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Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health
and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory
RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the
plasma under various cardiac conditions and may serve as a potential diagnostic or
prognostic biomarker. More importantly, miR-132 in the myocardium has been
demonstrated to be a master regulator in many pathological processes of ischemic or
nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis,
apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative
stress, through downregulating target mRNA expression. Preclinical and clinical phase
1b studies have suggested antisense oligonucleotide targetingmiR-132may be a potential
therapeutic approach for ischemic or nonischemic heart failure in the future. This review
aims to summarize recent advances in the physiological and pathological functions of miR-
132 and its possible diagnostic and therapeutic potential in cardiovascular disease.
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INTRODUCTION

With the aging of the population and improved survival of atherosclerotic cardiovascular disease
(CVD), the prevalence of heart failure (HF) is increasing worldwide, imposing a huge economic
burden on society (Cook et al., 2014; Virani et al., 2020). Despite current advances in drug and device
treatment for chronic HF, especially for HF with reduced ejection fraction, the risk of death or
readmission for HF within 1 year remains as high as 15% (Crespo-Leiro et al., 2016). Therefore, it is
of great clinical relevance to find novel diagnostic and prognostic biomarkers for early diagnosis and
risk stratification and new therapeutic drugs for improving the long-term prognosis of HF.

MicroRNAs (miRNAs), first discovered in the 1990s (Lee et al., 1993), are small non-coding RNAs
of 18–25 nucleotides that post-transcriptionally regulate gene expression through binding to the
3’untranslated region (UTR) of their target messenger RNAs (mRNAs), resulting in mRNAs
degradation and/or translational repression (He and Hannon, 2004; van Rooij, 2011; Bernardo
et al., 2012). To date, about 2,300 miRNAs have been identified in the human genome, which are
critically involved in biological development, cell differentiation, apoptosis, and many other
physiological and pathological processes by regulating up to 60% of human genes at the post-
transcriptional level (Ambros, 2004; Latronico and Condorelli, 2009; Krol et al., 2010). Mounting
evidence has suggested that many specific miRNAs are up-or down-regulated in the failing human
heart (Thum et al., 2007). Among them, miR-132 is well documented to be abnormally expressed
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under various cardiac stresses and play a pivotal role in regulating
the pathological process of hypertrophy, fibrosis, apoptosis, and
angiogenesis, which are implicated in the development and
progression of ischemic heart failure, thus conferring miR-132
a potential diagnostic biomarker and therapeutic target for
ischemic cardiovascular disease.

In the present review, we will discuss the available evidence for
the use of miR-132 as diagnostic and prognostic biomarkers for
cardiovascular diseases. Next, we will discuss the possible effects
and mechanisms of action of aberrant miR-132 expression in the
cardiovascular system (e.g., cardiomyocytes, cardiac fibroblasts,
endothelial, and vascular smooth muscle cells). Finally, we will
summarize the current knowledge and future challenges about
antisense oligonucleotide inhibitors of miR-132 as promising
therapeutic drugs for heart failure.

MIR-132 BIOGENESIS AND REGULATION

MiR-132 arises from the highly conserved miR-132/212 gene
cluster arrayed in tandem on chromosome 17 in humans, with
both miRNAs having identical seed regions and possibly sharing
some common mRNA targets (Tognini and Pizzorusso, 2012;
Wanet et al., 2012). Mature miR-132 mostly follows the canonical
pathway of miRNA biogenesis. In brief, miR-132 genes are
transcribed by RNA polymerase II from intergenic, intronic,
or polycistronic loci to pri-miRNAs and processed in the
nucleus by the Drosha–DGCR8 complex to pre-miRNAs of
approximately 70 nucleotides. Mirtrons provide an alternative
source to form pre-miRNA hairpins. Pre-miRNAs are then
exported to the cytoplasm and cleaved by the Dicer–TRBP
complex to imperfect miRNA: miRNA* duplexes of 22
nucleotides. One strand of the duplex, the mature miRNA, is
loaded into the miRNA-induced silencing complex to exert post-
transcriptional negative regulation of target mRNA, while the
complementary strand is degraded (Krol et al., 2010; van Rooij
and Kauppinen, 2014). The biogenesis of miR-132 is regulated at
multiple levels including transcription, Drosha or Dicer
processing, RNA editing, argonaute modification and RNA
decay (Krol et al., 2010; Ha and Kim, 2014). It has been
demonstrated that the transcription of miR-132/212 itself is
positively and negatively controlled by cAMP-response
element binding (CREB) protein and repressor element 1
silencing transcription factor, respectively (Vo et al., 2005;
Conaco et al., 2006; Wanet et al., 2012). Judit Remenyi, et al.
further disclosed that the transcription of the miR-132/212
miRNA cluster is also strongly regulated by extracellular-
signal-regulated kinase 1/2 (ERK1/2) signaling, in part through
the downstream mitogen and stress-activated kinase and the
phosphorylation of CREB (Remenyi et al., 2010).

MIR-132-BASED BIOMARKER POTENTIAL
IN CARDIOVASCULAR DISEASE

The serum levels of miRNAs are highly stable, reproducible, and
resistant to harsh conditions such as boiling, low/high pH,

extended storage, and freeze-thaw cycles for association with
microparticles, RNA-binding protein, or high-density
lipoproteins, (Chen et al., 2008; Cortez et al., 2011; Creemers
et al., 2012). Besides, the medicines commonly used in the
cardiovascular system, including heparin, angiotensin-
converting enzyme inhibitors, beta-blockers, nitrates, statins,
aspirin, clopidogrel, and n-3 polyunsaturated fatty acids, have
been proven not to affect plasma levels of miR-132 (Masson et al.,
2018; Li et al., 2019). The above characteristics of miRNAs or
miR-132 make serum miR-132 a potential biomarker for disease
diagnosis and risk assessment (Table 1).

Diagnostic Biomarker Potential
Recently, specific expression patterns of serum miR-132 have
been documented associated with various cardiovascular diseases.
Li, et al. evaluated the dynamic changes in plasma levels of
miRNAs and cardiac troponin I (cTnI) of 35 acute myocardial
infarction (AMI) patients and 55 matched controls, and found
that the circulating level of miR-132-5p was maintained at a low
level during the early phase of AMI and negatively correlated with
cTnI. Receiver operating characteristic analysis suggested that
miR-132-5pmay serve as a novel promising diagnostic biomarker
for the early diagnosis of AMI (Li et al., 2019). Unlike the
diagnosis of AMI distinctly relying on cTnI measurement,
early diagnosis of unstable angina pectoris (UAP) remains a
major clinical challenge for no available biomarkers providing
clinically useful information. Zeller et al. identified eight
significantly lower miRNAs, including miR-132, in UAP
patients (n � 10) than in non-coronary chest pain patients
(n � 10) and healthy controls (n � 10), which facilitate the
early diagnosis of UAP. A panel of three miRNAs (miR-132,
-150, and -186) showed the highest discriminatory power, with an
area under the receiver-operating characteristic curve (AUC) of
0.91 (95% confidence interval: 0.84–0.98), compared with high-
sensitivity assayed troponin I (hsTnI) and a model including
hsTnI, B-type natriuretic peptide, C-reactive protein, and cystatin
C (4-marker combination) (AUC of 0.57 and 0.63, respectively)
(Zeller et al., 2014). Liu et al. found that the plasma levels of miR-
132 in HF patients with left ventricular ejection fraction less than
45% (n � 65) were downregulated compared with healthy
controls (n � 62) (Liu et al., 2018a). Besides, studies also
showed aberrant circulating miR-132 levels in patients without
overt cardiovascular disease. Rawal, et al. demonstrated that the
miR-132 levels in the plasma and myocardium of diabetes
patients without any known history of cardiovascular disease
were downregulated compared to healthy subjects, and associated
with decreased capillaries and arterioles and increased endothelial
cell apoptosis, which is a hallmark of microangiopathy. Thus,
monitoring the circulating levels of miR-132 could potentially
identify those individuals with preclinical diabetic cardiac
microangiopathy (Rawal et al., 2017). More recently,
Šatrauskienė et al. identified a cluster of four miRNAs
including miR-132, miR-1, miR-122, and miR-133 related to
subclinical atherosclerosis in patients with metabolic syndrome
(n � 182), suggesting a more substantial diagnostic or prognostic
value of combined miRNAs than any single miRNA
(Šatrauskienė et al., 2021). The above-mentioned studies
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suggest that a reduction in plasma miR-132 levels, either singly
used or combined with other miRNAs, may have an additive
diagnostic value for patients with diabetic cardiac
microangiopathy, unstable angina, myocardial infarction, and
heart failure. However, the sample size of these studies was
mostly small, and their conclusions still need to be further
validated by larger clinical studies in the future.

Prognostic Biomarker Potential
Cardiovascular death risk stratification for patients with coronary
artery disease is helpful to guide intensified secondary preventive
therapies. Karakas et al. first assessed the association of
circulating miRNAs levels with secondary adverse
cardiovascular events in a cohort of 1,112 patients with
documented coronary artery disease, including 430 patients
with acute coronary syndrome and 682 patients with stable
angina pectoris. During a median follow-up of 4.0 years, Cox
regression analyses adjusted for age and gender indicated that
miR-132 precisely predicted cardiovascular death (HR 2.85 per 1
SD increase, p � 0.022) in patients with acute coronary syndrome.
The C-statistics showed excellent values for prediction of
cardiovascular death (AUC for miR-132: 0.737) (Karakas et al.,
2017). Instead, another study by Masson et al. drew the opposite
results. The authors retrospectively analyzed the circulating levels
of miR-132 in 953 patients with chronic, symptomatic heart
failure from the GISSI-Heart Failure trial and showed that higher
plasma levels of miR-132 were independently associated with
increased HF severity (NYHA class and ischaemic etiology), but
consistently predicted lower rates of fatal (all-cause or
cardiovascular death) or non-fatal events (hospitalization for
cardiovascular or HF reasons). After extensive adjustment for
demographic, clinical, and echocardiographic risk factors and
baseline N-terminal brain natriuretic peptide precursor (NT-
proBNP) concentrations, miR-132 remained associated only
with HF hospitalizations (HR 0.79, 95% confidence interval
0.66–0.95, p � 0.01). Of note, The association was observed in
patients with HF of ischaemic etiology but not in those with HF of

non-ischaemic etiology (P for heterogeneity 0.08). Besides, miR-
132 improved risk prediction beyond traditional risk factors for
HF hospitalization with the continuous net reclassification index
of 0.205 (p � 0.001) (Masson et al., 2018; Panico and Condorelli,
2018). Taken together, these results suggest that the translation of
circulating miR-132 into clinical prognostic biomarkers may be
hampered by lack of consistency or restricted to certain
subgroups of patients, such as acute coronary syndrome and
ischemic heart failure.

PHYSIOLOGICAL AND PATHOLOGICAL
ROLES OF MIR-132 IN CARDIOVASCULAR
DISEASE
Through reviewing the existing literature, we’ve come to the
conclusion that miR-132 may play a crucial role in regulating
pathophysiological processes of cardiovascular disease, including
myocardial hypertrophy, autophagy, fibrosis, apoptosis,
angiogenesis, calcium handling, neuroendocrine activation,
oxidative stress, and endothelial and vascular smooth muscle
cell biology (Table 2).

Pro-Hypertrophic and Anti-Autophagic
Properties
Pathological cardiac hypertrophy is a hallmark characteristic of
heart failure of different etiology. Ucar et al. first reported that
both miR-132 and miR-212 were upregulated in cardiomyocytes
upon different hypertrophic stimuli both in vitro and in vivo, such
as angiotensin II (AngII), insulin-like growth factor-1,
phenylephrine/isoprenaline, and fetal calf serum, and were
independently sufficient to induce hypertrophy.
Cardiomyocyte-specific overexpression of miR-132/212 leads
to pathological cardiac hypertrophy, heart failure, and death in
mice. Conversely, miR-132/212-deficient mice or
pharmacological inhibition by antagomiR against miR-132/212

TABLE 1 | Circulating miR-132 as potential diagnostic and prognostic biomarkers in cardiovascular disease.

Disease Study design Source Change in
expression

vs.
controls

Clinical application References

AMI 35 AMI vs. 55 healthy controls Plasma ↓ Diagnosis Li et al. (2019)
UAP 10 UAP vs. 10 non-coronary chest pain vs. 10 healthy

controls
Serum ↓ Diagnosis Zeller et al. (2014)

HF 65 HF with LVEF ≤ 45% vs. 62 healthy controls Plasma ↓ NA Liu et al. (2018a)
DM
without
CVD

Patients with different duration of DM (1–5, 6–10,
11–15, and >15 years, n � 17, 18, 16, and 17,
respectively) vs. age- -matched non-DM

Plasma ↓ Identify diabetic cardiac microangiopathy Rawal et al. (2017)

CAD 1,112 CAD including 430 ACS and 682 SAP, 4 years
follow-up

Serum NA Higher miR-132 levels predict CV death in ACS
patients

Karakas et al.
(2017)

CHF 953 symptomatic CHF from GISSI-HF trial,
46.2 months follow-up

Plasma NA Higher miR-132 levels were associated with severe
HF symptom, but predicted lower risk of HF
readmission

Panico and
Condorelli (2018)

AMI, acute myocardial infarction; UAP, unstable angina pectoris; HF, heart failure; NA, not applicable; DM, diabetes mellitus; CVD, cardiovascular disease; CAD, coronary artery disease;
ACS, acute coronary syndrome; SAP, stable angina pectoris; CV, cardiovascular; CHF, chronic heart failure.
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rescued pressure overload-induced hypertrophy and prevented
heart failure (Ucar et al., 2012). Mechanistically, it was proved
that the miR-132/212 family regulates both cardiac hypertrophy
and cardiomyocyte autophagy by translationally repressing
forkhead box protein O3(FoxO3), a powerful anti-
hypertrophic and pro-autophagic transcription factor in
cardiomyocytes (Ni et al., 2006; Sengupta et al., 2009;
Ronnebaum and Patterson, 2010), leading to hyperactivation
of pro-hypertrophic calcineurin/nuclear factor of activated
T-cells signaling and impaired autophagic response upon
starvation. In line with these findings, Eskildsen et al.
demonstrated that the expression of miR-132 was significantly
increased in the heart, aortic wall, and kidney, as well as in the
plasma of rats with hypertension and cardiac hypertrophy
induced by 10 days of AngII infusion (Eskildsen et al., 2013).
Narasimhan et al. further revealed that the increased
cardiomyocyte expression of miR-132 induced by
isoproterenol was related to increased phosphorylation of
CREB through activation of the mitogen-activated protein
kinase (MAPK)/ERK pathway (Narasimhan et al., 2018).

Profibrotic Potential
Cardiac fibrosis, characterized by the deposition of excessive
extracellular matrix mainly derived from fibroblasts, leads to
stiffness of the heart and compromised heart contractility. It is
well documented that miR-132/212 functions as master signaling
switches to fine-tune the AngII actions in cardiac fibroblasts
(CFs). With the global array analysis of AngII-induced miRNA
expression, Jeppesen et al. identified five miRNAs, including the
miR-132/212 family in primary cultures of CFs that were
upregulated by AngII through activation of Gαq/ERK1/2-
dependent signaling (Jeppesen et al., 2011). Eskildsen et al.
further undertook a detailed analysis of miR-132/212
molecular targets to unravel the role of miR-132 and miR-212
in AngII signaling networks in CFs and found that miR-132/212
overexpression increased fibroblast cell size and affected several
hundred genes expression, including a wide panel of receptors,
signaling molecules and transcription factors (Eskildsen et al.,
2015). Jiang et al. revealed that the levels of miR-132 in CFs were
upregulated by AngII and identified matrix metalloproteinase-9
as the target of miR-132 (Jiang et al., 2013). Recently, Schimmel

TABLE 2 | MiR-132 targets and functions in pathophysiologic process of cardiovascular disease.

Functions Injury model
or mode of action

Upregulation/
downregulation

Target molecule Target pathway References

Pro-hypertrophy and anti-
autophagy

In vivo AngII, PE/ISO, and TCA Upregulation FoxO3 Calcineurin/NAFT↑ Ucar et al. (2012)
Eskildsen et al.
(2013)

Profibrosis In vitro AngII Upregulation MMP-9, FoxO3 NA Jiang et al. (2013)
Schimmel et al.
(2021)

Antifibrosis In vivo MI, in vitro AngII Upregulation PTEN PI3K/Akt↓ Wang et al. (2020)
In vivo DCM Downregulation PTEN PI3K/Akt↑ Zhang et al.

(2019)
Antiapoptosis In vitro miR-212/132-Transgenic

H9c2
Upregulation FoxO3 PI3K/Akt↑ Ucar et al. (2012)

In vivo MI Downregulation NA Interleukin-1β↑ Zhao et al. (2020)
Proangiogenesis In vivoMI and hind-limb ischaemia Upregulation p120RasGAP,

Spred1
Ras-MAPK↑ Lei et al. (2015)

Katare et al.
(2011)

Impaired calcium handling End-stage heart failure patients of
different etiologies

Upregulation SERCA2 NA Lei et al. (2021)

In vivo I/R injury Upregulation NCX1 NA Hong et al. (2015)
Interaction with AVP synthesis Intravenous antagomir-132 Downregulation MeCP2 AVP synthesis↓ Bijkerk et al.

(2018)
Redox regulation In vivo and in vitro I/R injury Upregulation SIRT1 PGC-1α/NRF2↓ Zhou et al. (2020)
Induction of a Pro-inflammatory
Phenotype in EC

In vitro TNF-α-treated EC Upregulation SIRT1 SREBP-1c Metabolic
Pathway↓

Zhang et al.
(2014)

In vitro ox-LDL-treated EC Upregulation MGP JNK↑ Fu et al. (2018)
NF-κB↑

Modulation of VSMC behavior In vivo catheter injury Upregulation Lrrfip1 Erk1/2 phosphorylation↑ Choe et al. (2013)
In vivo and in vitro DM Upregulation E2F5 NA Xu et al. (2019)
In vivo and in vitro AngII Upregulation PTEN MCP-1↑ Jin et al. (2012)

AngII, angiotensin; PE/ISO, phenylephrine/isoprenaline; TAC, transaortic constriction; FoxO3, forkhead box protein O3; NAFT, nuclear factor of activated T-cells; MMP-9, matrix
metalloproteinase-9; PTEN, phosphatase and tensin homolog; PI3K, phosphateidylinositol3-kinase; Akt, protein kinase B; DCM, dilated cardiomyopathy; TG, transgenic; IL-1β,
interleukin-1β; p120RasGAP, p120 Ras GTPase-activating protein; Spred1, Sprouty-related Ena/VASP homology-1 domain-containing protein1; MAPK, mitogen-activated protein
kinase; SERCA2, sarcoplasmic reticulum Ca(2+)-ATPase; I/R, ischemia/reperfusion; NCX1, Na(+)-Ca(2+) exchanger 1; MeCP2, methyl-CpG-binding protein 2; PGC-1α, proliferator-
activated receptor-gamma coactivator-1α; NRF2, nuclear factor erythroid 2-related factor 2; EC, endothelial; TNF-α, tumor necrosis factor-α; SIRT1, silent information regulator 1; SREBP-
1c, sterol regulatory element binding protein-1c; ox-LDL, oxidized low-density lipoprotein; MGP, matrix Gla protein; JNK, c-Jun N-terminal kinase; NF-κB, nuclear factor Kappa B; VSMC,
Vascular smooth muscle cell; LRRFIP1, leucine-rich repeat (in Flightless 1) interacting protein-1; Erk1/2, extracellular-signal-regulated kinase 1/2; DM, diabetes millitus; E2F5, E2F
transcription factor 5; MCP-1, monocyte chemotaxis protein-1.
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et al. have further confirmed the profibrotic nature of miR-132
through enhancing proliferation and migration activity of
primary human cardiac fibroblasts, which was possibly
attributed to autophagy repression through targeting FoxO3
(Schimmel et al., 2021). However, there also exist some other
studies indicating an opposite view that miR-132 levels are down-
regulated in the heart of heart failure rats and Ang-II treated CFs
and upregulation of miR-132 exerts inhibitory effects on cardiac
fibrosis in MI-induced heart failure rats, doxorubicin-induced
dilated cardiomyopathy rat, and canine model of atrial fibrillation
(Qiao et al., 2017; Zhang et al., 2019; Wang et al., 2020).

Prosurvival Action on Cardiomyocytes
Apoptosis in response to cardiac stress, such as myocardial
infarction, contributes to an irreversible loss of cardiomyocytes
and subsequent adverse remodeling. It is well demonstrated that
miR-132/212 plays an anti-apoptotic role by activating the
phosphatidylinositol-3 kinase/protein kinase B pathway in
cardiomyocytes (Ucar et al., 2012). Overexpression of miR-132
in cardiomyocytes in vitro contributes to enhanced resistance to
hypoxia, hydrogen peroxide, and hypoxia and glucose
deprivation-induced cell death (Liu et al., 2018a; Lei et al.,
2020a; Zhang et al., 2020). Besides, in vivo studies have shown
that miR-132 was downregulated in cardiomyocytes fromMI rats
compared to sham-operated rats, and overexpression of miR-132
mitigated cardiomyocyte apoptosis and myocardial remodeling,
and this effect may be achieved in part through inhibition of
interleukin-1β (Zhao et al., 2020). Chen et al. also showed that
miR-132 gradually decreased within 7 days post-MI, and the
infarct size in miR-132 knockout (KO) mice was larger than
that in wild-type mice at postoperative day 14 and day 28, and the
cardiac function was worse. MiR-132 mimics at a dose of
16 mg/kg improved cardiac function and reduced infarct size
in mice 28 days after MI modeling (Chen et al., 2019). However,
Lei et al. reported that the expression of miR-132 initially
increased at 12 h post-MI, then decreased at 24 h, but
increased nonsignificantly again in later phases within
1 month post-MI. Although miR-132 loss enhanced cardiac
contractile function in mice with MI, it also attenuated
cardiomyocytes survival and angiogenesis, ultimately not
improving overall cardiac performance or fibrosis remodeling
4 weeks post-MI compared with wild-type mice (Lei et al., 2020a).

Angiogenesis Regulation
Angiogenesis is essential for maintaining oxygen and nutrients
supplies to the myocardial tissue, and angiogenesis impairment is
involved in the pathogenesis of ischemic heart disease.
Accumulating evidence suggests that miRNAs play key roles
in regulating vascular endothelium response to angiogenic
stimuli, serving as a promising therapeutic approach for
ischemic heart diseases involving insufficient vasculature (Fish
and Srivastava, 2009). MiR-132 is a proangiogenic miRNA that is
highly expressed in endothelial cells and in atherosclerotic lesions
in ApoE−/− mice (Xiong et al., 2015). Upon angiogenic
stimulation, such as hypoxia (Burek et al., 2019) or loss of
functional von Hippel–Lindau gene (Lei et al., 2020b), the
miR-132 levels are increased and function as an angiogenic

switch by targeting p120 Ras GTPase-activating protein
(p120RasGAP, also named RASA1) and Spred1 in the
endothelium and thereby leading to Ras-MAPK pathway
activation and induction of neovascularization (Anand et al.,
2010; Lei et al., 2015). A time-course study in type 2 diabetic
mouse model revealed that the down-regulation of miR-132
preceded the development of microangiopathy in the diabetic
heart, and therapeutic normalization of miR-132 in ex vivo
diabetic aortic rings and in vitro high glucose-treated human
umbilical vein endothelial cells restored their angiogenic potential
(Rawal et al., 2017). Moreover, it was documented that miR-132/
212 KO mice showing impaired arteriogenic responses after
ischemia in the hind limbs compared with wild-type mice (Lei
et al., 2015), while intracellular delivery of miR-132 via
biodegradable nanoparticles improved endothelial graft
survival and blood perfusion after ischemic injury (Gomes
et al., 2013).

MiR-132 not only regulates the target gene in situ but also acts
as a paracrine mediator in affecting angiogenesis at distant sites.
Katare et al. reported that transplantation of human pericyte
progenitor cells exerted proangiogenic and antifibrotic effects in
the infarcted heart through secretion of miR-132 and targeted
inhibition of p120RasGAP and methyl-CpG-binding protein 2
(MeCP2), respectively, whereas miR-132 KO in pericytes
abrogated these beneficial effects (Katare et al., 2011).
Exosomes are effective vectors delivering miR-132 efficiently to
the tissue of interest to induce therapeutic angiogenesis for
ischemic heart disease (Kir et al., 2018; Moghiman et al.,
2021). Barile et al. showed that infarcted hearts injected with
miR-132 and miR-210-enriched exosomes from human cardiac
progenitor cells exhibited less cardiomyocyte apoptosis,
enhanced angiogenesis, and improved ejection fraction
compared with those injected with control medium (Barile
et al., 2014). Ma et al. also confirmed that delivery of miR-132
via mesenchymal stem cell-derived exosomes in the ischemic
hearts of mice markedly enhanced the neovascularization in the
peri-infarct zone and preserved heart functions (Ma et al., 2018).

In contrast to the above evidence suggesting that miR-132 has
a proangiogenic effect, some studies have concluded otherwise
that miR-132 has no major effects on angiogenesis or cardiac
capillary densities in vivo (Ucar et al., 2012; Kumarswamy et al.,
2014), and even in a pressure overload-induced porcine
cardiomyopathy model, antagomiR targeting miR-132
improves capillary density (Hinkel et al., 2021). Therefore,
there is still no consistent conclusion on the effect of miR-132
on angiogenesis, which needs to be further clarified in future
studies.

Impaired Calcium Handling
Cyclic changes of intracellular calcium concentration are
involved in regulating the excitation-contraction coupling of
cardiomyocytes (Bers, 2002). It is well known that cardiac
sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) plays a
crucial role in modulating cardiac contraction and relaxation
by regulating intracellular calcium processing, and attenuated
SERCA2 expression or activity leads to impaired calcium
handling associated with contractile dysfunction and heart
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failure progression (Frank et al., 2003). Wahlquist et al. first
documented that miR-132/212 can suppress green fluorescent
protein expression in the SERCA2 3 ‘-UTR reporter, indicating
miR-132/212 may be a regulator of SERCA2 (Wahlquist et al.,
2014). Later, Foinquinos et al. demonstrated that overexpression
of miR-132 in cardiomyocytes compromised contractile kinetics,
which could be normalized by antimiR-132 treatment by, at least
in part, restoring SERCA2 expression (Foinquinos et al., 2020).
Lei et al. showed that miR-132/212 overexpression prolongs
calcium decay in isolated neonatal rat cardiomyocytes, whereas
cardiomyocytes isolated from miR-132/212 KO mice display
enhanced contractility in comparison to wild type controls.
The authors also found upregulation of miR-132/212 and
reduced SERCA2 protein expression in end-stage heart failure
patients of different etiologies, including dilated cardiomyopathy,
hypertrophic cardiomyopathy, and ischemic cardiomyopathy
(Lei et al., 2021). Besides, it was also suggested that elevated
miR-132/212 can lower SERCA2 activity indirectly via inhibition
of PTEN, which is a direct target of miR-132/212 and loss of
function in cardiomyocytes leading to a dramatic decrease in
contractility (Crackower et al., 2002; Ruan et al., 2009). Another
study by Hong et al. showed that delivery of miR-132 blunted
intracellular Ca(2+) overload through targeting the Na(+)-
Ca(2+) exchanger 1, protecting cardiomyocytes against
hypoxia-induced apoptosis (Hong et al., 2015).

Interaction With Neuroendocrine Activation
AngII controls blood pressure and adverse ventricular
remodeling in the pathological process of heart failure through
activation of angiotensin II type 1 receptor (AT1R). It has been
reported that AngII upregulates the expression of miR-132 by
activating the Gαq/ERK1/2 pathway while AT1R blockers reduce
plasma levels of miR-132 in human patients (Eskildsen et al.,
2013). On the other hand, miR-132 fine-tunes AngII
responsiveness by translationally repressing AT1R expression
by directly binding to sequence recognition sites in the coding
region of human AT1R mRNA (Elton et al., 2008). In addition,
animal studies have shown that angiotensin-converting enzyme
inhibitor ramipril for the treatment of acute kidney injury can
simultaneously inhibit cardiac hypertrophy, fibrosis, and
apoptosis, and these cardioprotective effects are partially
related to the attenuated miR-132 expression (Rana et al.,
2015). Arginine vasopressin (AVP) has been recognized as an
important contributor to heart failure development through
water retention, hyponatremia, and arterial vasoconstriction
(Iovino et al., 2018). Bijkerk et al. identified miR-132 as the
first miRNA maintaining the water and osmotic balance in the
body by regulating the hypothalamic AVP gene mRNA
expression. Specifically, miR-132 can promote AVP synthesis
and release into blood by targeting MeCP2 expression, which acts
on renal aquaporin-2 and promotes water reabsorption. MiR-132
silencing by antagomiR in mice causes severe weight loss due to
acute diuresis and increased plasma osmolality, alone with
reduced AVP production and apical aquaporin-2 expression
(Bijkerk et al., 2018). Thus, miR-132 antagomiR may be of
therapeutic value in acquired hypervolemic/hyponatremic
conditions, such as congestive heart failure.

Redox Regulation
Nuclear factor erythroid 2-related factor 2 (NRF2), is a basic
leucine zipper protein that promotes an array of antioxidant
genes and phase II detoxifying enzymes expression by binding to
antioxidant response elements, playing an important role in
maintaining the normal function of cardiomyocytes and
cardiac fibroblasts and preventing maladaptive cardiac
remodeling and heart failure (Li et al., 2009; Chen and
Maltagliati, 2018). Zhou et al. showed that inhibition of miR-
132 activated peroxisome proliferator-activated receptor-gamma
coactivator-1α/NRF2 signaling by targeting silent information
regulator 1 (SIRT1), leading to inhibition of oxidative stress and
the expression of pyrotic related proteins nucleotide-bound
oligomeric domain-like receptor proteins 3, caspase-1, and
interleukin-1, ultimately ameliorating myocardial ischemia-
reperfusion injury (Zhou et al., 2020). Consistently, Hinkel
et al. found that antimiR-132 treatment increased myocardial
NRF2 expression compared to untreated control in a porcine
model of pressure-overload-induced heart failure (Hinkel et al.,
2021). However, some studies have suggested the opposite results
that overexpression of miRNA-132 inhibited oxidative stress
induced by H2O2 in H9C2 cells (Liu et al., 2018b), improving
cell viability and apoptosis in vitro and alleviating ischemia/
reperfusion-induced AMI in vivo (Su et al., 2020).

Endothelium and Vascular Smooth Muscle
Cells Behavior Modulation
Endothelial dysfunction is supposed to be the initial step toward
atherosclerosis development (Gimbrone and García-Cardeña,
2016). Recent studies have shown that miR-132 may be
involved in the process of atherosclerosis and ischemic heart
disease by adversely affecting the biological behavior of vascular
endothelium. Zhang et al. showed that miR-132 induces pro-
inflammatory processes of vascular endothelial inflammation
through negatively regulating the expression of SIRT1. Besides,
miR-132 promoted apoptosis of HUVECs induced by tumor
necrosis factor-α and inhibited its proliferation, viability, and
migration (Zhang et al., 2014). Similarly, Fu et al. documented
that miR-132 was upregulated in HUVECs under oxidized low-
density lipoprotein treatment, which could further decrease the
expression of matrix Gla protein (MGP), resulting in increased
migration and adhesion-related molecule release through
activation of the c-Jun N-terminal kinase and nuclear factor
Kappa B pathways (Fu et al., 2018).

Vascular smooth muscle cells (VSMCs) are essential
components of the vascular wall, and their abnormal behaviors
contribute to various vascular diseases such as atherosclerosis,
restenosis, and hypertension (Bochaton-Piallat and Gabbiani,
2005). MiR-132 is abundantly expressed in VSMCs in vivo
and regulates the biological behavior of VSMCs in response to
various types of stress (Elton et al., 2008). Choe et al.
demonstrated that miR-132 was upregulated in the rat carotid
artery after catheter injury, facilitating to prevent neointimal
hyperplasia by regulating VSMCs proliferation, differentiation,
and migration. Transfection of a miR-132 mimic significantly
inhibited the proliferation and migration of VSMCs and induced
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VSMCs differentiation and apoptosis through downregulation of
the expression of target LRRFIP1 and phosphorylation of ERK1/2
(Choe et al., 2013). Consistently, Xu et al. reported that the
expression of miR-132 was significantly decreased and E2F
transcription factor 5 (E2F5) upregulated in high glucose-
treated VSMCs or those obtained from diabetic rats,
Upregulation of miR-132 significantly inhibited the
proliferation and migration of diabetic rat or high-glucose-
treated VSMCs by targeting E2F5 (Xu et al., 2019). Other
studies have suggested that miR-132 may promote a
phenotypic switch of VSMCs that is conducive to
atherosclerosis. Wen Jin, et al. analyzed the miRNAs profiles
regulated by Ang II in VSMCs by using a small RNA sequencing
method and documented that the miR-132/212 cluster is
upregulated by Ang II in a time- and dose-dependent manner,
resulting in increased monocyte chemotaxis protein-1 (MCP-1)
expression at least in part through suppression of phosphatase
and tensin homolog (PTEN) in rat VSMCs. Notably, the aorta of
Ang II-infused mice showed similar upregulation of miR-132 and
MCP-1, supporting an in vivo relevance (Jin et al., 2012). Chen
et al. reported that over-expression of miR-132 in VSMCs led to
an attenuation of cilostazol-induced VSMCs differentiation via
inhibiting PTEN expression, indicating the adverse effects of
miR-132 on VSMCs differentiation (Chen et al., 2018).

MIR-132-BASED THERAPEUTIC
POTENTIAL IN CARDIOVASCULAR
DISEASE
There are two main types of miR-132-based therapeutics, one is
to suppress abnormally upregulated miR-132 through miR-132
inhibition, and the other is to restore attenuated miR-132
through miR-132 supplement. For this purpose, many
strategies have been developed to manipulate miR-132
activity in vivo, including antisense oligonucleotides (ASOs)
with different chemical modifications for miR-132 inhibition
and double-stranded miR-132 mimics for miR-132 restoration.
Besides, numerous miR-132 delivery tools have also been
developed and include the use of a cholesterol moiety,
miRNA sponges, liposomes, adeno-associated viruses,
exosomes, and nanoparticles (Chistiakov et al., 2012;
Bernardo et al., 2015).

Therapeutic Potential of miR-132 Inhibition
in Cardiovascular Disease
CDR132L is a first-in-class, optimized, synthetic locked nucleic
acid (LNA) antisense oligonucleotide inhibitor of miR-132
(antimiR-132) (Lu and Thum, 2019; Foinquinos et al., 2020).
The inclusion of LNA nucleotides in the antisense oligonucleotide
increases both stability and thermodynamic strength of duplex
formation with complementary target mRNA (Elmén et al., 2008)
Foinquinos et al. first tested the efficacy of antimiR-132 in miR-
132/212 transgenic mice. The miR-132/212 transgenic mice
showed severe left ventricular hypertrophy, decreased ejection
fraction and cardiac dilatation. Pharmacologic inhibition of miR-

132 by intravenous injection of antimiR-132 reduced the
expression level of miR-132 in the myocardium and restored
the expression level of FoxO3, eventually reducing cardiac mass
and ventricular dilatation while improving ejection fraction
(Foinquinos et al., 2020). In a blind, randomized, placebo-
controlled study, Batkai et al. administered monthly
intravenous CDR132L to chronic heart failure pigs 1 month
after myocardial infarction for 3 or 5 months and assessed the
efficacy with magnetic resonance imaging (MRI), hemodynamic,
and biomarker tests. The study found that CDR132L treatment
achieved sufficient tissue exposure to significantly reverse cardiac
remodeling, as evidenced by reduced left ventricular end-systolic
volume and left atrial volume on MRI scan and attenuated
myocardial interstitial fibrosis and cardiomyocyte size assessed
by histology, resulting in improved LVEF by 7.96 and 7.14% as
measured by MRI after 3 and 5 months of treatment, respectively,
as compared with placebo. Besides, CDR132L also ameliorated
diastolic function as evidenced by decreased end-diastolic
pressure–volume relationship and minimum rate of change of
left ventricular pressure determined by hemodynamic assay, and
reduced the plasma level of NT-proBNP (Batkai et al., 2021).
Recently, Hinkel et al. established a novel preclinical porcine
model of nonischemic pressure-overload hypertrophy by placing
a reduction stent in the descending thoracic aorta and assessed
the efficacy of intracoronary administration of antimiR-132 at the
time of stent implantation and 4 weeks later, finding that
antimiR-132 reduces cardiomyocyte cross-sectional area,
retards fibrosis, and improves capillary density and LV
ejection fraction (antimiR-132 vs. untreated control, 48.9 ±
1.0% vs. 36.1 ± 1.7%, respectively at the 8-week time point
(Hinkel et al., 2021; Robson, 2021). The results of Hinkel et al.
suggest that CDR132L has potential clinical application in
hypertrophic heart disease caused by non-ischemic etiologies,
such as aortic stenosis or systemic hypertension (Condorelli and
Ferrante, 2021). A first-in-human Phase 1b randomized, double-
blind, placebo-controlled clinical trial was conducted to evaluate
the safety, pharmacokinetic characteristics, and efficacy of
CDR132L in patients with chronic ischemic heart failure
receiving standard treatment. A total of 28 patients with LVEF
of 30–50% or NT-proBNP ≥ 125 ng/L, age of 30–80 years old, and
BMI of 18–28 kg/m2 were included in this study and randomly
assigned at 5:2 to CDR132L group (20 cases in total, five patients
in each cohort receiving 0.32, 1, 3, and 10 mg/kg body weight of
CDR132L, respectively) and placebo group (eight cases, 0.9%
saline). After a 6-week screening period, subjects were given two
doses of CDR132L or placebo by intravenous injection on day 1
and day 28, respectively, and the trial ended on day 112. In this
study, CDR132L was safe and well-tolerated. CDR132L treatment
resulted in a sustained and sharp decrease in plasma miR-132
levels in a dose-dependent manner. For patients with ischemic
chronic heart failure receiving standard treatment, CDR132L can
further reduce the median level of NT-proBNP and narrow the
QRS wave relative to placebo, and improve nonsignificantly
cardiac fibrosis biomarkers as well (Täubel et al., 2021). This
is the first human study to target miR-132 and represents a
milestone in the field of miRNA therapy for cardiovascular
disease. While it is too early to determine whether this
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strategy will be effective in humans, the study’s evidence of the
safety and efficacy of CDR132L provides great encouragement for
further research in patients with heart failure (Baker and Giacca,
2021; Nicholls, 2021).

Therapeutic Potential of miR-132
Overexpression in Cardiovascular Disease
Given that the majority of current evidence suggests that miR-132
overexpression is involved in cardiac pathology, most of the miR-
132-based therapies mainly focused on miR-132 inhibition, and
only a few studies have explored the possible cardiac benefits of
miR-132 upregulation. Gupta et al. showed that miR-132
overexpression can prevent cardiac toxicity caused by
chemotherapeutic drugs. The authors established a mouse
model of doxorubicin-induced cardiotoxicity and found that
adeno-associated virus (AAV)9-mediated overexpression of
miR-212/132 can counteract doxorubicin-induced
cardiotoxicity, increase left ventricular mass and wall
thickness, decrease doxorubicin-mediated apoptosis, and
ultimately improve ejection fraction, which is partly related to
the inhibition of target storage-inducing transmembrane protein
2 (Gupta et al., 2019). Jover et al. first reported that miR-132 was
constitutively expressed by adventitial pericytes (APCs) and
upregulated following high phosphate stimulation, playing a
key role in the human APCs resistance to calcification through
downregulating several target genes relevant to osteogenic
differentiation. Treatment of swine cardiac valves with APCs-
derived conditioned medium conferred them with resistance to
high phosphate-induced osteogenesis, with this effect being
negated when using the medium of miR-132-silenced APCs
(Jover et al., 2021).

CLINICAL PERSPECTIVES AND FUTURE
CHALLENGES
Challenges of Plasma miR-132 Level as a
Biomarker
Despite a few small clinical studies have suggested that plasma
levels of miR-132 are potential diagnostic or prognostic
biomarkers for cardiovascular diseases, several issues need to
be addressed before clinical application, such as whether miR-132
levels are affected by food and drugs, and whether they are
affected by common comorbidities such as old age, atrial
fibrillation, liver or renal insufficiency, and anemia. Does miR-
132 provide additional value beyond current traditional risk
factors? What is the optimal threshold for diagnosing or
indicating a poor prognosis of cardiovascular disease?

Who Might Benefit From miR-132
Inhibition?
The current evidence supporting miR-132 inhibition as a
potential therapeutic approach for heart failure is mainly
derived from several animal models with experimental MI and
a phase 1b clinical study demonstrating a further reduction in the

level of NTpro-BNP in patients with ischemic heart failure
receiving standard treatment. Whether miR-132 inhibition can
reduce heart failure hospitalization or cardiovascular death in
patients with ischemic heart failure and improve cardiac
remodeling in patients with non-ischemic heart failure
remains to be addressed in future studies.

What is the Optimal Therapeutic Strategy
for miR-132 Inhibition?
Although antimiR-132 targeting miR-132 administered to large
animals post-MI has been proven effective in alleviating cardiac
remodeling, improving cardiac systolic and diastolic functions,
and reducing NT-proBNP (Batkai et al., 2021), knockdown of
miR-132/212 has been documented to have no long-term
beneficial effect on cardiac function after permanent coronary
ligation in mice (Lei et al., 2020a). Besides, a circular miRNA
sponge targeting the miR-132/212 family has been recently
constructed to effectively attenuate pressure overload-induced
cardiac hypertrophy in vivo and show greater in vitro efficacy
than the current gold standard antagomiRs in inhibiting miRNA
function (Lavenniah et al., 2020). Thus, the optimal therapeutic
strategy for miR-132 silencing in the treatment of myocardial
infarction remains unknown and needs to be further clarified.

Is Systemic Delivery of AntimiR-132 Safe?
Although the short-term safety of systemic administration of
antimiR-132 has been preliminarily confirmed in large animal
models and clinical phase 1b study (Foinquinos et al., 2020;
Täubel et al., 2021), the concern of long-term off-target effects of
systemic delivery still needs to be addressed with caution, given
the fact that miR-132 is widely expressed and exhibits different
functions in different organs or cell types. For example, while
inhibiting cardiac hypertrophy, systemic delivery of antimiR-132
may simultaneously increase the risk of neurodegenerative
diseases or delay wound healing (Li et al., 2015; El Fatimy
et al., 2018). In addition, the high stability of antagomiRs and
LNA can also be a double-edged sword, increasing their side
effects in other organs (Kwekkeboom et al., 1979). Thus, further
studies are required to comprehensively evaluate the long-term
safety of systemic delivery of antimiR-132.

Cell-Specific Delivery of AntimiR-132 May
Hold Promise
To circumvent issues of possible off-target effect, high costs, and
low efficacy of systemic delivery, cell-specific targeted delivery has
become a research hotspot in recent years (Kwekkeboom et al.,
1979; Boon and Dimmeler, 2015). Several viral and non-viral
vector-based delivery systems, including adenoviral, liposomal,
polymer-based nanoparticles, and natural microvesicles/
exosomes, have hence been developed to deliver miRNAs
inhibitor or mimic specifically and efficiently to the tissue of
interest (Kir et al., 2018). It is supposed that the cell-specific
delivery of antimiR-132 may likely replace current systemic
delivery in the future.
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CONCLUSION

Several clinical studies have suggested that decreased plasma
miR-132 levels have additional diagnostic value in acute
myocardial infarction, unstable angina, heart failure, and even
subclinical atherosclerosis, and may be associated with poor
prognosis in patients with heart failure. However, most of
these studies have small sample sizes or are retrospective,
the reliability of their conclusions needs to be further
confirmed by other large prospective studies. In addition,
many preclinical studies have documented that the expression
of miR-132 in the myocardium is up-regulated under various
cardiac stresses and drives some basic pathological processes
of heart failure, such as cardiac hypertrophy, fibrosis, and
impaired calcium handling, through downregulation of
FOXO3A, SERCA2a, PTEN, SIRT1 and other target gene
expression, while targeted inhibition of miR-132 by antimiR-
132 attenuates cardiac hypertrophy and improves cardiac
function (Figure 1). It is encouraging that antimiR-132 has
also been demonstrated for the first time in phase 1b clinical

trial to further reduce NT-proBNP in patients with ischemic heart
failure receiving standard treatment and that the drug is safe
and well-tolerated. In the future, more evidence needs to be
accumulated on its indications, optimal therapeutic strategy and
delivery tool, and long-term safety before translation into clinical
practice as a novel anti-heart failure drug.
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