the tasks: in the Santa Fe time series forecasting task .. p 0 9opt ; on the other hand, in the 
NARMA task .. p 0 5opt . It may be interesting to compare the performance improvement by introducing the 
mixture reservoir with that by simply increasing the number of nodes which were reported by Rodan & Tino36. 
For the 1-step ahead prediction of the SantaFe data set, the comparison suggests a conjecture; replacing a small 
number of nonlinear nodes with linear nodes improves RC performance as effective as doubling the number of 
nonlinear nodes. See the Supplementary Information for a detailed comparative argument.

As future work, it is important to study the universality of the memory-nonlinearity trade-off and the effect of 
the mixture reservoir, i.e., to see if the results presented in this paper hold in other reservoirs, e.g. with different 
network topology, and for other tasks. Theoretically, it would be interesting to clarify the relationships between 
the quantities relating to the memory, i.e. the (maximal) conditional Lyapunov exponent, the linear memory 
capacity20 MC, and the mutual information I(δ0; δn). These relationships could provide a strategy for determining 
the optimal reservoir parameters for its performance. To quantify the memory capacity of the mixture reservoir, 
it may be interesting to study the mutual information in the case of the mixture reservoir and how the mutual 
information changes with the mixture rate p. Moreover, it is an important future work to compare the mixture 
reservoir with other methods such as RC with random static projection (R2SP)29–31. One of applications of the 
idea of the mixture reservoir is to add an auxiliary linear feedback to the implementation of RC with delay feed-
back (i.e., adding linear virtual nodes), which could improve its performance remarkably.

In this work, we found that one of the characteristics of dynamical systems suitable for RC is the coexistence of 
both linear and nonlinear dynamics. This is a step toward uncovering a guiding principle of reservoir design for 
high-performance information processing, which is expected to provide an answer to the question stated in the 
introduction: for a given task, what characteristics of a dynamical system are crucial for information processing? 
Once revealed, such a guiding principle will enrich our knowledge of computer science, deepen our understand-
ing of brain functions, and contribute to extending dynamical system theory.

Figure 6.  NARMA task. (a) Error   versus the mixture rate p for the parameters m = 1, 2, 5, 10 from left to 
right. The error bar represents the standard deviation of the prediction error for 10 different connection 
matrices J. The inset in the left panel is its semi-log plot. (b) The upper panels show the time series of the target 
y(t) (i.e., the NARMA system) and the answer y t( ) (i.e., the emulated value), corresponding to the red line and 
blue dots respectively. The left two panels are the time series for the NARMA1 task (m = 1), with the mixture 
rate p = 0.5 (left) and p = 1.0 (right). The right two panels are the time series for the NARMA10 task (m = 10), 
with the mixture rate p = 0.5 (left) and p = 1.0 (right). The lower panels show their error values corresponding to 
the upper panels.
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