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Background: While it is well-known that deficits in motor performance and brain
structural connectivity occur in the course of healthy aging, it is still unclear if and
how these changes are related to each other. While some cross-sectional studies
suggest that white matter (WM) microstructure is positively associated with motor
function in healthy older adults, more evidence is needed. Moreover, longitudinal data
is required to estimate whether similar associations can be found between trajectories
of change in WM microstructure and motor function. The current study addresses this
gap by investigating age-associations and longitudinal changes in WM microstructure
and motor function, and the cross-sectional (level-level) and longitudinal (level-change,
change-change) association between these two domains.

Method: We used multiple-occasion data (covering 4 years) from a large sample
(N = 231) of healthy older adults from the Longitudinal Healthy Aging Brain (LHAB)
database. To measure WM microstructure, we used diffusion-weighted imaging data
to compute mean FA in three selected WM tracts [forceps minor (FMIN); superior
longitudinal fasciculus (SLF); corticospinal tract (CST)]. Motor function was measured via
two motor speed tests (grooved pegboard, finger tapping) and one motor strength test
(grip force test), separately for the left and the right hand. The statistical analysis was
conducted with longitudinal growth curve models in the structural equation modeling
framework.

Results: The results revealed longitudinal decline and negative cross-sectional age-
associations for mean WM FA in the FMIN and SLF, and for motor function in all tests,
with a higher vulnerability for left than right hand motor performance. Regarding cross-
domain associations, we found a significant positive level-level correlation among mean
WM FA in the FMIN with motor speed. Mean FA in SLF and CST was not correlated
with motor performance measures, and none of the level-change or change-change
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associations were significant. Overall, our results (a) provide important insights into
aging-related changes of fine motor abilities and FA in selected white matter tracts
associated with motor control, (b) support previous cross-sectional work showing that
neural control of movement in older adults also involves brain structures outside the
core motor system and (c) align with the idea that, in healthy aging, compensatory
mechanisms may be in place and longer time delays may be needed to reveal
level-change or change-change associations.

Keywords: white matter microstructure, motor function, longitudinal, correlated change, healthy aging, fractional
anisotropy, structural equation modeling (SEM), latent growth curve model (LGCM)

INTRODUCTION

Life expectancy has risen steadily due to innovations in medicine
and improved living standards. In 2015, life expectancy at
birth exceeded 80 years in 22 European countries (World
Health Organization, [WHO], 2016). Globally, it is estimated
to increase by a further 6 years until 2050 (United Nations,
2017). Understanding how the central nervous system changes
with age contribute to declines in function is critically important
for enhancing productivity and quality of life for this aging
population. It is well known that aging is associated with
degeneration of the central nervous system and decreases in
motor performance (Seidler et al., 2010). To date, however,
work in this area has been largely cross-sectional and more
focused on regional measures of brain structure and function
rather than network connectivity (Oschwald et al., 2019a). The
brain’s network structure underlies neural communication and
functional activity; thus, studying how it changes over time may
provide key insights into age-related functional declines.

Diffusion-weighted MRI (DW-MRI) allows investigation of
structural integrity of the brain’s white matter (WM) connectivity
pathways. This technique is sensitive to diffusion of water
molecules, which is spatially bounded by large WM tracts in the
brain. Cross-sectional DW-MRI studies generally report lower
fractional anisotropy (FA) in older individuals (reviewed in
Oschwald et al., 2019a). A few longitudinal DW-MRI studies
have been conducted; similar to what has been reported with
other imaging modalities, prefrontal WM exhibits accelerated
declines relative to other areas of the brain (cf. Barrick et al.,
2010; Sullivan et al., 2010; Teipel et al., 2010) while sensorimotor
WM exhibits less change (de Groot et al., 2016). In contrast, a
recent, large (n > 900) cross-sectional study challenges the notion
that sensorimotor regions exhibit reduced aging effects relative
to more anterior prefrontal cortex; Taubert et al. (2020) found
disproportionately reduced brain volume, iron, and myelin in
the pre- and postcentral gyri in older individuals. This study did
not evaluate WM tracts, however, leaving open the questions of
how sensorimotor WM tracts change over time and whether such
changes are correlated with motor function.

Whether or not the sensorimotor fibers are spared with age,
there is certainly evidence of age effects on motor function.
Gait and balance (Studenski et al., 2011), grip force (Bohannon,
2008), and other activities in everyday life decline with age
and impact quality of life. Interestingly, performance of these

behaviors is associated with prefrontal activity (Heuninckx
et al., 2008; Seidler et al., 2010; Carson, 2018) as well as with
prefrontal (Verlinden et al., 2016; Moscufo et al., 2018; Massa
et al., 2019) and corpus callosum (Fling et al., 2011; Fling
and Seidler, 2012). WM integrity in older adults, potentially
reflecting compensation (Heuninckx et al., 2008). However, more
evidence on the association between WM connectivity and
motor function in healthy older adults is needed. Importantly,
longitudinal data are required to more precisely delineate
the trajectories of decline and to better understand if the
associations between WM microstructure and motor behavior,
and particularly associations of their changes, are reflective of
compensation, maintenance, or other patterns in healthy older
adults (Zahodne and Reuter-Lorenz, 2019).

In the current study, we leverage data from the Longitudinal
Healthy Aging Brain (LHAB) database to evaluate cross-domain
associations between brain WM microstructure and measures
of manual motor function (motor strength: grip force; motor
speed: grooved pegboard test and tapping speed) in healthy older
adults. The LHAB database project is currently conducted at
the University Research Priority Program (URPP) “Dynamics of
Healthy Aging” of the University of Zurich (Zöllig et al., 2011).
Our analyses include data that were acquired at four time points
spanning over 4 years.

We used latent growth curve models (LGC) estimated
in the structural equation modeling framework (SEM) to
examine change in WM microstructure and motor function,
as well as cross-sectional, and longitudinal associations among
the two domains.

LGC is a statistical technique for the analysis of longitudinal
data (McArdle and Epstein, 1987; McArdle, 2009; for a
tutorial see Ghisletta and McArdle, 2012). LGC models estimate
longitudinal growth processes as latent (i.e., unobserved)
variables, including a latent intercept which reflects the initial
level of a variable of interest (e.g., WM microstructural properties
or motor performance at baseline) and a latent slope, which
reflects the rate of change in this variable over time. An advantage
of LGC models over traditional regression models is that besides
such average (i.e., fixed) effects, they can capture interindividual
variances (i.e., random effects) in intraindividual change. Of
specific interest in the present study, two univariate LGCs (i.e.,
LGC that estimate the growth process in one variable) can
be combined into a bivariate LGC to model parallel change
processes, including cross-domain associations between baseline
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levels of two variables (level-level), baseline level in one variable
and changes in the other (level-change) and between two change
processes (change-change) (Oschwald et al., 2019a). Importantly,
advanced statistical techniques such as LGC are required to
appropriately estimate within-person change (King et al., 2018),
and to disentangle the complex longitudinal associations between
changes in multiple variables – both questions of pivotal
importance in the field of aging neuroscience.

Cross-sectional age-associations and longitudinal decline was
estimated in the forceps minor (FMIN), the superior longitudinal
fasciculus (SLF), and the corticospinal tract (CST). The CST
is the main motor control projection tract. It plays a critical
role in fine motor control of hand and finger movements (cf.
Isa, 2012) such as those required for the tasks studied here.
The FMIN connects the two prefrontal cortices via the anterior
corpus callosum, whereas the SLF connects prefrontal cortex
largely with parietal regions. While all three tracts have been
implicated in motor function (Farbota et al., 2012; Henley et al.,
2014; Wang et al., 2016; Reid et al., 2017; Giacosa et al., 2019;
Maltais et al., 2020), the SLF and FMIN largely support executive
functions such as attention and working memory (Mamiya
et al., 2018; Nakajima et al., 2020) and do not have direct
projections to spinal motor neurons. Thus, here, we refer to
the CST as belonging to the motor system, and FMIN and
SLF as being outside of the motor system. To measure WM
microstructure, we chose to follow a region-of-interest (ROI)
based approach in the present study, averaging WM FA across
the selected fiber tracts, since the extraction of ROIs (as opposed
to voxel-wise estimates) enabled us to estimate parallel change
in the SEM framework. We used FA as an index of WM
microstructure as it is a comparatively well-researched metric
and provides a general estimate of the change in the WM fiber
organization (see Jones et al., 2013, for considerations on the
interpretation of FA).

Age-associations and change in motor performance was
assessed with finger tapping, pegboard performance and grip
force given that performance in these tests has been previously
shown to decline with age. Based on the findings of de Groot
et al. (2016), we hypothesized that the FMIN and SLF would
exhibit greater change over time than the CST, and would be more
correlated with changes in manual motor function. Furthermore,
we hypothesized that baseline levels and longitudinal WM
microstructural change in the tracts of interest would be
most correlated with left hand and weakly or not correlated
with right hand motor performance levels/change, since right-
hand performance is well-trained and might be more adept
at compensation.

MATERIALS AND METHODS

Participants
Longitudinal motor and MRI data were taken from the
Longitudinal Healthy Aging Brain (LHAB) database (Zöllig
et al., 2011). We used data from the first four measurement
occasions (baseline, 1-year follow-up, 2-year follow-up, 4-year
follow-up). The baseline dataset included 232 participants (M

age = 70.8; range: 64–87; females: 114). At each measurement
occasion, participants completed an extensive battery of
neuropsychological and psychometric cognitive and motor
assessments and underwent brain imaging. The brain imaging
session was conducted in close temporal proximity to the
behavioral assessments [difference between behavioral and
MRI assessments in days (M ± SD): baseline: 2.2 ± 5.2, 1-year
follow-up: 2.6 ± 5.2, 2-year follow-up: 4.3 ± 13.0, 4-year
follow-up: 4.6 ± 9.3]. Inclusion criteria for study participation
at baseline were age ≥ 64, right-handedness, fluent German
language proficiency, a score of ≥26 on the Mini Mental State
Examination (MMSE; Folstein et al., 1975), no self-reported
neurological disease of the central nervous system and no
contraindications to MRI. The study was approved by the
Ethics Committee of the Canton of Zurich. Participation was
voluntary and all participants gave written informed consent
in accordance with the declaration of Helsinki. Self-reported
physical and mental health of the sample at baseline, as
measured by the SF-12 (Ware et al., 1996), were 50.9 ± 7.4
(M ± SD) and 54.8 ± 6.3, respectively, which indicates
above-average health compared to a normative population
(Ware et al., 1995). As expected, sample means for these
general health indicators slightly declined over time, but still
indicated above-average health at 4-year follow-up (physical
health score: 50.5 ± 6.9, mental health score: 53.1 ± 8.0,
MMSE = 28.3 ± 1.3). At 4-year follow-up, the dataset still
comprised 74.57% of the baseline sample (n = 173). As reported
in other publications with this sample (Oschwald et al., 2019b;
Malagurski et al., 2020), selectivity analyses showed that the
participants remaining in the study at the 4-year follow-
up did not substantially differ from the baseline sample in
terms of age, education, physical and mental health, or head
motion in the scanner.

For the present analysis, participants were excluded if
either motor behavior or DW-MRI data were missing for all
measurement occasions. With this criterion we were able to
include 231 participants from the LHAB baseline sample (M
age at baseline = 70.8; females: 113). Of those 231 participants,
172 were still participating at the 4-year follow-up. Participant
characteristics at each measurement occasion are presented in
Table 1.

Brain Measures
MR Imaging
MRI measurements were conducted on a Philips Ingenia
3T scanner equipped with a commercial 32-element
sensitivity encoding (SENSE) head coil array. The DW-
MRI protocol employed an echo-planar (EPI) sequence
[TR = 23.918 s, TE = 55 ms, FoV = 224 × 224 mm, acquisition
matrix = 112 × 112, slice thickness = 2 mm, 75 contiguous
slices, 2 mm3 isotropic voxel, flip angle = 90◦, Echo Train Length
(ETL) = 59, NSA = 1, SENSE factor R = 2.0]. One non-weighted
image (b-value = 0 s/mm2) and 32 diffusion-weighted images
(b-value of 1,000 s/mm2) were acquired. The diffusion-weighted
directions were equally distributed in space. The same scanner
and sequence were used at all measurement occasions.
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TABLE 1 | Participant characteristics of the full sample at baseline and at each follow-up wave.

Variable Baseline (n = 231) 1-year follow-up (n = 210) 2-year follow-up (n = 196) 4-year follow-up (n = 172)

n M SD n M SD n M SD n M SD

Baseline age (years) 231 70.82 5.08 210 70.92 5.15 196 70.64 4.80 172 70.12 4.43

Gender (m/f) 231 118/113 – 210 109/101 – 196 105/91 – 172 93/79 –

Education (1–3) 224 2.23 0.86 209 2.24 0.86 194 2.23 0.87 170 2.28 0.84

Mental health 211 54.78 6.26 194 54.60 6.40 183 54.54 6.26 158 54.68 5.74

Physical health 211 50.85 7.37 194 50.97 7.37 183 51.11 6.86 158 51.52 6.32

Head motiona 228 0.24 0.15 206 0.25 0.16 189 0.27 0.17 164 0.26 0.19

m, male; f, female.
Education was measured on a scale from 1 to 3 (1 = high school with or without vocational education, 2 = higher education entrance qualification, business school or
university of applied sciences, or 3 = university degree). Mental and physical health scores were computed based on the SF12 questionnaire, which participants filled out
at home (Ware et al., 1996).
aHead motion was assessed at each measurement occasion. All other variables were assessed at baseline.

MRI Data Preprocessing
To facilitate analysis, data were organized according to the
brain imaging data structure (BIDS) (Gorgolewski et al., 2016).
Diffusion data were processed with a nipype pipeline (v0.14.0)
(Gorgolewski et al., 2011) using tools from MRtrix (3-rc2)
(Tournier et al., 2012), FSL (v5.0.9) (Jenkinson et al., 2012),
and ANTs (2.1.0) (Avants et al., 2011). The analysis code
is publicly available: https://github.com/fliem/extract_FA, and
a BIDS-Apps-compatible (Gorgolewski et al., 2017) software
container to reproduce the analysis can be found here: http://hub.
docker.com/r/fliem/extract_fa/.

The diffusion data were denoised (Veraart et al., 2016a,b)
and corrected for eddy current distortions and head motion
(Andersson and Sotiropoulos, 2016; Andersson et al., 2016).
Subsequently, the data were bias-corrected (Tustison et al., 2010)
and a white matter mask was created (Dhollander et al., 2016).
Tensor maps were calculated (Veraart et al., 2013) and FA maps
were derived (Basser et al., 1994; Westin et al., 1997). ANTs
was used to register FA maps to the JHU-ICBM-FA template
(included in FSL). Mean FA was extracted for tracts of the
JHU WM tractography atlas (thresholded at 25% probability) for
voxels with FA > 0.2 (Hua et al., 2008). The tracts considered
here are: Forceps minor (FMIN), left and right hemispheric
superior longitudinal fasciculi (SLF) and corticospinal tracts
(CST). The size of the FMIN was 19407 voxels. For the SLF
and CST, we averaged left and right hemispheres, weighted by
the total number of voxels of the respective tract (SLF: 17657,
CST: 10739). For the statistical analyses, we multiplied the FA
values by 100 (now ranging from 0 to 100) to ensure a more
intuitive interpretability of these scores for the reader and avoid
any model estimation problems that might occur when bringing
two domains together that are on very different scales.

Head Motion Control
As a means of ensuring sufficient quality of the data, we
removed FA values for 56 individual observations (i.e., 7% of
the total N of 787 observations) at which participants showed
excessive head motion. As a measure of head motion, we used
the summary statistic of average RMS motion as compared to
the previous slice in a volume, which was calculated during

preprocessing (Andersson and Sotiropoulos, 2016). Excessive
values were defined as any value more than three median absolute
deviations (MADs) above the median of the sample distribution
across measurement occasions (Leys et al., 2013). We used the
median as a reference, since it is more robust to the influence of
extreme values than the mean.

Motor Performance Measures
Motor performance was assessed by three motor tests described
in detail below. Specifically, we used two tests to measure
motor speed and one test to measure motor strength. First, all
dependent values of interest were individually standardized by
using the mean and standard deviation of the first measurement
occasion, and then transformed into a T-statistic to achieve better
interpretability.

Motor Speed
Grooved pegboard test
The grooved pegboard test (Merker and Podell, 2010) comprises
a board with a cavity in the upper region, in which small metal
sticks in key-like shapes (pegs) are stored. In the bottom area, the
board has 25 holes (5 columns × 5 holes), each including a slit
on the side to fit the key-shape of the pegs. However, these holes
are oriented in a random fashion, such that the matching of a
peg to the hole might require a turn of the peg. The test requires
participants to sequentially place pegs into the corresponding
holes in the board as quickly as possible. Participants are asked
to complete the test with their left hand (proceeding from right
to left) and with the right hand (proceeding from left to right).
The dependent measure is the time the participant needs to
place all pegs into the holes, separately measured for the left
and the right hand.

Finger tapping
Finger tapping speed was assessed with the MLS (Motorische
Leistungsserie; Schoppe, 1974). This test is based on a work panel
that allows participants to perform a series of different uni- or
bimanual tasks designed to assess fine motor skills. Specifically,
the finger tapping task required participants to tap as quickly
as possible on one of two small squares located on the bottom
left and right of the panel with the tip of a pen. Performance
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was separately measured for the right and the left hand and
participants were asked to target the square that was located on
the same side as their respective hand. The dependent measure of
interest was the number of taps within 32 s, separately measured
for the left and the right hand.

Motor Strength
Grip force
Grip force was measured with a hydraulic hand dynamometer
(Merker and Podell, 2010) (Model SH5001, Sae-han Corporation,
Korea) to assess the isometric maximum grip force of the right
and the left hand. Participants were instructed to sit upright,
with their feet positioned flat on the ground, their shoulders
and forearm in a neutral position, their elbow in 90◦ flexion
and the wrist in an extension of 0◦ to 30◦. Participants were
asked to press the dynamometer for 4 s with maximum force,
beginning with the dominant hand. After a 30 s break, they had
to switch hands and repeat the task with the non-dominant hand.
Overall, three repetitions were conducted for each hand. If the
maximum grip force in one hand was higher in the third as
compared to the first two rounds, data collection was continued
until the final measurement was smaller than the previous one.
The dependent measure of interest was the average grip force
across the three highest measurements, separately computed for
the left and the right hand.

Covariates
To control for potential confounding influences, we included
age at baseline (Agebase), level of education (on a scale from
1 to 3; 1 = high school with or without vocational education,
2 = higher education entrance qualification, business school or
university of applied sciences, or 3 = university degree) and
gender (0 = female, 1 = male) as covariates on the intercept and
slope terms in all statistical analyses. Furthermore, for the FA
models, we also included head motion in the scanner as a time-
varying covariate on the manifest indicators at each measurement
occasion. To facilitate model interpretation, age was centered at
70 years (median of the sample), and education at level 2. Head
motion was left uncentered, since a value of zero was meaningful
(i.e., reflecting no head motion).

Statistical Analysis
All statistical analyses were run in R version 3.3.3 (R Core Team,
2019). Outlier correction in each motor performance measure
was done using a cut-off of three MADs above or below the
median of the sample distribution across measurement occasions,
resulting in the removal of 58 individual values [i.e., between 0.1%
and 3.2-% of the total N of observations for each test; Grooved
Pegboard left: n (%) = 25 (3.2%) and right n (%) = 21 (2.7%);
Finger tapping left: n (%) = 3 (0.4%) and right n (%) = 7 (0.9%);
Grip Force left: n (%) = 1 (0.1%) and right n (%) = 1 (0.1%)].
We refrained from outlier control in FA measures, since FA
can largely vary between individuals (e.g., Veenith et al., 2013),
and no clear consensus exists on normative cut-offs. However,
we excluded individual observations with excessive head motion
values (see section on “Head motion control” above).

Latent Growth Curve Modeling (LGC)
In the present study, we first used univariate LGC to model
change in FA and motor performance measures individually, and
bivariate LGC to model cross-domain interactions between these
measures. We estimated the LGC models in the SEM framework
using the lavaan package version 0.5-23.1097 (Rosseel, 2012) in R.

Univariate models
We estimated separate univariate LGC models for FA in each
of the WM tracts and for motor function in the tests assessed.
For each univariate LGC we estimated the (1) initial level, i.e.,
the intercept of the measure of interest, (2) its rate of (linear)
change, i.e., the slope, and (3) the association between the initial
level and the rate of change of the measure of interest. To avoid
confounding of initial level/rate of change estimation, we added
baseline age and gender as covariates to all models. For the
univariate FA models, we additionally added head motion as
a time-varying covariate. To illustrate, Figure 1 shows a path
diagram of a univariate LGC model for motor strength.

From bottom to top, the Figure shows the observed
measurements of grip force at each time point (Grip0. . . Grip4yr).
These measurements load on the latent estimates of motor
strength (Ms0. . .Ms4yr). In other words, the motor strength
variables represent latent estimations of grip force at each
measurement occasion, separated from measurement error.
Further, a latent intercept (I) and slope factor (S) was estimated
on top of the latent estimates of motor strength, to capture initial
levels and overall rate of change across time. The means of these
factors reflect the average baseline value (µI) and change (µS)
in a variable across the entire sample (i.e., fixed effects). The
variances of these latent factors reflect the variability between
persons (i.e., random effects) in their individual baseline values
(σ2

I) and change trajectories (σ2
S). We estimated the loadings of

the change slope to reflect a linear change trajectory (i.e., slope
loadings of 0, 1, 2, 4). As is the standard in longitudinal SEM
modeling, we treated missing values as missing at random (MAR;
Little, 1995) and retained them in the model by using the full
information maximum likelihood estimation (FIML; Finkbeiner,
1979; Schafer and Graham, 2002) to deal with incomplete data.

Bivariate models
We estimated a series of bivariate LGC models, combining the
univariate LGC models for each of the WM tracts and for each
of the motor function tests, resulting in 18 models. To illustrate,
Figure 2 shows a path diagram of a bivariate LGC model for
motor strength (i.e., grip force test) and WM FA in the SLF.

In each bivariate LGC model, we estimated the following
cross-domain interactions between FA and motor function
(blue pathways in Figure 2): (1) the level-level (i.e., intercept-
intercept) correlation, to investigate the association between
baseline FA values in each of the WM tracts and baseline
motor function in each of the motor function tests. As
an example, a positive level-level association would suggest
that at study initiation, individuals with higher WM FA
show better motor performance than individuals with lower
WM FA values. (2) The level-change (i.e., intercept-slope)
correlation to examine the association between baseline FA
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FIGURE 1 | Example diagram of a univariate LGC model for motor strength (MS) in the grip force test (Grip). For a detailed description see methods section
(univariate models). All unlabeled paths are fixed to 1. Parameters with the same label are fixed to be equal. The manifest indicator intercepts are not shown for visual
clarity. Intercept and slope variance is controlled for age at baseline (Agebase) and gender.

values and motor performance changes. As an example, a
positive level-change association would indicate that people with
higher WM FA at baseline show reduced motor performance
declines over the study period (3) the change-change (i.e.,
slope-slope) correlation, to investigate the association between
change in WM FA and change in motor function. As an
example, a positive change-change association would mean that
people with steeper declines in WM FA also show steeper
declines in motor performance over the study period. Note
that these examples are formulated based on the assumption
that individuals experience declines in WM FA and motor
performance over time.

We only evaluated these longitudinal cross-domain effects,
if there was sufficient variance in the intercepts and slopes of
the respective univariate models of the combined variables. We
defined sufficient variance as intercept or slope variance that
is significantly (p < .05) different from zero, suggesting that
individuals show substantial heterogeneity with regards to their
baseline levels or their longitudinal change trajectories in WM FA
or motor performance. While intercept variance was substantial
in all univariate models, this was not the case for slope variance
in some of the models. As a significance test relies on an arbitrary
cut-off, we additionally calculated effective curve reliability (ECR)
for each univariate model. ECR is a reliability index for LGC
model slope variance that can be interpreted as a standardized
effect size statistic of the slope variance (Kelley and Preacher,
2012; Brandmaier et al., 2018). It is computed as the slope
variance scaled as a proportion of the sum of slope variance and

slope measurement error. ECR ranges from 0 to 1, with larger
values reflecting increased true population slope variance and/or
increased study design precision (and thus reduced effective
error) (Brandmaier et al., 2018).

Evaluation of model fit
Overall model fit was evaluated by the χ2 test, specifically, by the
ratio of the χ2 test statistic to the respective degrees of freedom
(Jöreskog and Sörbom, 1993). Furthermore, the Comparative Fit
Index (CFI; Bentler, 1990), and the root mean square error of
approximation (RMSEA; Steiger and Lind, 1980) were used to
evaluate goodness-of-fit. Good model fit was defined as a ratio
of χ2/df ≤ 2, CFI > 0.97, RMSEA ≤ 0.05, and adequate fit was
defined as χ2/df ≤ 3, CFI > 0.95, RMSEA between 0.05 and 0.08
(see Jöreskog and Sörbom, 1993; Schermelleh-Engel et al., 2003).
Models were compared using the difference χ2 test (for nested
models) and the sample size adjusted Bayesian Information
Criterion (BIC; Raftery, 1995). The BIC is not interpretable in
isolation, however, in model comparisons, smaller values indicate
a closer fit of the model to the data (Kass and Raftery, 1995;
Raftery, 1995). Given that we tested a large number of hypotheses,
we applied a correction for multiple comparisons using the
False Discovery Rate (FDR) correction, to reduce the likelihood
of false positive findings, i.e., Type 1 errors (Benjamini and
Hochberg, 1995). The FDR correction was applied to each LGC
model separately, and across all effects of interest within the
structural part of the model. For the univariate LGC models,
we included the means and variances of intercept and slope,
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FIGURE 2 | Example diagram of a bivariate LGC model for motor strength (MS) in the grip force test (Grip) and WM FA in the SLF. Blue paths illustrate the
cross-domain associations between (1) initial WM FA and motor performance at study baseline (level–level), (2) initial WM FA and subsequent change in motor
performance (level-change), change in WM FA and change in motor performance (change–change). Single-headed arrows represent regression effects and
double-headed arrows represent (co)variances and correlations. Circles represent latent, unobserved variables and squares represent manifest, observed variables.
Triangles stand for constants, such as means and intercepts. All unlabeled paths are fixed to 1. Parameters with the same label are fixed to be equal. The manifest
indicator intercepts are not shown for visual clarity. Intercept and slope variance for motor strength and WM FA is controlled for age at baseline (Agebase) and gender.
The observed variables of WM FA in the SLF are controlled for head motion (HM) at each measurement occasion.

covariate effects and within-domain correlations of intercept and
slope as effects of interest. For the bivariate LGC models, we
only considered cross-domain correlations between intercept and
slopes as effects of interest.

RESULTS

Raw FA declined annually for the FMIN and SLF
by –0.20 ± 1.18% and –0.56 ± 0.88%, respectively. In the
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CST, annual increases were observed in average FA values
(0.25 ± 0.92%). This effect, however, did not manifest itself in the
univariate LGC models described below. Potential explanations
for this divergence between raw change and modeled change
values will be addressed in the discussion. Average annual
declines were observed in all motor function tests [annual
percentage change (APC) ranging between –0.24% and 1.21%].
Grip force and tapping speed of the left hand declined more
strongly compared to the right (dominant) hand, while we
observed the reversed pattern (higher annual decline in the right
hand) for performance in the pegboard test. Table 2 contains a
detailed overview of the raw annual change and APC in FA and
motor functioning.

Univariate LGC Models: FA
We fit univariate LGC models for mean FA in each of three
WM tracts (FMIN, SLF, CST). Model fit statistics and parameter
estimates are shown in Table 3.

Fit statistics ranged from adequate to good for all models
[χ2

(24) = 31.733–67.697, χ2/df = 1.32–2.82, RMSEA = 0.037–
0.089, CFI = 0.960–0.988]. With regards to the parameter
estimates, substantial individual differences (i.e., significant
intercept variance) were observed for baseline mean FA in
all WM tracts. On average, mean scaled FA declined in the
FMIN and SLF (–0.15 and –0.20 per year). In contrast, as we
hypothesized, no substantial average FA changes were observed
in the CST. Moreover, substantial interindividual differences
in longitudinal change (i.e., significant slope variance) were
observed for the FMIN and SLF. However, the univariate LGC
model for the CST initially converged with a negative slope
variance. Constraining the CST slope variance to a positive
value resulted in the estimation of a slope variance of zero (see
Table 3), suggesting the absence of interindividual differences
in longitudinal average FA change trajectories for the CST.
Accordingly, ECR could not be calculated for the CST. As
sufficient variance in change trajectories is necessary to estimate
cross-domain parallel change correlations, only the FMIN and
SLF were retained for the bivariate modeling of change-change
associations. ECR for the FMIN and SLF were 0.44 and 0.30
(see Table 3), respectively, suggesting a small to medium effect
size of the slope variance for these tracts (Cohen, 1988, 1992).
Covariance between intercept and slope was not significant for
any of the WM tracts.

With regard to covariate effects on intercept and slope (see
Table 4), baseline age was significantly associated with baseline
mean FA in the FMIN and SLF, in the direction that older
individuals had lower FA values in these tracts at baseline than
their younger peers. Baseline age was also significantly related to
changes in mean FA over time in the FMIN and CST, suggesting
that participants showed accelerated annual FA decline with
increasing age (mean scaled FA of –0.01 and –0.02). Specifically,
as no significant main effect of mean FA change was observed for
the CST, this result suggests that FA decline was predominantly
observed for the older participants in the sample. Gender had
a significant effect on average baseline FA in the FMIN, and FA
changes in the CST: Male participants had lower mean FA in the
FMIN at baseline (–0.64, SE = 0.29, p = 0.026), and showed less

annual mean FA change in the CST (0.22, SE = 0.06, p < 0.001)
than female participants.

Finally, we also investigated the impact of head motion at
each measurement occasion (see Table 5). Head motion was
significantly associated with FA in all WM tracts on at least one
measurement occasion, such that more motion in the scanner
was associated with significantly lower average FA. This effect
was most consistently observed for the CST. Note that one unit
increase in head motion amounts to almost five times the average
head motion present in the sample (from 0.24 to 0.27 across
measurement occasions; cf. Table 1).

Univariate LGC Models: Motor Function
We fit univariate LGC models to estimate longitudinal
performance change in each of the motor function tests
(motor speed: pegboard, tapping; motor strength: grip force),
and separately for each hand. Model fit statistics and parameter
estimates of these models are presented in Table 6.

Fit statistics ranged from adequate to good for all models
[χ2

(12) = 15.972–31.070, χ2/df = 1.33–2.59, RMSEA = 0.038–
0.083, CFI = 0.980–0.993]. Substantial interindividual differences
were observed for motor performance at baseline in all tests. On
average, motor performance declined in all tests (between –0.39
and –0.56 per year) but one (Pegboard left hand performance).
Mirroring the raw performance changes reported in Table 2,
larger declines were observed for left hand than right hand motor
function. Regarding longitudinal change trajectories, substantial
interindividual variance was only observed for motor strength
in the grip force test (left and right hand). In contrast, the
slope variance was not significantly different from zero for
any of the motor speed tests1. Mirroring this result from
the significance test, ECR and therefore slope variance effect
size was below the cut-off of a small effect size for the
motor speed tests (between 0.03–0.15) and of medium size
for the Grip Force test (left hand: 0.47, right hand: 0.60)
(Cohen, 1988, 1992). Due to the lack of substantial change
variability in the motor speed tests, only the grip force test
(left and right hand) will be retained for the estimation of
change-change associations in the bivariate modeling section.
The covariance between intercept and slope was significant
only in the grip force test (left hand: –1.15, SE = 0.53,
p = 0.029, right hand: –1.57, SE = 0.60, p = 0.009), in
the direction that individuals with higher motor function
at baseline tended to show accelerated declines in motor
function over 4 years.

Baseline age was significantly negatively associated with motor
function across all tests, such that older individuals had a
lower performance at baseline than younger peers (Table 7). In
addition, baseline age was significantly negatively associated with

1In case of the tapping test (left hand), the univariate LGC model did initially
converge with a negative slope variance. Constraining the slope variance to a
positive value still did not result in an ideal solution, as it produced a warning
message (covariance matrix of latent variables non-positive definite). Since these
issues were most likely produced by the lack of sufficient slope variance, we added
further constraints to the model, fixing the intercept-slope covariance to zero. This
resulted in convergence without any warning messages, and a good model fit (see
Table 6).
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TABLE 2 | Raw annual change and annual percentage change of WM microstructure and motor function.

Variable/change score Raw annual change APC (%)

n M SD M SD

WM microstructure (raw FA scores × 102)

FMIN 197 −0.07 0.42 −0.20 1.18

SLF 197 −0.20 0.31 −0.56 0.88

CST 197 0.13 0.50 0.25 0.92

Motor function (standardized T-scores)

Pegboard (left) 202 −0.22 2.79 −0.24 7.16

Pegboard (right) 206 −0.46 2.96 −0.78 7.38

Tapping (left) 205 −0.45 2.37 −1.09 5.07

Tapping (right) 204 −0.32 2.53 −0.67 6.02

Grip force (left) 210 −0.63 1.63 −1.21 3.68

Grip force (right) 210 −0.49 1.74 −0.91 4.22

Raw annual change, raw annual change score, calculated as [(Value at last measurement occasion in the study-Value at baseline)/total years in study]; APC, annual
percentage change, calculated as [(Value at last measurement occasion in the study/Value at baseline)1/(total years in study)-1]∗100.

TABLE 3 | Parameter estimates and model fit statistics of best fitting univariate LGC models for WM FA.

Mean (µ) Variance (σ2) Model fit

LGC model/WM tract Estimate SE p value Estimate SE p value ECR χ2(df) χ2/df RMSEA [95% CI] CFI BIC

FMIN Intercept 37.36 0.24 <0.001 4.30 0.44 <0.001 42.695(24) 1.78 0.058 [0.028–0.086] 0.983 3257.441

Slope –0.15 0.06 0.014 0.04 0.01 0.001 0.44

SLF Intercept 36.19 0.21 <0.001 3.27 0.33 <0.001 67.697(24) 2.82 0.089 [0.064–0.114] 0.960 3023.458

Slope –0.2 0.05 <0.001 0.02 0.01 0.024 0.30

CST Intercept 54.52 0.27 <0.001 3.90 0.44 <0.001 31.733(24) 1.32 0.037 [0.000–0.069] 0.988 3634.188

Slope –0.04 0.08 0.628 0.00a 0.00 <0.001 – b

ECR, Effective Curve Reliability; RMSEA, Root Mean Square Error of Approximation; CFI, Comparative Fit Index; BIC, Bayesian Information Criterium. Parameter estimates
are unstandardized, and adjusted for effects of age at baseline, and gender (on intercept and slope), and for head motion at each measurement occasion. FA values are
raw scores, multiplied by 100. Results that were significant after FDR correction for multiple comparisons (p < 0.05) are highlighted in bold font.
aThe slope variance was constrained to be positive, which resulted in a slope variance of zero.
bECR could not be calculated because the slope variance was zero.

TABLE 4 | Effects of Age at baseline and Gender on intercept and slope of best fitting univariate LGC models for WM FA.

Agebase Gender

Tract Estimate SE p-value Estimate SE p-value

FMIN Intercept −0.18 0.03 <0.001 −0.64 0.29 0.026

Slope −0.01 0.01 0.029 0.05 0.05 0.316

SLF Intercept −0.13 0.03 <0.001 0.36 0.25 0.148

Slope −0.01 0.00 0.122 0.01 0.04 0.692

CST Intercept 0.00 0.03 0.892 0.51 0.29 0.075

Slope −0.02 0.01 0.017 0.22 0.06 <0.001

Agebase, age at baseline. Parameter estimates are unstandardized. Results that were significant after FDR correction for multiple comparisons (p < 0.05) are
highlighted in bold font.

performance changes in two motor speed tests (pegboard right
hand: –0.13 and left hand tapping: –0.07), indicating that older
participants’ motor function declined more rapidly as compared
to their younger peers.

Gender was significantly related with motor function at
baseline, such that male participants showed better motor
performance in the tapping (left hand: 5.43, SE = 1.32, p < 0.001;

right hand: 6.16, SE = 1.20, p < 0.001) and grip force tests
(left hand: 15.34, SE = 0.78, p < 0.001; right hand: 15.66,
SE = 0.77, p < 0.001). In addition, male participants showed
steeper declines in left hand grip force performance over
4 years than female participants (–0.34, SE = 0.17, p = 0.045),
however, this effect was no longer significant after correction for
multiple comparisons.
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TABLE 5 | Effects of head motion on FA at each measurement occasion of best fitting univariate LGC models for WM FA.

Head Motionbase Head Motion1year Head Motion2years Head Motion4years

Tract Estimate SE p-value Estimate SE p-value Estimate SE p-value Estimate SE p-value

FMIN –1.76 0.57 0.002 –0.49 0.46 0.289 –0.70 0.46 0.128 –1.10 0.73 0.134

SLF –0.90 0.49 0.069 –2.02 0.40 <0.001 –1.73 0.39 <0.001 –0.52 0.60 0.384

CST –2.51 0.83 0.002 –2.11 0.68 0.002 –2.29 0.66 0.001 –0.89 0.95 0.346

Base, baseline. Parameter estimates are unstandardized. Results that were significant after FDR correction (p < 0.05) are highlighted in bold font.

TABLE 6 | Parameter estimates and model fit statistics of best fitting univariate LGC models for motor function.

Mean (µ) Variance (σ 2) Model fit

LGC model/WM tract Estimate SE p-value Estimate SE p-value ECR χ 2(df) χ 2/df RMSEA [95% CI] CFI BIC

Motor Speed

Pegboard (l) Intercept 51.06 0.84 <0.001 60.50 7.48 <0.001 15.972(12) 1.33 0.038 [0.000–0.082] 0.993 6907.057

Slope –0.31 0.21 0.138 0.27 0.44 0.545 0.09

Pegboard (r) Intercept 51.83 0.84 <0.001 59.07 7.44 <0.001 19.685(12) 1.64 0.053 [0.000–0.093] 0.987 6972.606

Slope –0.56 0.21 0.007 0.25 0.46 0.584 0.09

Tapping (l)a Intercept 47.60 0.95 <0.001 85.14 8.81 <0.001 27.957(13) 2.15 0.071 [0.034–0.107] 0.980 6875.361

Slope –0.53 0.18 0.003 0.06 0.29 0.842 0.03

Tapping (r) Intercept 47.15 0.86 <0.001 68.98 7.68 <0.001 23.735(12) 1.98 0.065 [0.024–0.103] 0.984 6813.738

Slope –0.44 0.18 0.014 0.35 0.33 0.289 0.15

Motor Strength

Grip Force (l) Intercept 42.31 0.56 <0.001 30.21 3.27 <0.001 31.070(12) 2.59 0.083 [0.048–0.119] 0.986 6164.275

Slope –0.45 0.13 <0.001 0.50 0.16 0.002 0.47

Grip Force (r) Intercept 42.20 0.56 <0.001 28.82 3.19 <0.001 21.785(12) 1.82 0.059 [0.013–0.099] 0.993 6260.735

Slope –0.39 0.14 0.005 0.80 0.20 <0.001 0.60

ECR, Effective Curve Reliability; RMSEA, Root Mean Square Error of Approximation; CFI, Comparative Fit Index; BIC, Bayesian Information Criterium; l, left; r, right.
Parameter estimates are unstandardized, and adjusted for effects of age at baseline, and gender (on intercept and slope). Motor function values are T-distributed for
all tests (pegboard, tapping and grip force), with higher values reflecting better performance. Results that were significant after FDR correction for multiple comparisons
(p < 0.05) are highlighted in bold font.
aThe slope variance of this model was constrained to be positive and the intercept-slope covariance was fixed to zero.

TABLE 7 | Effects of Age at baseline and Gender on intercept and slope of best fitting univariate LGC models for motor function.

Agebase Gender

Tract Estimate SE p-value Estimate SE p-value

Motor Speed

Pegboard (l) Intercept –0.86 0.12 <0.001 –0.57 1.17 0.629

Slope –0.03 0.03 0.374 –0.27 0.28 0.345

Pegboard (r) Intercept –0.86 0.12 <0.001 –2.26 1.17 0.053

Slope –0.13 0.03 <0.001 –0.25 0.28 0.370

Tapping (l) Intercept –0.43 0.13 0.001 5.43 1.32 <0.001

Slope –0.07 0.03 0.006 0.21 0.24 0.387

Tapping (r) Intercept –0.60 0.12 <0.001 6.16 1.20 <0.001

Slope –0.01 0.03 0.740 0.17 0.25 0.490

Motor Strength

Grip Force (l) Intercept –0.47 0.08 <0.001 15.34 0.78 <0.001

Slope –0.01 0.02 0.632 –0.34 0.17 0.045a

Grip Force (r) Intercept –0.45 0.08 <0.001 15.66 0.77 <0.001

Slope –0.01 0.02 0.549 –0.22 0.19 0.246

Agebase, age at baseline; l, left; r, right. Parameter estimates are unstandardized. Results that were significant after FDR correction for multiple comparisons (p < 0.05)
are highlighted in bold font.
aNo longer significant (p < 0.05) after correction for multiple comparisons.
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TABLE 8 | Model fit statistics of bivariate LGC models (for parameter estimates see Table 9).

WM tract Motor function χ2 (df) χ2/df RMSEA [95% CI] CFI BIC

FMIN Pegboard (l) 94.089 (67) 1.40 0.042 [0.019–0.061] 0.984 8421.788

Pegboard (r) 79.877 (67) 1.19 0.029 [0.000–0.050] 0.992 8488.734

Tapping (l) 110.001 (68) 1.62 0.052 [0.033–0.069] 0.977 8387.129

Tapping (r) 92.599 (67) 1.38 0.041 [0.017–0.060] 0.986 8329.705

Grip Force (l) 102.529 (65) 1.58 0.050 [0.030–0.068] 0.985 7684.128

Grip Force (r) 96.723 (65) 1.49 0.046 [0.025–0.064] 0.987 7779.699

SLF Pegboard (l) 113.834 (67) 1.70 0.055 [0.037–0.072] 0.972 8188.823

Pegboard (r) 107.235 (67) 1.60 0.051 [0.032–0.068] 0.976 8255.944

Tapping (l) 122.849 (68) 1.81 0.059 [0.042–0.076] 0.970 8156.749

Tapping (r) 109.217 (67) 1.63 0.052 [0.034–0.070] 0.977 8098.732

Grip Force (l) 123.705 (65) 1.90 0.063 [0.046–0.079] 0.976 7453.513

Grip Force (r) 131.512 (65) 2.02 0.067 [0.050–0.083] 0.973 7549.944

CST Pegboard (l) 79.414 (67) 1.19 0.028 [0.000–0.050] 0.990 8802.741

Pegboard (r) 71.231 (67) 1.06 0.017 [0.000–0.043] 0.996 8868.370

Tapping (l) 86.920 (68) 1.28 0.035 [0.000–0.055] 0.986 8770.575

Tapping (r) 79.729 (67) 1.19 0.029 [0.000–0.050] 0.991 8709.157

Grip Force (l) 96.105 (66) 1.46 0.044 [0.023–0.063] 0.985 8061.218

Grip Force (r) 99.550 (66) 1.51 0.047 [0.026–0.065] 0.983 8154.132

RMSEA, Root Mean Square Error of Approximation; CFI, Comparative Fit Index; BIC, Bayesian Information Criterium; l, left; r, right.

Bivariate LGC Models: FA and Motor
Function
We fit bivariate LGC models to estimate cross-domain
relationships between mean WM FA in each of the three
WM tracts and motor function in each of the six motor tests,
resulting in overall 18 separate models. Fit statistics of these
models are presented in Table 8, and standardized parameter
estimates are shown in Table 9.

Model fit statistics ranged from adequate to good for
all models [χ2

(65−68) = 71.231 - 131.512, χ2/df = 1.06–
2.02, RMSEA = 0.017–0.067, CFI = 0.970–0.996]. First,
in each of the 18 bivariate LGC models, we estimated
level–level (i.e., intercept–intercept) correlations between
baseline mean FA values and baseline motor function.
The results revealed a significant positive correlation for
the FMIN and motor speed performance: higher baseline
mean FA in the FMIN was associated with faster motor
performance in the pegboard (fully standardized estimate: 0.16,
SE = 0.08, p = 0.035) and tapping tests (fully standardized
estimate: 0.19, SE = 0.07, p = 0.006) for the left, but
not for the right hand. These estimates correspond to a
small to typical effect size if compared to the norms in
interindividual difference research (Gignac and Szodorai,
2016). We also observed a positive correlation for the FMIN
and right-hand grip force performance, however, this result
was no longer significant after correction for multiple
comparisons. None of the other level–level correlations
were significant.

In addition, we estimated level-change (i.e., intercept-slope)
correlations to investigate the association between baseline
mean FA values and motor performance changes. As the
motor speed tests did not show sufficient slope variance, we

only estimated level-change correlations for the motor strength
tests (grip force left and right hand). None of these results
were significant.

Finally, to investigate the association between changes
in mean WM FA and changes in motor function, we
estimated change–change (i.e., slope–slope) correlations
between motor strength in the grip force test and mean
FA in those WM tracts that showed sufficient slope
variance (FMIN, SLF). Again, none of these correlations
were significant.

DISCUSSION

In the current study we followed > 200 healthy older
adult participants over 4 years of longitudinal DW-MRI and
manual motor performance assessments. To optimally harvest
insights from longitudinal data, we conducted our analyses
using LGC models in the SEM framework, which enable the
separation of interindividual variability from intraindividual
change trajectories. We specifically targeted the FMIN, SLF, and
CST for their purported roles in motor and cognitive function.
Cross sectional associations with age at baseline indicate that
mean FA values in these tracts as well as motor performance
indicators are lower in older individuals, similar to what has
been shown previously (Ruff and Parker, 1993; Jiménez-Jiménez
et al., 2011; Bennett and Madden, 2014; Cox et al., 2016).
We observed longitudinal declines over time in all measures
except for average FA in the CST. Baseline age was also related
to changes in mean FA over time in the FMIN and CST,
suggesting that changes accelerated with advancing age in the
FMIN. In case of the CST, this finding suggests that longitudinal
decline is restricted to the oldest participants, as no decline was
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TABLE 9 | Results of bivariate LGC models (level-level, level-change, change-change).

Correlation WM tract Motor speed Motor strength

Pegboard (l) Pegboard (r) Tapping (l) Tapping (r) Grip Force (l) Grip Force (r)

Level-level FMIN 0.16 (0.08) * 0.13 (0.07) 0.19 (0.07)** 0.13 (0.07) 0.13 (0.07) 0.16 (0.07)∗a

SLF 0.14 (0.08) 0.10 (0.08) 0.14 (0.07) 0.02 (0.08) 0.01 (0.07) 0.04 (0.08)

CST –0.03 (0.08) –0.01 (0.07) –0.05 (0.07) –0.04 (0.07) –0.07 (0.07) –0.14 (0.07)

Level-change FMIN – – – – 0.00 (0.13) –0.12 (0.11)

SLF – – – – 0.07 (0.13) –0.05 (0.12)

CST – – – – –0.00 (0.12) –0.03 (0.11)

Change-change FMIN – – – – –0.13 (0.19) –0.06 (0.16)

SLF – – – – 0.01 (0.23) 0.04 (0.20)

CST – – – – – –

Parameter estimates are standardized, with standard errors in parentheses. Results that were significant (*p < 0.05, **p < 0.01) are marked with stars. Results that were
still significant after FDR correction for multiple comparisons are highlighted in bold font.
FMIN, Forceps Minor; SLF, Superior Longitudinal Fasciculus; CST, Corticospinal Tract; l, left; r, right.
aNo longer significant (p < 0.05) after correction for multiple comparisons.

observed in average FA for the overall sample in this tract. We
found that FMIN tract average FA values correlate positively
with motor speed and motor strength measures, suggesting
that maintenance of WM structure in the anterior corpus
callosum is associated with better manual motor function. We
did not observe significant longitudinal level-change or change-
change associations, suggesting that – at least over the timescale
studied here – age-related baseline levels and changes in WM
microstructure within these tracts do not associate with changes
in motor speed and grip force.

Longitudinal Change in and
Cross-Sectional Age Effects on Motor
Speed and Motor Strength
Our LGC models for motor function reveal both longitudinal
declines over time and cross-sectional effects of age, consistent
with previous literature (Kallman et al., 1990; Ruff and Parker,
1993; Vianna et al., 2007). In addition, our results point
to an acceleration of motor performance declines in older
individuals. In light of the recent proposition that changes
in grip strength are not simply an index of muscle mass
loss but should be viewed as a marker of brain health given
the complex neural circuitry that it engages (Carson, 2018),
the loss of left-hand grip strength with an annual decline
rate of 1.2% (Table 2) is particularly interesting. While some
studies have reported greater grip strength loss with age in
the right hand (Teixeira, 2008), others have shown more
selective loss of neural control of the left (non-dominant)
hand (Sale and Semmler, 2005). Here, we observed greater
declines for the left hand, supporting our hypothesis of
right-hand performance preservation due to stronger lifelong
practice of the dominant hand. With respect to gender, we
expectedly found significant cross-sectional effects for baseline
grip force and tapping performance, with males having higher
grip strength and faster tapping speeds. This is in accordance
with previous work (Hubel et al., 2013; Yorke et al., 2015;
Wong, 2016).

Longitudinal Change in and
Cross-Sectional Age Effects on
Fractional Anisotropy
We found that both FMIN and SLF WM indices significantly
declined over time, whereas CST did not. However, age was
significantly negatively associated with CST change, implying
that CST changes over time only occurred for the oldest
participants in our sample. It should be noted that, in the
case of the CST, the results from the univariate LGC model
diverged from the annual change computed based on the raw
FA values. While the modeled change values suggested stability
in mean FA over 4 years, annual mean FA increases were
observed in the raw values (0.25% ± 0.92%). This divergence
most likely is a result of the inclusion of head motion and
baseline age as covariates in the LGC models, but not in the
calculation of the raw change values. While head motion had
a significant impact on all WM tracts, the CST was most
affected. Especially, head motion had an impact on the CST at
the first three measurement occasions (i.e., by underestimating
mean FA values), but not at the last occasion, which was
also spaced further apart and thus had more weight for the
change calculation. If not adjusted for, this imbalance in the
FA estimation might result in the finding of FA increases over
time instead of stability. The strict control for head motion, both
by excluding observations with extreme motion, and including
head motion as a covariate into the estimation of FA, is a
major strength of this study. It has been previously reported
that participant’s head movements in the scanner can result in
biased FA estimates (Yendiki et al., 2014; Baum et al., 2018).
Despite this common knowledge, head motion is often neglected
in DW-MRI studies.

We have recently shown that a global WM decline factor is not
a good fit to our data (Oschwald et al., 2019b). Lövdén et al. (2013)
have also reported that aging differentially impacts individual
WM tracts. Further, studies investigating gray and WM volume
and WM diffusion changes with age largely provide evidence for
the “last in, first out” hypothesis. This conceptual model proposes
that tracts which are later to mature developmentally will be more
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sensitive to aging effects (Raz, 2000, 2001; Bender et al., 2016).
Some studies have shown that primary motor and somatosensory
cortex volumes are relatively spared by aging (Raz et al., 1997).
In contrast, other studies have suggested disproportionate age
effects on pre- and postcentral gyrus volume (Good et al., 2001;
Taubert et al., 2020), cortical thickness (Salat et al., 2004), iron and
myelin content (Taubert et al., 2020). It should be noted, however,
that these studies were all cross-sectional and did not quantify
longitudinal changes. In the current longitudinal investigation,
we see more robust declines in WM microstructure for the
FMIN and SLF than for the CST, which is consistent with the
idea of a higher susceptibility of association and commissural
fibers for detrimental effects of aging (Madden et al., 2012;
Bender et al., 2016).

Cross-Sectional and Longitudinal
Brain-Behavior Associations
With regard to cross-sectional brain-behavior associations at
baseline, left hand pegboard and tapping speed measures were
significantly correlated with FMIN FA, with higher average FA
values being associated with faster performance. There was also a
trend for a level-level association between mean FA in the FMIN
and right-hand grip force, but this association did not survive
correction for multiple comparisons. We have previously shown
that corpus callosum WM integrity is correlated with unimanual
and bimanual task performance in older adults (Fling et al.,
2011; Fling and Seidler, 2012). Interestingly, the pegboard and
tapping performance measures were not significantly correlated
with mean FA in the CST or SLF at study baseline. CST
microstructure has been linked to better motor performance in
young adults; for example, CST FA increases with motor practice
(Reid et al., 2017) and is higher in the hand and arm motor
tracts of musicians (Giacosa et al., 2019). It is well established,
however, that motor control relies more upon frontal brain
activity in older adults than young adults (Seidler et al., 2010;
Hawkins et al., 2018). This additional frontal activity during
motor task performance in older adults is often interpreted as
compensatory (Heuninckx et al., 2008); that is, it is positively
associated with better task performance. Davis et al. (2012)
have reported that anterior corpus callosum microstructure
predicted the strength of functional connectivity between the
left and right prefrontal cortex in older adults performing a
letter matching task as well as task performance that relied on
interhemispheric communication. It is not clear whether the
same type of compensation process is taking place in our study,
but it is compelling that only FMIN FA was correlated with
task performance.

We hypothesized that SLF FA would also correlate with
motor performance in our sample, given its potential link to
frontal compensation. The SLF connects the frontal, occipital,
parietal and temporal lobes (Wang et al., 2016) and SLF FA has
been recently shown to predict increasing frailty over a 5 years
follow-up (Maltais et al., 2020). It has also been shown to be
correlated with tapping speed in individuals with frontotemporal
dementia (Henley et al., 2014) and in those who have suffered
traumatic brain injury (Farbota et al., 2012). However, the

degree of interindividual variance in SLF microstructure in these
populations is likely greater than that observed with healthy
aging, potentially resulting in the lack of association seen here.

We did not observe any change-change associations in our
data; that is, change in WM microstructure was not associated
with change in motor performance. Moreover, there were no
level-change associations, meaning that average FA at baseline
did not predict future motor declines. This is perhaps to be
expected given the lack of change over time in CST mean
FA and the small slope variance in our measures. Of note,
due to the lack of variance in the change trajectories of the
motor speed tasks, we could only evaluate longitudinal level-
change and change–change associations of WM FA with motor
strength in the grip force task. Very recently, grip force has
been associated with cognitive decline in healthy aging and
demented patients (Cui et al., 2021) and is therefore being
discussed also as an early marker of cognitive degradation.
While we are still in the beginning of understanding how
changes in brain structure impact on changes in motor function,
previous longitudinal studies on brain structure and cognitive
performance have reported inconsistent results with respect to
change-change associations, especially when examining healthy
older adults (Salthouse, 2011; Oschwald et al., 2019a).

This is perhaps a reflection of several factors: the good
health status and thus high capacity for adaptive compensation
for neural decline in this population (Reuter-Lorenz and Park,
2014), the complexity of the cognitive aging process itself,
involving a multitude of driving factors (Grady, 2012), and the
challenge of modeling the intricate temporal dynamics between
two developmental aging processes (King et al., 2018). While
the sample that is studied here comprises highly functioning,
healthy individuals with expectedly high compensatory ability,
they still showed average declines in grip force over the
time period studied. These declines, however, are small if
compared to previous reports (Auyeung et al., 2014; Patel
et al., 2018). Moreover, age-related changes in grip force
may be especially multidetermined given its above-mentioned
association with cognitive decline (Cui et al., 2021), and its
relation to several neural substrates (Carson, 2018). Together,
this may serve as an explanation why changes in grip force
and FA are not significantly related to each other in our
analyses. In addition, while the longitudinal nature of this
study is one of its major strength and sets it apart from most
of the literature investigating the relations between brain and
motor aging, modeling the temporal dynamics between these
two developmentally distinct domains still presents a major
challenge. In the present study, we used growth modeling to
capture simultaneous change-change associations between WM
microstructure and motor function. However, more fine-grained
temporal investigations of leading-lagging relationships may
have been more sensitive to uncover a relationship between
these domains (see McArdle et al., 2004; Grimm et al., 2012;
Estrada et al., 2019 for such applications in the field of
cognitive neuroscience).

In a recent study with the same sample, we reported
that changes in SLF FA predict changes in processing speed
2 years later (Oschwald et al., 2019b). It is possible that
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effects of WM microstructure degradation do not exert
immediate effects on motor function, but manifest only after
a certain time lag. Unfortunately, the fact that most of the
motor function measures in the present study showed only
very limited between-person slope variance prohibited reliable
modeling of more complex lagged dynamic change processes.
However, even in our previous study, only a small subset of
the WM tracts investigated (i.e., SLF and anterior thalamic
radiation) showed lagged change associations over the studied
4-year interval, which promotes the hypothesis that in the
context of healthy aging, with compensation mechanisms
being in place, longer time delays might be needed to reveal
consistent change-change associations between brain structural
and behavior changes.

The high level of health in our participants can also be
considered a strength, since many other studies investigate mild
cognitive impairment, Alzheimer’s disease patients, or other
pathological samples. Understanding the trajectories of neural
decline and the related motor impairment in healthy old age is
of high practical relevance in our aging society.

To quantify slope variance reliability, we calculated ECR,
an index reflecting the slope variance scaled on the effective
error and interpretable as a standardized effect size. Effective
error variance reflects the size of unsystematic variance in
the measure of interest over several measurement occasions.
It is influenced by the number of measurement occasions,
temporal spacing between these occasions, the overall duration
of the study, and the reliability of the measurement instrument
itself (Brandmaier et al., 2018). Thus, small slope variance
reliability as it was observed for several motor function
measures in this study, can reflect a lack of true variance in
change and/or low measurement precision that is influenced
by a number of study design features. To gain more insights
into the longitudinal associations between brain structural
and behavior changes, we will have to await future studies
that can exploit datasets with more measurement occasions
spanning longer time periods. It will be of interest to
compute similar measures of slope variance reliability as
in this study, to be able to compare these effects across
different study designs.

We decided to follow a strictly hypothesis-driven approach
in the present study, evaluating only selected WM fiber
tracts that have been reportedly involved in motor and
cognitive functions relevant for the motor performance tests
studied here. It is possible that an analysis approach that
evaluates the detailed properties of the tracts (i.e., by running
voxel-wise analyses) would have revealed effects that are
masked via the averaging of FA values over the entire tract.
However, this would have greatly increased the amount of
multiple comparisons that would require correcting for, thus
substantially lowering power to detect any effects of interest.
Furthermore, ROI-based analyses allow the application of
sophisticated statistical growth models to our longitudinal
data to analyze parallel change processes (which is not
feasible in the context of voxel-wise approaches, such as
TBSS, which allow only the longitudinal modeling of one
change process).

CONCLUSION AND FUTURE
DIRECTIONS

The current study features the inclusion of multiple longitudinal
assessments of both WM microstructure and motor function in
a large sample of healthy older adults. Longitudinal assessments
across multiple measurement occasions are crucial to better
understand trajectories of neural and motor function change in
old age and to unravel the effects of central nervous system
decline on motor behavior decline over time (Oschwald et al.,
2019a). We report evidence for both motor performance and
mean WM FA declines over 4 years and negative associations
with age. Interestingly, we observed declines in mean FA
of the CST only in the older participants but not in the
whole sample, which provides support for the “last in, first
out” hypothesis of aging which postulates less decline for
evolutionarily and developmentally older brain regions and
pathways. Mean FA in the FMIN, but not the SLF or CST,
correlated with motor speed at baseline. We did not find any
longitudinal associations between neural and motor functioning,
however. Overall, our results (a) provide important insights
into aging-related changes of fine motor abilities and FA in
selected WM tracts associated with motor control, (b) support
previous cross-sectional work showing that neural control of
movement in older adults also involves brain structures outside
the core motor system and (c) align with the idea that, in
healthy aging, compensatory mechanisms may be in place
and longer time delays may be needed to reveal level change
or change-change associations. More longitudinal assessments
with multiple follow-ups are required to precisely delineate the
complex dynamic change associations between neural and motor
functioning in aging research.
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