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Summary 
We evaluated the expression of mouse mammary tumor proviral (MMTV) transcripts during 
B cell ontogeny and compared levels of RNA in B lymphocytes and B cell lines with levels in 
other cells of the hematopoietic lineage and in a mammary cell line. We demonstrate that MMTV 
transcripts are expressed as early as the pro-B cell stage in ontogeny and are expressed at basal 
constitutive levels throughout most of the B cell developmental pathway. The level of MMTV 
expression in B cells is similar to constitutive levels in mammary tissues and two to three orders 
of magnitude greater than in activated T cells. Levels of MMTV transcripts in B cells are not 
solely due to positional effects. Transient transfection assays showed that MMTV upregulation 
resulted from transcriptional activation of the viral LTR, indicating that there are specific and 
inducible transcription factors that regulate MMTV expression in B cells. MMTV transcripts 
could not be upregulated in pre-B cell lines but could be induced in some mature B cell lines. 
There was a correlation between the ability to stimulate B cells to secrete antibody and the ability 
to induce upregulated MMTV expression. Evidence is presented that suggests that the principal 
transcription factors involved in MMTV expression do not include the B cell factors OTF-2 or 
NF-xB, but rather are likely to be novel factors that are induced during differentiation to antibody 
secretion. A hypothesis for why mammary tumor viruses are well adapted for expression in cells 
of the B lineage is proposed, and the implications of this for the documented influence of MMTV 
gene products on the T cell repertoire are discussed. 

M ouse mammary tumor virus (MMTV) 1 is a type B 
morphology retrovirus that can be transmitted either 

exogenously as a retroviral particle or endogenously via the 
germ line as an integrated provirus (1). More than 20 MMTV 
proviruses have been described, 3-6 of which are found in 
any given inbred strain of mice (2, 3). Two of these, Mtv-1 
and Mtv-2, are associated with mammary adenocarcinomas 
(1, 3). The transcriptional regulation of MMTV in mam- 
mary epithelial cells has been extensively studied, and has been 
found to be absolutely dependent on the binding of hormones 
to their respective receptors, which allows receptor translo- 
cation to the nucleus (4). The binding of these receptors to 
defined sequences within the glucocorticoid response element 
(GRE) of the U3 region of the viral long terminal repeat 
(LTtL) (5) alters the chromatin structure, allowing initiation 
of transcription (6). Other transcription factors, including 
NF-1 (7, 8) and OTF-1 (9), can then bind to their respective 
sites and activate high levels of MMTV transcription. The 
GRE also contains the sequences that contribute to the tissue 

1Abbreviations used in this paper: GR, glucocorticoid receptor; GKE, 
glucocorticoid response element; LTR, long terminal repeat; MMTV, mouse 
mammary tumor (pro)virus; RSV, Rous Sarcoma virus. 

specificity of proviral expression (reviewed in reference 10). 
While several laboratories have shown that constitutive, high 
level expression of MMTV transcripts can be found in var- 
ious tumor cell lines that are not hormonally stimulated 
(11-15), all of these cells show evidence of proviral amplification 
and/or the expressed transcripts contain deletions or substi- 
tutions within the U3 region of the LTR. The region al- 
tered in the amplified proviruses is thought to play a role 
in conferring tissue specificity by negative regulation (14). 

We (16-18) and others (19, 20) have demonstrated that 
MMTV can be expressed in at least some B cell lines and 
in activated normal B cells. We have identified three novel 
features which distinguish the mechanisms regulating MMTV 
expression in B cells from those regulating its expression in 
non-mammary tumor cells and in mammary epithelium. First, 
the expression of MMTV transcripts in B cells does not re- 
sult from proviral amplification or from alterations within 
the LTR (16, 17). Sequence analysis revealed that the U3 re- 
gion of the LTR in expressed transcripts contains neither de- 
letions nor insertions, and the known regulatory sites, in- 
cluding the GRE, are not disrupted (17). Second, both 
constitutive levels of MMTV transcripts and the increased 
levels induced upon LPS stimulation are not dependent on 
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binding of glucocorticoid receptor (GR) to sequences in the 
GRE (18). Third, MMTV expression is not limited to the 
proviral loci that are known to be expressed in mammary 
tissue, including Mtv-1 and Mtv-2 (16, 17). Together, these 
data suggest that B cells express normal cellular factors which 
regulate MMTV expression in a novel way, independent of 
GR-GRE interactions. 

Several laboratories have recently demonstrated a close 
genetic linkage between a number of endogenous MMTV 
loci and the ability of a given mouse strain to express super- 
antigens or cotolerogens that are responsible for the activa- 
tion or deletion of T cells expressing receptors with a partic- 
ular VB phenotype (21-24). We have directly demonstrated 
that at least three of the endogenous proviral loci (Mtv-6, 
Mtv-8, and Mtv-9) encode superantigens (25). There is also 
direct evidence that viral DNA from the infectious forms of 
MMTV encode such deleting elements (26-28). In light of 
these observations, it is clearly important to gain a more thor- 
ough understanding of the regulation of MMTV expression 
in B cells, and to determine if other cells of the hematopoi- 
etic lineage also are capable of expressing MMTV gene 
products. 

In this report, we show that MMTV transcripts are pri- 
marily, but not exclusively, detected in cells of the B lineage, 
and that constitutive low levels of MMTV transcripts are ex- 
pressed from the earliest stage of B cell ontogeny examined, 
the pro-B cell stage. Our data also demonstrate that the ability 
to stimulate increased levels of MMTV transcripts in B cells 
is due to transcriptional activation controlled by sequences 
within the proviral LTR.. Finally, we demonstrate that the 
upregulated expression of MMTV above basal constitutive 
levels is only observed in mature B cells that are capable of 
differentiating into antibody-secreting cells. The implication 
of these results for the expression of MMTV in cells of the 
B lineage, and the effects of MMTV gene products on the 
T cell repertoire, are discussed. 

Materials and Methods 

Cell Lines and Tissue Culture Conditions. All cell lines were cul- 
tured in supplemented DMEM prepared using endotoxin-free water 
and containing 10% FCS (J.R. Scientific, Woodland, CA) (16, 17). 
The CH12-LBK cell line, an in vitro adapted subclone of the CH12 
B cell lymphoma, has been previously described (29). All B cells 
and B cell lines were stimulated for varying periods of time with 
LPS (Escherichia coli 055:B5; Difco Laboratories Inc., Detroit, MI) 
or lymphokines (IL-2, 50 U/ml, or Ib5, 25 U/ml) as described 
(29). Lymphokines were purchased from Genzyme Corp. (Cam- 
bridge, MA). 

A number of cell lines representing various developmental stages 
in the hematopoietic lineage were used, and some of these have 
been previously reported (17). Cell lines new to this study and their 
reported stages of development are: NFS-70, a pro-B call; NFS-25, 
an early pre-B cell line; 15-79-2, pre-B cell, and ABE-8.1/2 and 
2E8, both considered late pre-B cells; BCL-1, WEHI-231, and A20, 
all surface Ig + B cells; Rl.1 and BW5147, both T cell lymphomas; 
WEHI-3, considered to be an immature stem cell of myelomono- 
cytic character; RAW-309Cr.1, a monocyte-macrophage cell line; 
and IC-21 and RAW-264, both macrophage cell lines. All cell lines 

were obtained from the American Type Culture Collection (Rock- 
ville, MD), except 2E8, which was provided by E Kincade (30; 
Oklahoma Medical Research Foundation, Oklahoma City, OK), 
and A20 and one of the WEHI-231 sublines, which were pro- 
vided by M.E Happ and E. Palmer (National Jewish Center for 
Immunology, Denver, CO). The mammary epithelial cell line 
MMT060562 (MMT) was grown without 2-ME. 

Isolation of Normal B and T Cells. Mice were used at 6-12 wk 
of age. B10.A mice were purchased from Harlan Sprague Dawley 
Inc. (Indianapolis, IN). All other strains, C57BL/6, BALB/c, 
CBA/J, and DBA/2, were from The Jackson Laboratory (Bar 
Harbor, ME). Enriched populations of splenic B cells were pre- 
pared as described (18) and stimulated at 2 x 10 s cells/ml for ei- 
ther 24 or 84 h. T cells were prepared from B10.A spleen cells as 
follows: biotin-labeled anti-LyS/B220 antibody (PharMingen, San 
Diego, CA) was mixed with Dynabead strepavidin conjugates 
(DYNAL Inc., Great Neck, NY) and incubated with spleen cells 
(depleted of macrophages by adherence) at a ratio of two beads 
to one cell for 30 rain. Cells bound by the beads were removed 
using a magnet. Nonadherent cells were retreated a second time 
with the anti-B220 and magnetic beads. The enriched T ceils 
(5 x 10S/ml) were stimulated with 5/zg/rrd Con A (Calbiochem 
Corp., La Jolla, CA); 10 U/ml IL-2 was added after 18 h. After 
72 h, the cells were retreated with anti-B220-coupled magnetic 
beads to remove residual B cells. These T cell preparations were 
determined to be essentially free of contaminating B cells by the 
failure to detect Ig r sequences on Northern blot analysis of 
T cell RNA. 

RNA Preparaa'on and Northem Blot Analysis. Total cellular RNA 
was extracted from cell lines or normal lymphocytes as described 
(17). RNA was isolated from tissues by the method of Chirgwin 
et al. (31). Northern blot analysis was performed after electropho- 
resis of RNA in 1% formaldehyde-agarose gels and transfer of RNA 
to Nitroplus 2000 membranes (MSI, Westborough, MA) for 
probing as described (17). 

Isolation of Genomic DNA and Southern Blot Anal)sis. High 
molecular weight genomic DNA was isolated and Southern blot 
analysis was performed using ammonium acetate for transfer of 
DNA to Hybond nylon membranes (Amersham Corp., Arlington 
Heights, IL) as described (17). Methylation experiments were per- 
formed as described in Results. Control digests using the methyl- 
ation insensitive enzyme MspI were performed to confirm that all 
DNA samples gave rise to the same restriction pattern. All restric- 
tion enzymes were purchased from Boehringer Mannheim Corp. 
(Indianapolis, IN). 

Probes. All cDNA probes were isolated as inserts and labeled 
by random priming (18) according to the Ollgolabeling kit specifica- 
tions (Pharmacia LKB Biotechnology/Inc., Piscataway, NJ). The 
following probes were used: MMTV LTR, pA7; MMTV envelope 
(env), pSC34; MMTV (env + LTR), pAS; Ig/~, p/z107; actin, pHF1. 
All of these have been described (16-18, 29). Also used were an 
Ig r probe, a 500-bp EcoRI insert from pSC33, encoding the 3' 
portion of the r constant region; OTF-2, a 1.9-kb XbaI/BamHI 
insert from the pOEV § construct (32; provided by L. Eckhardt, 
Columbia University, New York), and CHO-B, a 600-bp EcoRI/ 
BamHI fragment from the CHO-B plasmid (33; provided by R. 
Wall, UCLA). Northern blots were washed with 2x SSC/0.1% 
SDS at 65~ Southern blots were washed at 67~ in 2x SSC/0.1% 
SDS followed by washes at 680C in 0.1x SSC/0.1% SDS. 

DNA Constructs for Transfection. A Mtv-9 luciferase reporter con- 
struct was prepared as follows: A 1,200-bp PstI-EcolLI fragment 
containing the entire Mtv-9 LTR was isolated from clone pA8 (17). 
The insert was subcloned into pGEM 4Z (Promega Corp., Madison, 
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WI) and then excised with HindlII and EcoRI. The EcoRI end 
was modified with an EcoRI/BamHI linker (provided by M. Os- 
trowski, Duke Medical Center, Durham, NC) and the LTR was 
subcloned directionally into the HindlII-BgllI sites of the luciferase 
expression vector pJD205 (34). Phsmid constructs used as controls 
in the transfection experiments were all in pJD204 or pJD205 as 
follows: 13 actin-luciferase, which was constructed using the human 
/3 actin cDNA as a promoter; and RSV-luciferase, which was con- 
structed using the entire LTR from the Rous Sarcoma virus (RSV). 
These control constructs were generous gifts of S. Langer and M. 
Ostrowski (Duke Medical Center, Durham, NC), and have been 
described elsewhere (35). Control experiments were first performed 
to ensure that luciferase activity could not be detected in cells trans- 
fected with the luciferase plasmid pJD205 lacking a promoter. 

Transient Transfection Assays. CH12-LBK cells were transfected 
by the DEAE-dextran procedure of Fujita et al. (36). Briefly, 2 x 
107 cells/transfection were incubated at 37~ for 90 rain in 1 ml 
Tris-buffered saline, pH 7.4, with 10-25/~g of DNA and 400 ~g 
of DEAE-dextran (Pharmacia LKB Biotechnology, Inc.). DMSO 
was added to a 10% final concentration and the cells were shocked 
at 25~ for 3 rain, washed, and resuspended at 4 x 105 cells/ml 
in DMEM-FCS. After 2 h, the cells were divided and half of 
the cells were stimulated with LPS. The unstimulated and LPS- 
stimulated cells were harvested after a further 24 h of culture. Lu- 
ciferase assays were performed according to the method of DeWet 
et al. (34). Briefly, extracts were prepared by lysing cells in 100 mM 
KH2PO4, pH 7.4, containing 1% NP-40. After the addition of 
6 mM ATP and 18 mM Mg ~§ 100 #1 of 0.25 /~M D-luciferin 
(Sigma Chem. Co., St. Louis, MO) was added and peak lumines- 
cence was measured for 10 s at 25~ using a luminometer (Ber- 
thold Biolumat, Nashua, NH). 

Measurement of Antibody Secretion. Antibody secretion was mea- 
sured either by a plaque-forming cell (pfc) assay (29) or determined 
by ELISA as described elsewhere (36a). For the ELISA, superna- 
tants were collected and antibody was directly quantitated or, al- 
ternatively, cells were harvested, washed extensively, and recultured 
in fresh media. After 6 h, supematants were collected and the quan- 
tity of antibody secreted over this time interval (which has been 
found to be at a constant rate) was then measured. 

Results 

Expression of M M TV  during B Cell Ontogeny. In earlier 
work, we examined the expression of MMTV in several ma- 
ture (surface Ig*) B lymphocytes, and found that they all 
constitutively expressed MMTV transcripts. We therefore ex- 
amined the expression of  MMTV in B ceU lines that repre- 
sented earlier stages in B cell ontogeny to determine if MMTV 
expression was restricted to mature B cells. In Fig. 1, results 
using representative early B lineage cell lines, including NFS- 
70, a cell in the pro-B cell stage (lane a), NFS-25, a cell line 
with early pre-B characteristics (lane b), and ABE-8.1/2, a 
prototypic pre-B call line (lane c), are shown. M M T V  tran- 
scripts could be detected in all of  these cells at levels similar 
to constitutive levels in a mammary cell line, M M T  (lanes 
f a n d  g), and in CH12-LBK cells, a mature B cell line (lanes 
d and e). These results suggest that M M T V  is expressed very 
early in the B lymphocyte differentiation pathway. As previ- 
ously shown (17), MMTV transcript levels were significantly 
upregulated after LPS stimulation of the inducible cell line, 

Figure 1. MMTV transcript in cells of 
the B lineage is quantitatively similar to 
levels of expression in mammary cells. RNA 
(20/~g/lane) was extracted from various 
cells and subjected to Northern blot anal- 
ysis. Blots were probed with the MMTV 
probe pA8 (top) or actin (bottom). B lineage 
cell lines include: pro-B cell line NFS-70 
(a); pre-B cell lines NFS-25 (b), and ABE- 
8.1/2 (c); mature B cell line CH12-LBK, 
either unstimulated (d) or LPS stimulated 
(e). MMTV expression in the mammary 
cell line MMT was monitored before ~ and 
after (g) culture for 24 h with LPS. Non-B 
lineage hematopoietic cells included: T cell 
lymphomas R1.1 (h) and BW5147 (i); my- 
domonocytic cell line WEHI-3 (/); mono- 
cyte/macrophage lines RAW309.Crl (k), 
and IC-21 (/). 
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Table 1. MMTV Expression in B lineage Cells 

Differentiation stage Cells tested Expression* 

B cell lines 
Pro-B 

Pre-B 

Mature B 

Myelomas, hybridomas* 

NFS-70 1 
70Z/3, 2E8, NFS-25, ABE-8.1/2, 
1A9, NFS-5, 15-79-2 

BCL-1, NFS-1, CH1, CH31, CH27, 
WEHI-231, A20, CH12, LBK, CH33 

All positive 

Negative, or only weakly positive 

Normal B lineage cells 
Pro-B Whitlock/Witte (SCID cells)S -]  

Pro-B/Pre-B Whitlock/Witte (BALB/c cells)S ~ All positive 

B10.A; B6; BALB/c; DBA/2; CBA Mature B II 

* Expression levels were determined by Northern blot analysis. 
* From reference 17. 
$ RNA was prepared from non-adherent cells from these cultures. Northern blots were provided by P. Kincade. 
II LPS-activated spleen B cells. 

CH12-LBK. In total, we have assayed MMTV expression in 
a panel of 34 B cell lines representing various stages of the 
B cell developmental pathway. MMTV transcripts have been 
detected in all of them, with the sole exception of myeloma/hy- 
bridoma cells (Table 1). The lack of expression in myeloma 
cells is perhaps not surprising, since these cells fail to express 
a number of genes expressed in other B lineage cells, including 
rob-1 (37) and MHC class II (38). 

To determine if MMTV is expressed in the normal coun- 
terparts of early B progenitors, we probed Northern blots 
(kindly provided by Dr. P. Kincade) containing RNA from 
B lineage cells isolated from Whitlock-Witte cultures (39) 
of normal and SCID bone marrow cells, the latter providing 
an enriched source of pro-B cells. We found MMTV tran- 
scripts in RNA from both cultures (not shown), indicating 
that normal pro-B and pre-B cells are also capable of expressing 
MMTV transcripts. 

We next asked if MMTV transcripts could be detected in 
cells other than B cells in the hemopoietic lineage. In con- 
trast with the uniform expression of MMTV transcripts in 
B cells, only one non-B cell line in which MMTV sequences 
were not amplified, WEHI-3 (lane j), showed significant levels 
of MMTV transcripts (Fig. 1). This cell line is believed to 
represent an early hematopoietic cell and it is possible that 
at this early stage some plasticity allows for the expression 
of some lineage restricted genes. MMTV transcripts were not 
detected in three cell lines representing mature stages of the 
monocyte/macrophage lineage, RAW309 and IC-21 (Fig. 1, 
lanes k and 1) and RAW264, nor in NK cell lines (not shown). 

MMTV transcripts were not evident in representative T cell 
lymphomas (Fig. 1, lanes h and 0, although we have found 
that by using very high specific activity probes and by ex- 
posing Northern blots for extended periods of time, low levels 
of MMTV can be detected in some T cell lines. 

Expression of M M T V  in Normal Tissues. MMTV tran- 
scripts are not detectable in most normal tissues (1), including 
spleen and thymus (see Fig. 2). Based on our observations 
that MMTV transcripts are expressed at high levels in LPS- 
stimulated normal B cells (18), we asked if MMTV transcripts 
were constitutively expressed in normal resting B cells or were 
expressed only after LPS stimulation (Fig. 2). MMTV tran- 
scripts could not be detected in RNA from unstimulated B 
cells, but were detectable in RNA from LPS-stimulated cells. 
This was not due to lack of RNA, since both actin and 
CHO-B transcripts could be detected in all lanes. The lack 
ofMMTV RNA in resting B lymphocytes explains the failure 
to detect MMTV transcripts in splenic tissue. However, 
MMTV-specific sequences can be detected in RNA from 
normal spleen cells using PCR (not shown). Whether this 
represents very low basal levels of expression in resting B cells, 
or MMTV transcripts in the small percentage of activated 
B cells present in the spleen, is not clear. MMTV transcripts 
are readily detected in activated B cells from a number of 
independent mouse strains (Table 1). 

RNA from T cells stimulated with Con A and Ib2 also 
contained detectable MMTV transcripts, but at much lower 
levels than B cells (Fig. 2). The fact that we can detect MMTV 
transcripts in normal T cells and some T cell lines in low 
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Figure 2. MMTV transcripts are expressed in mitogen-stimulated B 
and T cells, but are undetectable in resting B cells, normal spleen cells, 
and thymus cells. KNA samples (18 #g/lane) were extracted from total 
spleen or thymus cells, or from purified, unstimulated splenic B cells, or 
B cells that were stimulated with LPS for 24 or 84 h. Purified T cells 
were stimulated with Con A and IL-2 for 72 h. Actin and CHO-B tran- 
scripts were detectable in all lanes (not shown). 

abundance clearly shows that MMTV is not expressed as a 
B cell-specific gene, although its constitutive high abundance 
expression appears to be primarily restricted to cells of the 
B lineage. 

Transc@tional Regulation of M M T V  in B Cells. MMTV 
expression in B cells could be regulated by at least two mech- 
anisms. Endogenous MMTV proviral loci could be regulated 
by positional effects, in which integration into chromosomal 
regions that are transcriptionally active in B cells allows 
MMTV expression. Alternatively, promoter elements within 
the MMTV gene itself, in part or in whole, could regulate 
transcription in B cells. As a means to approach these alter- 
natives, two kinds of experiments were carried out. First, 
we determined the methylation status of the endogenous loci 
in B cells as an indication of chromatin configuration, as it 
has been shown that MMTV loci are heavily methylated in 
tissues, such as kidney or liver (40), in which they are not 
expressed. Second, we determined whether the MMTV LTK 
could act as an independent promoter capable of activating 
a heterologous gene in B cells. 

In the inducible B cell line, CH12, the expressed MMTV 
transcripts come primarily from the Mtv-9 locus (17), although 
by PCK analysis either or both of the other loci present in 
the genome, Mtv-8 and Mtv-17, are expressed at low levels 
(22). It is possible that only the highly expressed Mtv-9 proviral 
locus was integrated in the vicinity of a transcriptionally ac- 
tive B cell-specific gene. In fact, Mtv-9 is located on the same 
chromosome as the IgH locus (chromosome 12), although 
it is >20 cM removed (41). To determine if the Mtv-9 locus 
exhibits greater evidence for demethylation than Mtv-8 and 
Mtv-17, genomic DNA from unstimulated or LPS-stimulated 
CH12-LBK cells was first digested with EcoKI and then with 
one of the methylation sensitive enzymes, CfoI or HpalI. 
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Figure 3. Demethyhtion ofMMTV proviral loci 
in CH12 B lymphoma cells compared with B10.A 
kidney DNA. Genomic DNA was prepared from 
B10.A kidney (a), unstimulated (b), or LPS- 
stimulated CH12-LBK cells (c), and digested with 
EcoRI alone or together with the methylation- 
sensitive enzymes CfoI or HpaII. Blots were probed 
with the env-spedfic probe pSC34. EcoRI diges- 
tion of genomic DNA allows identification of 
specific proviral loci in B10.mice, including Mtv-9 
(10 kb), Mtv-17 (8.3 kb), and Mtv-8 (6.7 kb). 
"Hybridizing band of ~27 kb reported to be a new 
MMTV locus (63). 



EcotLI-digested genomic DNA, when probed with MMTV 
env-specific probes, reveals a limited number of restriction frag- 
ments which can be assigned to the 3' end of the known 
endogenous MMTV proviruses within the B10.A genome 
(3). By such an analysis, one can compare the level of meth- 
ylation of specific proviral loci in B cells (Fig. 3, lanes b and 
c) with that of a fully methylated tissue, such as kidney (lane 
a). In Fig. 3, we show that all three proviral loci were found 
to be demethylated with respect to one methylation-sensitive 
enzyme, CfoI. With a second enzyme, HpalI, partial demethy- 
lation of all three loci was evident, but additional demethyla- 
tion occurred upon LPS stimulation, particularly apparent 
in the Mtv-9 locus (compare lanes c and b). Especially 
noteworthy is the demethylation of Mtv-8, which to our 
knowledge, has never been shown to be demethylated in any 
tissue, including mammary tissue (42). In other experiments, 
MMTV loci in genomic DNA from normal unstimulated 
as well as LPS-stimulated B cells, and DNA from T cell lines 
were also found to be demethylated (not shown). We con- 
clude that demethylation does not strictly correlate with high 
level transcription. It is therefore unlikely that the integra- 
tion site alone can account for MMTV expression, although 
it is possible that the levels or ontogeny of expression of in- 
dividual proviral loci may be influenced by positional events. 

We next determined if the LTR from a cloned endoge- 
nous MMTV provirus, Mtv-9 (17), acted as an inducible pro- 
moter in B cells. We subcloned the Mtv-9 LTR as the only 
promoter/enhancer motif driving a luciferase reporter gene 
(34), and transiently transfected this construct into CH12- 
LBK cells. MMTV transcripts are upregulated 10-20-fold after 
stimulation of these cells (see Fig. 1). If the MMTV LTR 
acts as a promoter/enhancer motif in B cells, a significant 
increase in luciferase activity should be evident in LPS- 
stimulated cells compared with unstimulated cells. After trans- 
fection, LBK cells were divided into two flasks and either 
left unstimulated or stimulated with LPS for 24 h. As con- 
trols, we included luciferase constructs using a ~/-actin pro- 

moter and an unrelated LTR from RSV. As shown in Fig. 
4, in three separate experiments, the Mtv-9 LTR behaved as 
an independent and inducible promoter, causing a 10-20-fold 
induction in luciferase expression in LPS-stimulated compared 
with unstimulated CH12-LBK cells. In contrast, although 
the RSV LTR and the ~/-actin constructs were transfected 
into the same cells into which the Mtv-9 LTR construct was 
transfected, neither of these control constructs were induced 
in LPS-stimulated compared with unstimulated cells to any 
significant extent (g2 x ). This was despite the fact that the 
Mtv-9 promoter was the weakest of the three promoters. Com- 
pared with actin, the strongest promoter, Mtv-9 was 10-30- 
fold weaker in the luciferase assay. We conclude that the in- 
ducible effect on the MMTV LTR was specific. 

Stimulation of M M T V  Transcript Levels in Inducible B Lin- 
eage Cell Lines. In transgenic mice carrying hybrid MMTV 
LTR promoter constructs coupled to various protooncogenes, 
including c-myc, high levels of transgene expression or the 
development of tumors occur in several tissues, among them 
salivary gland, kidney, spleen, and mammary epithelia (43-45). 
Each of these tissues contains secretory cells. Given our data 
that the MMTV LTR can act as an inducible promoter in 
a B cell line that can be stimulated to secrete antibody, we 
were curious if stimulation of MMTV expression correlated 
with an inducible secretory phenotype in B cells. We there- 
fore compared the ability of MMTV to be stimulated in sev- 
eral B cell lines with their ability to be induced to secrete 
antibody. For this analysis, we tested the B cell lymphomas 
CH12, BCL1, A20, CH1, and two sublines of WEHI-231. 
CH12 cells differentiate in response to IL5 and LPS, and not 
IL2 (36a), and only IL-5 and LPS stimulated increased MMTV 
expression (Fig. 5). A similar correlation between the ability 
to stimulate MMTV levels and antibody secretion was found 
in BCL1 ceils. The subline of BCL1 used can be stimulated 
to secrete antibody by IL-2 and II.-5, but not LPS (46), and 
MMTV transcripts were also strongly induced by IL-5 and 
IL-2, but not by LPS (not shown). Moreover, in A20 ceils, 
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Figure 4. The MMTV LTR acts as a LPS- 
inducible promoter in B cells. CH12-LBK cells 
were transfected with a ludferase expression 
vector containing the Mtv-9 LTR as the only 
available promoter/enhancer. Cultures of trans- 
fected cells were divided in half; one half was 
cultured unstimulated, whereas the remainder 
were stimulated with LPS. After 24 h, extracts 
were prepared and luciferase activity was mea- 
sured, and the amount in the LPS-stimulated 
compared with unstimulated cells was deter- 
mined and is shown as fold-induction of the 
ludferase gene, after correction for the number 
of cells analyzed (i.e., the results are expressed 
as fold-increase for a constant cell number). 
Control promoter constructs included a/~ actin 
promoter and a RSV LTR, which were trans- 
fected and analyzed in the same way as the 
Mtv-9 construct. 
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Figure 5. MMTV transcript levels are upregulated in CH12 cells only 
by those stimuli that induce antibody secretion. CH12 cells were cultured 
alone (-), with LPS, II:2, Ib5, or II:2 and IL-5 for 48 h, and the stimula- 
tion of transcript levels or antibody secretion, as measured by plaque assay, 
was determined. (A) RNA was extracted and assayed for the indicated 
transcripts by Northern blot analysis. (B) Results of the plaque assay, shown 
as the percentage of the viable recovered cells that secreted sufficient anti- 
body to be detected as a pfc. 

which secrete low levels of antibody in response to LPS (47), 
M M T V  transcripts could also be upregulated with LPS. On 
the other hand, LPS did not stimulate increases of  M M T V  
in CH1 cells (17), which cannot be induced to secrete anti- 
body (unpublished results). 

The data suggested a possible correlation between the ability 
to upregulate M M T V  transcripts and the ability to induce 
antibody secretion. The most striking example of this corre- 
lation is illustrated using two sublines of  WEHI-231,  which 
behave differently in response to LPS. One (WEHI-231 d) 
constitutively secretes low levels of  polymeric IgM antibody 
and is not further induced by LPS, while the second (WEHI-  
231 a) does not secrete detectable levels of antibody unless 
stimulated with LPS (Fig. 6). Although both sublines ex- 
press constitutive levels of M M T V  transcripts, these tran- 
scripts are only upregulated in response to LPS in the WEHI-  
231 ~, the cell line that can be induced to secrete antibody 
(lanes a and b vs. c and d). Taken together, these results sup- 
port the hypothesis that inducible M M T V  expression corre- 
lates with inducible, but not constitutive, antibody secretion. 

During B cell differentiation, two transcriptional factors, 
NF-KB and OTF-2, are closely associated with high level ex- 
pression of Ig (32, 48). Both of these factors are upregulated 
during B cell differentiation, and increases in the activity of 
these two factors could influence M M T V  expression. Several 

Figure 6. Comparison of two WEHI-231 sublines for their ability to be induced to secrete antibody and upregulate MMTV expression. WEHI- 
231a and WEHI-231d cells were cultured alone (-) or stimulated (+) with LPS (50/~g/ml). Antibody secretion was quantitated by ELISA. The results 
of two independent experiments are shown (A and B). (,4) Supernatants were collected after 48 h and antibody was quantitated directly by ELISA. 
(B) Calls were collected at 72 h, washed, and recultured (2 x 10 s) in fresh media. After 6 h, secreted antibody was quantitated. (C) RNA from un- 
stimulated (a, c) and LPS-stimulated (b, d) WEHI-231 * and WEHI-231 d cells, respectively, was subjected to Northern blot analysis. Probes were: MMTV, 
pA8 (genomic and e n v  transcripts at 8.7 and 3.6 kb are shown),/~, K, and actin. 
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Figure 7. MMTV transcripts are not upregulated in stimulated pre-B 
cell lines and levels of MMTV do not correlate with NF-xB or OTF-2 
levels. RNA was extracted from pre-B cell lines (NPS-25, 70Z/3, and 15- 
79-2) or the mature B cell lines CH12-LBK (LBK) that were cultured 
alone ( - )  or in the presence of LPS (+) and subjected to Northern blot 
analysis. Probes that were used were the same as those described in Fig. 
6, with the addition of the OTF-2 probe. In the pre-B cell lines, only 
70Z/3 showed dear evidence of differentiation in response to LPS. CH12- 
LBK cells already had upregulated/z and g transcripts before LPS stimula- 
tion, while MMTV transcripts (and antibody secretion) were upregulated 
after LPS stimulation. 

viral LTRs have functional NF-KB binding sites (49), and 
OTF-1 has already been demonstrated, in conjunction with 
steroid hormone receptors, to bind and activate transcription 
from the MMTV LTR in fibroblasts (9). Indeed, the MMTV 
LTR has a potential NF-KB site at position -570 relative 
to the cap site (9/10 nucleotide homology), as well as several 
overlapping functional octamer motifs at -57,  (7/8 ho- 
mology) (9, 17). 

To investigate whether the presence or absence of NF-gB 
and OTF-2 could be correlated with the differential expres- 
sion of MMTV transcripts in B cells, we assayed for MMTV 
expression in a panel of four different B cell lines that repre- 
sented early pre-B to mature B cell phenotypes. These cells 
were either left unstimulated or stimulated with LPS before 
analysis. The activation of~ transcription was taken as a readout 
for NF-KB activity (48), while OTF-2 levels were measured 
directly by Northern blot analysis. The results are shown in 
Fig. 7, and clearly demonstrate that NF-xB and OTF-2 are 
not sufficient for upregulated expression of MMTV in B lin- 
eage cells. In three B lineage cells that represent different stages 
of the pre-B cell development pathway, MMTV transcripts 
were not upregulated by LPS, indicating that each of these 
cells lacks certain required factors. The early pre-B cell NFS- 
25 does not express r,,/~, or OTF-2 transcripts, and yet MMTV 
transcripts are present, suggesting that the constitutive levels 
of MMTV transcription do not require these transcription 
factors. Activation of NF-gB, as evidenced by K transcription, 

does not lead to concomitant increases in MMTV expres- 
sion, as demonstrated using the cell line 70Z/3. It is note- 
worthy that OTF-2 levels are also increased in LPS-stimulated 
70Z/3 cells. Thus, even when both NF-xB protein and OTF-2 
transcripts are clearly present, such as in stimulated 70Z/3 
and 15-79-2 cells, MMTV was not induced above the consti- 
tutive levels present in unstimulated cells. In contrast, in CH12- 
LBK cells, which express high constitutive levels of/z, x, 
and OTF-2, MMTV transcripts, are inducible by LPS. Taken 
together, these data suggest that NF-xB and OTF-2 are not 
necessary for constitutive expression, nor sufficient for either 
constitutive or upregulated expression of MMTV transcripts. 
Consistent with a lack of influence of NF-IcB on MMTV 
expression in mature B cells, we have found that Okadaic 
acid, a phosphatase 1 and 2a inhibitor and potent activator 
of NF-xB (50), does not activate MMTV transcription, and 
MMTV transcript levels are not upregulated in LPS-stimulated 
CH12-LBK cells in the presence of cycloheximide (unpub- 
lished results), again arguing against a role for NF-KB (47). 

Discussion 

The results demonstrate that MMTV proviral transcripts 
are expressed in all cells of the B lineage, except myelomas, 
and that the levels of expression are not quantitatively different 
from the steady state levels found in a mammary epithelial 
cell line. MMTV transcripts are detectable throughout on- 
togeny and can be detected in cells representing the pro- and 
pre-B cell stages as well as their normal counterparts. This 
implies that the factor(s) involved in constitutive MMTV ex- 
pression is activated very early after commitment of progen- 
itor cells to the B lineage, but our data suggest that these 
factors are not NF-xB or OTF-2. 

Normal B cells that have been stimulated with LPS ex- 
press easily detectable MMTV transcripts. However, MMTV 
expression is detectable in unstimulated cells only by PCR. 
This is of interest based on the recent demonstration that 
MMTV genes encode superantigens (25, 27, 28). A number 
of investigators have shown that superantigens are expressed 
either in immunogenic form by B cells only after stimula- 
tion, or that stimulation enhances superantigen activity (21, 
51-54). The failure to detect significant amounts of MMTV 
transcripts in unstimulated splenic B cells suggests that the 
reduced immunogenicity of these cells reflects limiting levels 
of the MMTV-encoded superantigens. It is interesting that 
superantigens are not expressed by macrophages (51, 55) and 
it is striking that we failed to detect MMTV transcripts in 
cells representing the monocyte/macrophage lineage. Some 
T cells appear to express low levels of MMTV transcripts, 
but the relationship between expression in these cells and the 
ability to induce tolerance to Mls-P with CD8 + T cells (56) 
is not known. 

The LTR of the expressed endogenous Mtv-9 gene can 
serve as an LPS-inducible promoter in B lymphocytes, as mea- 
sured in transient transfection assays (Fig. 4). Similar results 
were obtained using the LTR from the exogenous C3H virus 
(not shown). This is the first evidence that we are aware of 
in which an intact MMTV LTR can be shown to act as a 
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promoter independent of glucocorticoid stimulation. These 
results support our earlier data which demonstrated that the 
expression of endogenous MMTV in B cells occurred without 
GR-GRE interactions, as shown by the failure of the gluco- 
corticoid receptor antagonist, RU486, to inhibit constitu- 
tive and LPS-inducible expression of MMTV transcripts (18). 
The ability of the MMTV LTR to act as an independent pro- 
moter in B cells is reasonable evidence that local chromatin 
configuration and positional effects cannot alone account for 
the expression of endogenous MMTV loci. However, we 
cannot rule out the possibility that transcriptionally active 
genes around one or more of the MMTV proviral loci may 
contribute to the expressed levels of MMTV. There is evi- 
dence demonstrating that active genes can affect the chro- 
mosomal configuration of other genes at a distance (57, 58), 
and at least some MMTV proviruses are closely linked to 
B cell-specific genes (1, 3, 40). Thus, positional effects could 
explain why in a cell line only one MMTV locus is expressed 
at high levels, such as in the case of Mtv-9 expression in CH12 
cells (17), despite the obvious demethylation of the other loci, 
and may explain why the Mls superantigens but not Etc-1 
are expressed in unstimulated splenic B cells (59). However, 
to explain the B cell-specific expression of these and other 
MMTV loci by strictly a positional effect, one would have 
to propose that each provims is integrated near transcriptionally 
active B cell-specifir genes. Since there are >20 proviral loci 
(3), this seems unlikely. Furthermore, we demonstrate here 
that the inducible expression of MMTV results from the ac- 
tivity of its own promoter. 

MMTV transcripts can be upregulated with the same 
stimuli that induce differentiation of B cell lines into antibody- 
secreting cells (Figs. 5 and 6). MMTV levels were upregu- 
lated in B cell lines that could be stimulated to differentiate 
into antibody-secreting cells, while a mature B cell line that 
could not be further induced to secrete antibody, as well as 
an inducible pre-B cell line, failed to upregulate MMTV (Figs. 
6 and 7). NF-KB and OTF-2, both transcription factors highly 
expressed in many pre-B and B cells (32, 48), are not sufficient 
for inducible MMTV expression, as demonstrated using pre-B 
cell lines (Fig. 7). We have found that OTF-2 levels are high 
in mature B cells, regardless of MMTV inducibility (unpub- 
lished results). However, while MMTV transcripts are up- 
regulated by the same stimuli that induce B cell differentia- 
tion, we have previously shown that the upregulated expression 
of MMTV is clearly independent of the transcriptional up- 
regulation of Ig genes in stimulated B lymphocytes (18). Thus, 
other perhaps novel B cell-specific nuclear factors appear to 
be responsible for the induction of MMTV transcripts in 
differentiating B cells. These factors are activated during 
differentiation, and our data strongly implicate an inducible 
secretory phenotype as the differentiative stage at which 
MMTV is stimulated at maximum levels in the B cell lin- 
eage. Such factors may be of functional significance in the 
regulation of non-Ig genes that are required for B cell differen- 
tiation. Moreover, since there appears to be at least some corre- 
lation between the ability to express MMTV at high levels 
and secretory capacity in other tissues (see Results), it is pos- 
sible that some of the host transcription factors used by 
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MMTV in these various tissues, including B cells, are at least 
partially overlapping. 

It is difficult to understand the involvement of MMTV 
in establishment of the T cell repertoire. One might argue 
that T cells capable of stimulating viral activation are deleted 
as a normal consequence of T cell repertoire formation. How- 
ever, in the case of MMTV, this seems unlikely to be of 
significant selective advantage, since mammary tumors rarely 
form until well into reproductive age (1). Our data suggest 
an alternative hypothesis, that the role of MMTV gene prod- 
ucts as superantigens reflects the evolution of an adaptive use 
of the immune system in the life cycle of infectious MMTV 
(60). MMTV is transmitted horizontally from the milk of 
lactating female mice of infected strains into the gut of nursing 
offspring. Lymphoid cells have long been postulated to be 
involved in the transport of the virus from the gut to other 
locations in the body (1), and B cells may become infected 
by virus transferred via milk to the neonate. However, our 
data indicate that high level expression of MMTV genes is 
upregulated only after B cell activation, and it is possible that 
viral replication in B cells is initiated only at this time. The 
virus may have developed a mechanism to ensure that infected 
B cells are stimulated with high frequency by producing a 
product that is mitogenic for a large fraction of T cells, based 
not on T cell specificity, but on TCR VB usage. This, in 
turn, would result in the activation of the infected B cell. 
Because the factors required for high level MMTV transcrip- 
tion are present primarily in differentiating and not resting 
B cells, the data imply that MMTV may indirectly stimulate 
its own transcription, presumably also increasing its own 
replicative potential. Production of infectious viruses, migra- 
tion to mammary tissue, and consequent infection of mam- 
mary epithelia then occur. The activation of the virus in mam- 
mary tissue as a result of hormonal stimulation during lactation 
then reinitiate the viral life cycle (1). 

How does this relate to the effects of endogenous proviruses 
on the T cell repertoire? Because the majority of endoge- 
nous proviruses are defective and do not produce infectious 
particles (1, 3), it is likely that the virus captured the use 
of the immune system in its own infectious life cycle long 
before the first virus became established in the murine germ 
line. Many of these integrated proviruses may have retained 
their ability to stimulate T cells and to be upregulated in 
B cells, both properties of the highly conserved viral LTR 
(25, 27, 28, and this report). Because B cells expressing su- 
perantigens encoded by these endogenous proviruses are found 
in the thymus at times critical for T cell development (53, 
54), these viruses assumed a new role, namely deletion of 
self-reactive T cells. The fact that this function has been re- 
tained through evolution suggests that it could have been 
adapted by the host as an important component in the selec- 
tion of the T cell repertoire. We favor an alternative hypoth- 
esis: the deletion of large components of T cells based on 
V/3 usage may have no consequence for the development of 
a full and functioning T cell repertoire, as long as too many 
proviruses capable of deleting different subsets of T cells are 
not present in the genome of any given animal. The fact that 
T cells with a given antigen specificity may express different 



V3 alleles is consistent with this latter possibility. Moreover, 
mice totally lacking known endogenous M M T V  have been 
identified (61, 62), suggesting that the effects of the endoge- 
nous superantigens on the developing T cell repertoire are 
unnecessary for survival in the wild. 

One of the predictions of this hypothesis is that not all 
species will necessarily contain endogenous superantigens, since 

they are of little direct consequence for T cell repertoire se- 
lection. To take an extreme view, it is possible that the only 
species that have endogenous superantigens are those that house 
viruses that have, during their evolution as infectious agents, 
taken advantage of the capacity of T cells and B cells to stimu- 
late each other as a necessary component of their own life cycle. 
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