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Abstract

tsiR is an open source software package implemented in the R programming language

designed to analyze infectious disease time-series data. The software extends a well-

studied and widely-applied algorithm, the time-series Susceptible-Infected-Recovered

(TSIR) model, to infer parameters from incidence data, such as contact seasonality, and

to forward simulate the underlying mechanistic model. The tsiR package aggregates a

number of different fitting features previously described in the literature in a user-friendly

way, providing support for their broader adoption in infectious disease research. Also

included in tsiR are a number of diagnostic tools to assess the fit of the TSIR model. This

package should be useful for researchers analyzing incidence data for fully-immunizing

infectious diseases.

Introduction

Mathematical models coupled with statistical inference techniques allow us to compare infec-

tious disease theory and data, shedding light on transmission estimates, vaccine control strate-

gies, and predicting future trends [1, 2]. These models (and inference methods) cover a

spectrum from very simple (based on well-mixed, population-level assumptions) to highly

complex representations (in which individual variation is modeled explicitly) [1, 3]. Even the

simplest of such non-linear models can display very rich, elaborate, and potentially chaotic,

dynamics [4–6].

One of the simplest and most powerful of epidemic models is the family of mass-action for-

mulations based on the Susceptible-Infected-Recovered (SIR) equations [1, 7]. The SIR model

assumes a well-mixed population, and in the most basic form balances demographic processes

(e.g., births, B, and deaths, μ) with infectious disease specific properties such as contact rate, β,

and infectious period, inverse γ, for a single pathogen. In general, and especially for the proto-

typical example, measles, the transmission coefficient, β, varies seasonally. The deterministic

skeleton of the SIR model is shown in Eq 1; λ is the force of infection, typically defined as bI
N . In

addition, this model requires that immunity post-infection is life-long, although this
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assumption can be relaxed via a Susceptible-Infected-Recovered-Susceptible (SIRS) model.

dS
dt

¼ B �
lS
N
� mS

dI
dt

¼
lS
N
� gI � mI

dR
dt
¼ gI � mR

ð1Þ

Despite its simplicity, calibrating the seasonally-forced SIR model against time-series data is

a difficult mathematical and statistical problem, as evidenced by the extensive literature on this

subject [8–13]. The desired outcome of SIR model inference is to extract parameter estimates

from a given epidemic time-series for key values such seasonal variation. In terms of the data,

fitting SIR-type models is a non-trivial inferential challenge for a number of reasons. First, only

one state variable—the number of cases over time—is observed. Second, there is generally sub-

stantial under-reporting of disease incidence. Adding additional complexity is the fact that the

model is a continuous-time process, whereas the data are generally collected on a weekly or

monthly basis. While statistically robust and powerful methods (e.g., filtering based algorithms)

are readily available in packages such as pomp [14], they may be slow to converge and may not

be suitable for analyzing many (100+) time-series.

Stþ1 ¼ Btþ1 � St � Itþ1

E½Itþ1� ¼ btþ1StIa
t

ð2Þ

An alternative, computationally inexpensive, and highly tractable approach to these prob-

lems is provided by the time-series SIR model (TSIR model), shown in Eq 2 [8]. The TSIR

model relies on two main assumptions: first, that the infectious period is fixed at the sampling

interval of the data (e.g., bi-weekly for measles) and that over a long enough time (e.g., 10-20

years), the sum of births and cases should be approximately equal due to the high infectivity of

pathogens such as measles and other childhood infections, in the pre-vaccine era. A full

description of the TSIR model and algorithm can be found in [8]. A brief qualitative descrip-

tion of the algorithm follows in order to provide context for the subsequent development of

the tsiR package.

In the TSIR framework, a regression model is first fitted between cumulative cases and

cumulative births. Assuming they are equal, the slope will be the reporting rate ρt and the resid-

uals of the regression model, Zt provide the shape of the susceptible dynamics, St. Next, using

Eq 2 and setting the expectation to the mean, the log-linear equation shown in Eq 3 can be

acquired. The mean number of susceptible individuals across the time-series, �S, can be inferred

using profile likelihood and a seasonally repeating contact rate (52 divided by the infectious

period time points, e.g., 26 for measles); βt, can then be estimated along with a homogeneity

parameter α using a generalized linear model (GLM). The parameter α describes the epidemic

saturation as well as a correction factor for switching from continuous to discrete time [15, 16]

log Itþ1 ¼ logbtþ1 þ log ðZt þ
�SÞ þ a log It ð3Þ

The TSIR method has been used very successfully to analyze a number of childhood infec-

tions such as measles, whooping cough, diphtheria, mumps, varicella, and scarlet fever, as well

as multi-strain pathogens such as dengue. [6, 8, 12, 17–20]. Analysis of this model has shown

both birth rate and school-term forcing to be central drivers of the pattern of epidemics and

periodicity, as well as improving our ability to predict infectious disease dynamics further into

the future in both small and large populations ranging from London to Iceland [8, 12].
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Although the underlying model is simple, the TSIR approach provides a number of differ-

ent fitting options. When reconstructing the susceptible dynamics, options range from a sim-

ple linear regression fit between cumulative cases and cumulative births, to more sophisticated

approaches such as Gaussian regressions. These choices, and which variable is the dependent

variable in each case, also impact both whether the reporting rate ρt is time-invariant as well as

how the residuals of the regression are calculated. Once the susceptible dynamics are recon-

structed, the modeler is again faced with many more choices about the log-linear model, the

GLM family and link, and which parameters to estimate and which to fix (commonly, for the

study of measles dynamics, α is fixed to be 0.97, and �S is occasionally fixed as well to be 0.035

based on analysis of pre-vaccination data from the United Kingdom [6, 12, 18]). This decision

process can also be implemented in a Bayesian framework, although is a computationally

more extensive task. Further choices must be made when describing the distribution of the

expected value in Eq 2, as well as a deciding between a completely forward prediction versus a

step-ahead prediction. These options, while relatively straightforward, are cumbersome to

implement especially while working with a number of time-series. Thus, while the TSIR model

has been used extensively, there is a need for an open source software package which imple-

ments these options in a user-friendly way. We have developed the tsiR package to address

this methodological challenge and facilitate a more straight-forward and widely-accessible

model-fitting process.

1 Methods

The tsiR package, available on CRAN, is written completely in the R programming language.

Package functions and a short description of their use is included at the end of this section.

Package dependencies are kernlab [21], ggplot2 [22], and reshape2 [23]. All code is publicly

available on GitHub (www.github.com/adbecker/tsiR). In the following section, typewriter

font refers to function arguments and quotes refer to argument inputs.

1.1 Data

tsiR requires data to be a named data frame with a ‘time’ column (that can be understood by

ggplot2—see [22] for details), and columns for ‘cases’, ‘births’ and ‘pop’ (population size). If

the number of births and population size are on a different time scale than the reported cases,

these data (as well as case data) must be interpolated to the generation time. When incidence

data are reported weekly and demographic data (i.e., births and population size) are reported

yearly, as is often the case, these individual vectors can be interpolated to the proper infectious

period timescale via the tsiRdata function. Note that at each time point, the births must be the

number of births that occur within the IPweeks, where IP is the infectious period (in weeks).

For measles, this is typically taken as two weeks, however tsiR does not require IP to be an

integer. A dataset, twentymeas, is included in the tsiR package as a list. This dataset is a list

which contains biweekly data (IP=2) for twenty locations in England from 1944-1964 and was

analyzed in [11].

1.2 Model inference and forward simulation

The main function in the tsiR package is runtsir. This function reconstructs the susceptible

dynamics, fits the log-linear relationship in Eq 3, and then resimulates the TSIR model in Eq 2

forward under the fitted parameters.

An essential argument (and assumption of the TSIR model) in the tsiR package is that the

time step is equal to the infectious period (IP), i.e. that IP is a consistent argument through-

out the data. Written based on measles, in tsiR all functions default to IP = 2. Thus, if a
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different disease is being analyzed, it is key to change the IP argument throughout the func-

tion inputs. As with all R functions, a full description of the function can be acquired via ?
runtsir. Here we describe the main arguments. The xreg argument indicates whether

cumulative cases or cumulative births are on the x-axis of the regression. Thus, the options are

simply ‘cumcases’ or ‘cumbirths’ with a default of ‘cumcases’. A more extensive discussion of

this choice can be found in [6]. After describing the formula for the susceptible reconstruction,

the regression type must be specified via the regtype argument. Here, the options are ‘gauss-

ian’, where the kernel size is profiled to maintain a reporting rate between zero and one, and

‘lm’, ‘lowess’, ‘loess’ or ‘spline’ regression, for a linear, a lowess, a loess, and a spline regression

with 2.5 degrees freedom, respectively. If the Gaussian process fails to produce a reporting rate

between zero and one, runtsir defaults to a loess regression. A Gaussian regression, as imple-

mented in [12], appears to produce the most robust results in both small and large populations.

However, using a Gaussian regression may produce exaggerated reporting rates when there is

a single outbreak that is substantially larger in size than across the rest of the time series. The

aforementioned arguments will specify the shape, Zt, of the susceptible dynamics, St. At this

stage, model parameters left to estimate are βt, α, and �S, although the last two can be fixed as

previously mentioned. Note that the number of parameters in βt is dependent on IP such that

the length of βt is 52 divided by IP. The only exception is where IP is equal to one. In this sce-

nario βt is truncated to 26 points, each repeated twice to preserve statistical integrity. Parame-

ters α and �S can be fixed via alpha and sbar if desired. For the log-linear regression in Eq 3

virtually any GLM family and link can be used, although the options are essentially ‘quasipois-

son’, ‘poisson’, and ‘gaussian’ where ‘poisson’/‘quassipoisson’ take a ‘log’ link and a ‘gaussian’

family takes either a ‘log’ or ‘identity’ link.

At this stage, all parameters are estimated, confidence intervals have been constructed

(when appropriate and the computation can be completed), and the model can be forward

simulated. The runtsir function defaults to a full time-series ahead forward prediction,

although step-ahead can be inputted as well under the pred argument. For large populations,

the forward prediction can generally be simulated without fear of fade-outs (i.e., the simulation

declining to zero). However, for smaller populations with frequent local ‘fade-outs’ of infection

between epidemics, the forward prediction may only be able to be run a simple epidemic-

ahead [12]. This constraint on the prediction model can be specified via

epidemics= break as well as designating a threshold parameter that indicates when a

new epidemic is started and thus where to reset the forward simulation. By default, the initial

conditions (S0, I0) are (Z0 þ
�S, C0/ρ0) where Ct is cases. Thus, if C0 is zero, the forward predic-

tion will fail. In this scenario, the data must be truncated to the first non-trivial case, or initial

conditions can be fit using simple least squares per [6], although this feature could be made

more robust in the future (see the Conclusions section). This can be specified using the

inits.fit= T argument. Finally, the simulation distribution can be specified via method
where the options are ‘deterministic’, ‘negbin’, and ‘pois’ for deterministic, Negative Binomial,

and Poisson distributions. The number of simulations to perform is specified via nsim. The

output of runtsir is a named list and can be fully plotted via the plotres function. The output

of this model, as generated by the following code, can be seen below and is plotted in Fig 1.

LondonMeas<- twentymeas[[“London”]]
LondonRes<- runtsir(data=LondonMeas, IP = 2,

xreg = ’cumcases’,regtype=’gaussian’,
alpha= NULL, sbar = NULL,
family= ’gaussian’,link = ’identity’
method= ’negbin’,nsim = 100)

plotres(LondonRes)
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PLOS ONE | https://doi.org/10.1371/journal.pone.0185528 September 28, 2017 4 / 10

https://doi.org/10.1371/journal.pone.0185528


Fig 1. Output results from the runtsir function for London. Subplots A) and B) are the cumulative births against cumulative cases regression

and estimated reporting rate, the C) and D) are the profiled �S from Zt and then reconstructed S, E) is 26-point βt with the α and mean β (indicated as
�b) estimate, and F) and G) are the data (blue) against 10 randomly chosen stochastic simulations (red) and the (inverse) data against mean of the

simulations with confidence intervals.

https://doi.org/10.1371/journal.pone.0185528.g001
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The runtsir function is also decomposed via the estpars and simulatetsir functions. This

may be more desirable if exploring a large number of simulations or analyzing sparse inci-

dence data. In the following short example, we will examine such a data set from Northwich

(Cheshire, England, population size in 1944 = 18,070). Here, we must define epidemic start

and end times per [12]. Using a threshold of three, we can see where each epidemic is defined

via the dashed line in Fig 2. Here, we are estimating parameters using different regression

options available in tsiR, as well as simulating the model via a Poisson distribution and fixing

α. Only the forward simulations are shown in Fig 3, where again the data is shown in blue and

the simulation results are shown in red. Overall, the forward simulation captures the epidemic

final size well for such a noisy time-series [12]. The code used to generate these fits and plots is

shown below.

NorthwichMeas<- twentymeas[[“Northwich”]]
NorthwichParms<- estpars(data= NorthwichMeas,IP = 2,

alpha = 0.97,sbar = NULL,
regtype= ’loess’,
family= ’poisson’,link = ’log’)

plotbreaks(data= NorthwichMeas,threshold= 3)
NorthwichRes<- simulatetsir(data= NorthwichMeas,IP = 2,

parms = NorthwichParms,
epidemics= ’break’,threshold= 3,
method= ’pois’,nsim= 100)

plotcomp(NorthwichRes)

A brief summary of the main functions and their usage in the tsiR package follow below in

Table 1. Please note for MCMC functionality, one must install rjags [24] independently. The

MCMC functions, mcmcestpars and mcmctsir, follow generally the same arguments as their

frequentist counterparts. Notable exceptions however are that a family and link no longer can

be specified, and MCMC specific arguments (n.chains for the number of chains, update.
iter for the number of MCMC iterations to use in the rjags update section, n.iter for

number of MCMC iterations to perform, n.adapt for the adaptive number, and burn.in
for the burn in number) can be specified. For more information on these arguments, we direct

the reader to rjags documentation [24]. Additionally, annotated code for the London and

Northwich estimations and forward simulations is included as a .R files in the Supporting

Information.

Fig 2. Northwich time-series data. Dashed lines are the time points in which the forward simulation resets in

the epidemics = ‘break’argument for a threshold for three.

https://doi.org/10.1371/journal.pone.0185528.g002
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2 Conclusions, limitations, and future work

The tsiR package allows researchers to fit the time-series Susceptible-Infected-Recovered

model using a number of different fitting options that are easy to change and compare. Per the

model formulation, the frequentist fitting techniques are computationally tractable and, to a

first approximation, work very well for childhood diseases in a number of settings.

However, the model does make a number of assumptions that are undesirable for certain

data and pathogens. For example, fixing the infectious period may not be realistic for more

chronic infections, and ignoring deaths may lead to biased conclusions when examined over a

long enough time scale. Additionally, under certain settings and time scales, the assumption

that cumulative cases approximates cumulative births may be flawed. Furthermore, the TSIR

model only includes the observation process as a single reporting rate and not as a probability

distribution, and stochasticity cannot be explicitly estimated. To include these complexities,

methods such as Sequential Monte Carlo and Iterated Filtering can be used to perturb parame-

ters in order to maximize the likelihood [10, 25]. These algorithms are included in the R pack-

age pomp [14]. Such flexibility does comes at a cost, however, as Maximum Likelihood

methods can be computationally expensive and optimization algorithms are often complex

[11, 14, 26].

Regardless, for fully-immunizing childhood infections such as measles, the TSIR model is

able to accurately capture the parameters of interest across a range of different scenarios and

remains the most tractable approach (in particular for large numbers of time-series). Improve-

ments and areas of future work to the tsiR package include incorporating spatial disease

Fig 3. The forward simulations for the Northwich time-series data under an epidemic-ahead fit using a

threshold of three. The color coding in the panels shown here are the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0185528.g003
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spread (e.g., the gravity model per [18, 27]), the addition of an immigration parameter to the

force of infection, a more statistically robust method to estimate initial conditions, and a more

streamlined Bayesian approach to the TSIR model. In the spirit of open science, other

researchers are welcome to send suggestions, bug reports, as well as contributions to the

software.

Supporting information

S1 File. R script. Annotated code to run the analysis in this paper (with additional plots).
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