
Journal of Ophthalmic and Vision Research 2014; Vol. 9, No. 3 395

Rho‑Associated Kinase Inhibitors: Potential Future 
Treatments for Glaucoma

Ramin Daneshvar1,2, MD, MS; Nima Amini3,4, MD, MHA
1Cornea Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2Department of Glaucoma, Khatam Eye Hospital, Mashhad, Iran
3Department of Health Sciences, California State University, Northridge, Los Angeles, CA, USA

4Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, California, USA

News

Glaucoma is the second‑leading cause of vision loss in 
the world: the so‑called “silent thief of vision” is globally 
the most common cause of preventable, irreversible 
blindness. It is estimated that the disease affects more 
than 60 million people worldwide, and this number 
is projected to increase to about 80 million by 2020.[1] 
Moreover, it is proposed that nearly 8.4 million people 
are bilaterally blind due to glaucoma and this number 
will be increased to 11.1 million by 2020.

To date, although intraocular pressure  (IOP) is no 
longer an essential element for the diagnosis of glaucoma, 
it is regarded as the mere modifiable risk factor for the 
disease. The clinical management of patients suffering 
from various types of glaucoma has historically focused 
on reduction and tight control of elevated IOP through 
different pharmacological and surgical interventions.[2‑6]

In open angle glaucoma, tissues of the conventional 
outflow pathway are diseased and are the underlying 
cause of elevated IOP. It is hypothesized that the cells in 
this pathway could not appropriately change their shape 
to decrease resistance to aqueous outflow and compensate 
the pathologically increased resistance.[7‑10] Greater 
amounts of endogenous contractility mediators, such as 
endothelin‑1 and transforming growth factor‑beta 2, in 
the glaucomatous eye could be a contributing factor.[8,11‑15]

Considering these pathophysiological aspects of open 
angle glaucoma, medical and surgical treatments that 
specifically target and treat the diseased tissues of the 
conventional outflow pathway have long been aimed 
for its management.[16] Several surgical procedures, 
including laser trabeculoplasty,[17] canaloplasty,[18,19] 
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CA, USA) implantation,[20,21] Trabectome (Neomedix Inc., 
Tustin, CA, USA) assisted ab‑interno trabeculotomy,[22] 
and excimer laser trabeculostomy (AIDA Excimer Laser 
System; TuiLaser AG, Germering, Germany)[23] have 
been introduced in recent years to directly alleviate the 
increased resistance in conventional outflow pathway. 
However, drugs that specifically treat the diseased 
trabecular meshwork  (TM)/Schlemm canal complex 
have not yet been marketed. Indeed, during the past 
decades and since the introduction of prostaglandin 
analogs in 1996, little progress has been made in medical 
management of glaucoma, and no new class of drugs 
has been introduced. None of the currently available 
antiglaucoma drugs, directly targets the conventional 
outflow pathway [Table 1]. In recent years, new horizons 
emerged with the introduction of Rho‑associated 
kinase  (ROCK) inhibitors as a potential class of ocular  
hypotensive drugs.

The Rho family includes a series of small G‑proteins, 
including Rho (RhoA, RhoB, RhoC), Rac, and CDC42. 
Rho molecules when bounded to guanosine triphosphate, 
activate its effector molecules (ROCK‑1 and ROCK‑2). 
Activated ROCK, in turn, stimulates a series of 
downstream molecules, which finally translate into 
actin stress fiber polymerization, focal adhesion 
formation and calcium‑independent smooth muscle 
contraction.[24] Moreover, ROCK‑signaling system is 
involved in regulation of cellular growth, migration 
and life cycle through control of muscle cell contractility 
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and the nonmuscle cellular actin cytoskeleton.[25‑28] 
Impairment in ROCK pathway and resultant impaired 
cell contractility could contribute to disease in different 
organs, including cardiovascular, respiratory and 
renal systems.[24] Hence, ROCK inhibitors are potential 
therapeutic agents for hypertension,[29,30] ischemic heart 
disease,[31,32] chronic obstructive pulmonary disease,[33] 
asthma,[34,35] erectile dysfunction,[36,37] diabetic renal 
failure,[36] chronic nephritis and glaucoma.

Considering glaucoma, ROCK inhibitors have 
favorable roles in glaucoma management, owing to their 
reducing effect on IOP as well as some neuroprotective 
and antiscarring effects.[24] ROCK inhibitors, similar 
to some other cytoskeletal drugs, could increase 
matrix metalloproteinase expression in TM cells and 
may induce extracellular matrix reorganization and 
widening of empty spaces in the TM.[38] Moreover, the 
ROCK inhibitors could weaken cell attachment to its 
extracellular matrix, which results in relaxation of the 
whole of TM tissue and hence, wider empty spaces.[24] It 
is also probable that ROCK inhibitors enhance outflow 
through unknown mechanisms by inducing some 
“washout effects” in the human TM. It seems that the 
effect of ROCK inhibitors on TM cells is through a 
calcium‑independent pathway, which is not prominent 
in ciliary muscle cells.[24]

Rho‑associated kinase inhibitors relax smooth muscle 
tone in brain vasculature and could potentially increase 
optic nerve head perfusion. Thus, ROCK inhibitors 
could have neuroprotective effects on ganglion cells.[39] 
Moreover, in animal models, ROCK inhibitors decrease 
fibrosis following trabeculectomy and could have similar 
preventive effect in TM and  optic nerve (ON)  and 
decrease fibrosis and stiffening.[40,41]

There are some limitations for using ROCK inhibitors 
in clinical practice. First, these drugs would be effective 
in trabecular glaucomas; in other words, in those 
glaucomatous cases where TM is the main site of 
pathology, including primary open angle glaucoma 
(POAG), pseudoexfoliative glaucoma, pigmentary 
glaucoma and juvenile glaucoma. Considering their 
mode of action, it is unlikely that these drugs are 
effective in angle closure glaucoma. In addition, despite 
their beneficial effects, ROCK inhibitors are not ROCK 
specific in higher concentrations and can modulate 
other protein kinase activity[29] resulting in unwanted 
side‑effects. However, in published clinical trials on 

using ROCK inhibitors for glaucoma treatment, few 
clinically significant side‑effects have been reported.

Most interestingly, smooth muscle cells in conjunctival, 
episcleral and iris blood vessels are responsible for 
maintenance of vascular tone; ROCK inhibitors can 
dilate such vessels and result in some side‑effects. The 
most common side‑effect is conjunctival hyperemia and 
vasodilation[42,43] which is important from a cosmetic 
standpoint and could reduce patient compliance. 
In addition, conjunctival hyperemia could reduce 
bioavailability of other drops.[44] It seems rational 
to use the ROCK inhibitors after other hypotensive 
drops. Another possible sequel is iris vasodilation and 
aggravation of uveitis; however, this was not observed 
in clinical trials. Conjunctival punctate hemorrhage 
was reported in animal studies with ROCK inhibitors; 
but, similar finding has not been observed in the 
human trial of ROCK inhibitors for the management of 
glaucoma.[45] Finally, it is noteworthy that knockout mice 
with ROCK deficiency breed generations with eyelid 
developmental defect (open eye birth) and insufficient 
ventral body closure (omphalocele).[46]

Initially, there were some concerns on endothelial 
safety of ROCK inhibitors;[16] however, there is evidence 
that ROCK inhibitors could improve corneal endothelial 
cell adhesion and wound healing.[47,48] Hence, these drugs 
may be not only safe for patients with compromised 
corneal endothelial cell function, but also a potential 
therapeutic agent for conditions such as Fuch’s 
endothelial dystrophy and corneal edema.[16] There 
is evidence that ROCK inhibitors can convert corneal 
endothelial cells into a phenotype capable of regenerating 
endothelial cells.[47,49,50]

First reports on the effect of Rho‑kinase inhibitor 
on IOP were published in early 2001.[51‑53] Since then, 
various ROCK inhibitors, including Y‑27632, Y‑39983, 
H‑1152P, AR‑12286, AMA0076, HA‑1077 (fasudil), and 
K‑115, have been used in several human and animal eye 
studies.[43,45,50,52‑64] Among these, K‑115 passed phase 1 
and phase 2 clinical trials and had favorable results.[63,64] 
In a recent phase 2 clinical trial on the effect of K‑115 in 
POAG and ocular hypertensive patients, Tanihara et al 
have reported a 20% IOP reduction on average with twice 
daily instillation of K‑115 0.4%.[63]

In future, more specific ROCK inhibitors targeting 
explicitly the TM, corneal endothelium, or optic nerve are 
expected to be introduced, which would increase drug 

Table 1. Main classes of antiglaucoma medications in clinical use

Drug class Main drug Mechanism of action Year of introduction

Parasympathomimetcs Pilocarpine ↑Conventional outflow; indirect 1875
Alpha‑agonists Brimonidine ↓Production; ↑uveoscleral outflow 1900
Carbonic anhydrase inhibitors Dorzolamide ↓Production 1954
Beta‑blockers Timolol ↓Production 1967
Prostaglandins Latanoprost ↑Uveoscleral outflow 1996
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efficacy and reduce potential side‑effects. Moreover, 
until now, the ROCK inhibitors used in clinical trials 
were used at least twice daily; however, intensive 
efforts are underway to produce once‑daily dosing of 
these medications to improve patient adherence and 
compliance. An interesting alternative is direct genetic 
modulation of ROCK‑signaling pathway, which is a 
potential novel target for glaucoma gene therapy.[24]
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