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Aims: Carbon monoxide poisoning is a common condition that can cause severe
neurological sequelae. Previous studies have revealed that functional connectivity in
carbon monoxide poisoning is abnormal under the assumption that it is resting during
scanning and have focused on studying delayed encephalopathy in carbon monoxide
poisoning. However, studies of functional connectivity dynamics in the acute phase of
carbon monoxide poisoning may provide a more insightful perspective for understanding
the neural mechanisms underlying carbon monoxide poisoning. To our knowledge, this
is the first study that explores abnormal brain network dynamics in the acute phase of
carbon monoxide poisoning.

Methods: Combining the sliding window method and k-means algorithm, we identified
four recurrent dynamic functional cognitive impairment states from resting-state
functional magnetic resonance imaging data from 29 patients in the acute phase
of carbon monoxide poisoning and 29 healthy controls. We calculated between-
group differences in the temporal properties and intensity of dFC states, and we
also performed subgroup analyses to separately explore the brain network dynamics
characteristics of adult vs. child carbon monoxide poisoning groups. Finally, these
differences were correlated with patients’ cognitive performance in the acute phase of
carbon monoxide poisoning and coma duration.

Results: We identified four morphological patterns of brain functional network
connectivity. During the acute phase of carbon monoxide poisoning, patients spent
more time in State 2, which is characterized by positive correlation between SMN
and CEN, and negative correlation between DMN and SMN. In addition, the fractional
window and mean dwell time of State 2 were positively correlated with coma duration.
The subgroup analysis results demonstrated that the acute phase of childhood
carbon monoxide poisoning had greater dFNC time variability than adult carbon
monoxide poisoning.

Conclusion: Our findings reveal that patients in the acute phase of carbon monoxide
poisoning exhibit dynamic functional abnormalities. Furthermore, children have greater
dFNC instability following carbon monoxide poisoning than adults. This advances
our understanding of the pathophysiological mechanisms underlying acute carbon
monoxide poisoning.

Keywords: independent component analysis, adult, children, acute carbon monoxide poisoning, dynamic
functional network connectivity (dFNC), fMRI
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INTRODUCTION

Carbon monoxide (CO) poisoning is a serious health hazard,
with nearly half of all CO poisoning patients developing
neurobehavioral or cognitive sequelae (Hopkins and Woon,
2006), manifesting as neurological disorders with sudden onset of
psychosis and extrapyramidal or pyramidal system abnormalities
(Kudo et al., 2014). The long course of the disease, poor
prognosis, and high disability rate significantly impair the
quality of life of patients and impose a heavy burden on
society and families. Carbon monoxide poisoning is more like
a systemic disease and has a different physiological mechanism
from general cerebral hypoxia. Carbon monoxide (CO) has
a strong affinity for hemoglobin-containing proteins. With an
affinity for hemoglobin (Hb) that is 250 times greater than
that of oxygen, CO reduces the oxygen-carrying and oxygen-
releasing capacity of Hb by competitively binding Hb with
oxygen and by increasing the structural stability of Hb. In
addition, mitochondrial cytochrome c oxidase (COX; complex
IV) has only a threefold preference for CO compared to O2.
With COX inhibited, oxidative phosphorylation slows down,
decreasing ATP production in tissues, such as the brain and
heart. Other complexes in the electron transport chain continue
to shuttle electrons, generating superoxide, leading to further
damage of cells and tissues (Rose et al., 2017). General cerebral
hypoxia causes brain cells to undergo anaerobic metabolism,
resulting in reduced ATP and increased lactate levels. Brain cells
have impaired transmembrane transport and sodium and water
retention occurs. The cells release excitatory transmitters, loss of
calcium ions, and ultimately activation of the apoptotic cascade
of cell activation (Douglas-Escobar and Weiss, 2015). However,
more studies have been conducted on delayed encephalopathy
following acute CO poisoning (Hou et al., 2013; Lee et al., 2018;
Wu et al., 2020a,b), in which the main pathological changes
are extensive demyelination of the brain’s white matter, bilateral
symmetrical pallidocyte ischemia, and necrosis. There are only a
few studies on brain function alterations during the acute phase
of CO poisoning (Dinghua et al., 2013).

Moreover, prior research was limited due to technological
constraints and tended to ignore the temporal properties of
brain activity, with most studies focusing on the functional
spatial localization of the brain, yet the temporal properties are
quite important. Numerous studies have recently demonstrated
that brain is not static but is a dynamic and complex system
that is constantly changing at microscopic time scales to adapt
to its environment (Deco and Kringelbach, 2014; Preti et al.,
2017). Dynamic methods, represented by the sliding time window
approach, have been extensively employed for research in areas
such as cognitive function, psychiatric disorders, and lifelong
development. As dynamical methods advance, a growing interest
in the temporal properties of the brain has increased, of which
dynamic functional network connectivity (dFNC) is a promising
research direction. As a new approach, dFNC has demonstrated
its effectiveness in various diseases and conditions (Bhinge
et al., 2019; Salman et al., 2019; Zhu et al., 2019). However,
no systematic studies have been conducted to explore the
dynamic FC characteristics of CO intoxication as a disorder

with severe neurobehavioral or cognitive sequelae. Therefore, the
objective of this study was to explore whether patients with CO
poisoning present with abnormal dFNC characteristics during
the acute phase and to determine whether these characteristics
are correlated with clinical variables and coma duration.

MATERIALS AND METHODS

Participants
The acute carbon monoxide poisoning group consisted of
31 patients treated for acute carbon monoxide poisoning in
our hospital between December 2020 and March 2021. The
diagnostic criteria (Jiang et al., 2020) were as follows: (1) contact
history of exposure to higher CO inhalation; (2) symptoms and
signs of acute central nervous system damage; and (3) timely
determination of CO Ab in blood conformed to the national
diagnostic criteria. There were 10 males and 21 females in
the diseased group. The time interval of exposure to high-
concentration CO during MRI examination was no more
than 3 days. Although patients in the acute carbon monoxide
poisoning group were treated with hyperbaric oxygen and
electrolyte disturbance after admission, their clinical symptoms
and signs were slightly reduced, but they did not meet the
recovery criteria, and they still showed a mental and cognitive
decline. We scored all subjects with MMSE and recorded their
coma time and hemoglobin concentrations. The control group
consisted of nine males and 20 females. There was no significant
difference in age and sex between the two groups (P > 0.05).
All the patients have signed the informed consent. This study
was approved by the Ethics Committee of the Second Affiliated
Hospital of Shantou University.

Data Acquisition and Preprocessing
Structural MRI and resting-state functional MRI data were
collected using a 3 T GE MR scanner. Resting-state data
were acquired using single-shot gradient-echo EPI sequence
(repetition time = 2,000 ms; echo time = 30 ms; flip angle = 90◦;
field of view = 240 × 240 mm2; matrix size = 64 × 64; number
of slices = 25; and voxel size = 3.43 × 3.43 × 5.0 mm3 with no
gap; and 210 volumes acquired in 7 min). Data preprocessing was
performed using the Resting-State fMRI Data Analysis Toolbox
plus V1.21 (RESTplus V1.211). The preprocessing steps include:
(1) removal of the first 10 time points; (2) slice timing; (3)
realign. The dFC patterns were significantly affected by the head
motion of subjects (Savva et al., 2020). Therefore, we imposed
restrictions on the head motion parameters, and participants
with excessive head motion (translation > 2.5 mm in any plane
or rotation > 2.5◦ in any direction) at any time during the
scan were excluded from further analysis. The head motion
between the case group and the normal group was analyzed
(Siegel et al., 2014), and there was no statistical difference
between the two groups (Supplementary Table 2 provides
details of the statistical results of head movement parameters);

1http://www.restfmri.net/forum/REST
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(4) normalize; (5) smoothed with a 6 mm full-width at half-
maximum (FWHM) Gaussian kernel; (6) regressing out the
nuisance variables [Friston’s 24 head motion parameters (Friston
et al., 1996), white matter, and cerebrospinal fluid signals, and
linear trend. More and more evidence shows that global signal
contains valuable information (Liu et al., 2017; Xu et al., 2018), so
we did not perform global signal regression].

Group Independent Component Analysis
The preprocessed fMRI data were decomposed into functional
networks with a group-level spatial independent component
analysis (ICA) using GIFT2 (version 3.0a). To improve
functional segmentation, we used a relatively high-order
model (100 individual components) (Kiviniemi et al., 2009).
Two data reduction steps (subject-specific and group level)
were performed. We decomposed the grouped data into 100
independent components (ICs) using Infomax algorithm (Bell
and Sejnowski, 1995) and repeated this step 100 times using
ICASSO algorithm to evaluate the reproducibility or stability of
ICs (Himberg et al., 2004). Finally, the ICs for each subject were
derived from the group ICA back reconstruction step (Calhoun
et al., 2001) and were converted into z-scores.

Based on the selection criteria and templates provided by
previous studies (Allen et al., 2014; Kim et al., 2017), we
ultimately selected 51 meaningful components. We divided the
51 ICs selected into seven functional networks: basal ganglion
network (BG), default mode (DMN) network, cognitive executive
network (CEN), sensorimotor network (SMN), auditory network
(AUD), visual network (VIS), and cerebellar networks (CB).
In order to remove the remaining noise source, the time
process of the selected integrated circuit is post-processed. We
applied the following post-processing steps to the time course
of each IC, including linear, quadratic, and cubic de-trending;
multiple regression of the movement parameters; despising
detected outliers; and low-pass filtering with a high-frequency
cutoff of 0.15 Hz.

Dynamic Functional Connectivity
Estimation
Dynamic functional connectivity analysis was examined using
(FNC) toolbox in GIFT using two approaches: a sliding window
approach and k-means clustering. By using the sliding window
method, resting-state time series data were segmented into a
22-repetition time (TR) window with a size of 44 s, which
is convolved with sigma 3-TR of Gaussian. The window was
slid step-wise by 1 TR along the 200-TR length scan (400 s),
resulting in 178 consecutive windows across the entire scan.
Based on previous research, 44 S segment window length
provides a good trade-off capability to better address the
dynamic quality of functional connectivity and correlation
matrix estimation (Allen et al., 2014). To promote sparsity in
estimation, a penalty on the L1 norm was imposed in the
graphic LASSO framework (Friedman et al., 2008). We explore
FC patterns through the K-means clustering algorithm. We
estimated the similarity between windowed FC matrices using

2http://icatb.sourceforge.net/

the L1 distance (Manhattan distance) function. We repeated the
k-means clustering analysis 100 times to increase the chance of
escaping the local minima. Based on the elbow criterion (Allen
et al., 2014), all windows of all subjects were clustered into
four dFNC states.

We examine the temporal properties of dynamic functional
connection states with three different variables: mean dwell time,
fractional windows, and number of transitions. The mean dwell
time represents how long the participant stayed in a certain
state. The fractional window is the proportion of time spent in
each state as measured by percentage. The number of transitions
represents how many times either state changed from one to the
other, counting the number of times a switch occurred.

Statistical Analysis
Differences in demographic and clinical characteristics between
groups were analyzed using the chi-square test for categorical
data and Student’s t-test for normally distributed data. Because of
the non-normality of the dynamic measures, the Mann–Whitney
U test, a non-parametric test, was used in this study to detect
the difference between carbon monoxide poisoning group and
healthy controls. The statistical significance threshold was set at
p < 0.05 and corrected for multiple comparisons using the FDR.
We performed Spearman’s correlation analysis to investigate the
relationship between the dFNC characteristics and the clinical
variables in the carbon monoxide poisoning group. The results
were considered significant at p < 0.05 uncorrected. In addition,
we performed a subgroup analysis, in which the adult CO
poisoning group (n = 13, >18 years of age) and the children CO
poisoning group (n = 16, <18 years of age) were compared with
the healthy control group. The results were considered significant
at p < 0.05, FDR corrected.

RESULTS

Clinical Results
No significant differences were observed between healthy control
and CO poisoning groups in terms of gender and age (p = 0.787,
two-sample t-test). The CO poisoning groups had lower MMSE
scores than the healthy control group (p = 0.000, two-
sample t-test). Detailed demographic and clinical information is
displayed in Table 1.

TABLE 1 | Participant demographic and clinical characteristics.

Patients Controls p-value

Gender (male/female) 9/20 9/20 –

Age 20.89 (11.55) 20.03 (9.78) 0.760

MMSE 15.82 (5.86) 25.82 (4.18) 0.000*

Duration of coma (min) 101.33 (96.97) –

COHb (%) 33.46 (12.08) –

MMSE, Simple Mental State Examination Scale; P-values were obtained by a two-
sample t-test for age, MMSE, and chi-square test for gender difference.
*P < 0.05.
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Intrinsic Connectivity Networks
According to their anatomical information and assumed
functional characteristics, these 51 divided into the following
seven networks (Figure 1A): BG (ICs 16, 21, 29, 90); AUD (ICs
5, 43, 85); SM (ICs 2, 3, 9, 13, 33, 35, 41, 61, 84); VIS (ICs 19, 23,
27, 28, 59, 94, 97, 98); CEN (ICs 12, 15, 22, 25, 30, 31, 32, 36, 49,
54, 57, 62, 73, 86, 95, 96); DMN (ICs 11, 17, 38, 47, 51, 63, 82,
93); and CB (IC 4, 14, 77). The distribution of these networks is
basically the same as the previous research (Allen et al., 2014; Kim
et al., 2017). The detailed component labels and peak coordinates
of ICs are provided in the Supplementary Tables.

Dynamic Functional Network
Connectivity
The K-clustering was repeated 100 times to obtain dFC states,
based on an optimal number of clusters of four according to
elbow criteria (Allen et al., 2014), where each cluster represented
one dFC state. Using k-means clustering approach, we identified
four dFNC states (Wu et al., 2019; Figure 1B). State I (14%
dFNC) was characterized by connections between SMN, CEN,
and DMN networks with positive and negative couplings, and
significant positive correlation within SMN and AUD networks.
In State 2, which accounts for 15% of all windows, SMN
was positively correlated with VIS and CEN, while DMN was
negatively correlated with AUD, VIS, and SMN. State 3 (16%
dFNC) is similar to State 1, but the connectivity within and
between networks is weaker than that in State 1. In State 4, which
accounts for 55% of all windows, FNC between all functional
networks was very sparse.

Group differences in the temporal properties of dFNC states
are displayed in Table 2. Compared to HCs, patients with acute
CO poisoning had significantly increased fractional windows and
mean dwell time in State 2 (for fraction, p = 0.000, FDR corrected;
for mean dwell time, p = 0.000, FDR corrected).

Dynamic FC States and Clinical
Symptoms
In the acute CO poisoning group, we found a positive association
between the mean dwell time of State 2 and coma time
(Figure 2A). In addition, the fraction window of State 2 was
positively correlated with coma time (Figure 2B).

Subgroup Analysis
The subgroup analysis results revealed that State 2 of children
patients had significantly higher fraction and mean dwell time
than HC group (for fraction, p = 0.000, FDR corrected; for
mean dwell time, p = 0.000, FDR corrected). However, State
4 of children patients had a significantly lower fraction and
mean dwell time than HC group (for fraction, p = 0.01, FDR
corrected; for mean dwell time, p = 0.034, FDR corrected), and
children patients with acute CO poisoning make more transitions
than HCs (p = 0.006, FDR corrected). No significant outcome
was observed in adults with acute CO poisoning in all states
compared with HC.

DISCUSSION

Dynamic functional connectivity has been widely used to explore
brain function and thus may serve as a novel physiological
biomarker of disease (Hutchison et al., 2013). The present study
analyzed dFNC in patients with acute CO poisoning, including
the temporal properties of FNC states and their relationship with
coma duration and clinical cognitive measurement of patients.
Patients with acute CO poisoning spent more time in State
2 than controls. Moreover, the temporal properties of State 2
were positively correlated with coma time in the patient group.
Other clinical indicators did not correlate significantly with
temporal characteristics of dFNC. This could be explained by the
insignificant effect of CO Hb as an indicator of the clinical status
of CO poisoning (Hampson and Hauff, 2008). In addition, the
MMSE focuses primarily on direction and language function, has
a low false negative rate in assessing moderate to severe cognitive
impairment, and is susceptible to language and education levels.

In fact, the acute phase of carbon monoxide poisoning leads
to demyelination of brain white matter (Park et al., 2014), and
damage to brain white matter inevitably disrupts connections
between various large brain regions, resulting in reduced
information transmission efficiency of the brain functional
network in patients with acute carbon monoxide poisoning. This
may be the main reason for clinical symptoms, such as slowed
reactions, memory loss, and reduced logical thinking ability in
patients with carbon monoxide poisoning early in life. Our results
found that patients with acute CO poisoning spend more time
on State 2, with positive and negative coupling between SMN
and CEN, and negative correlations between DMN and SMN,
CEN. A communication between CEN and SMN networks (while
inactivating the DMN) has been suggested to be necessary for
translating effective cognitive processing into action (Sridharan
et al., 2008). In addition, in State 2, there was a negative
correlation between DMN and other functional networks (SMN,
VIS, and CEN), and collaboration between the two networks,
CEN and DMN, facilitated memory (Blumenfeld and Ranganath,
2006; Huijbers et al., 2011). Therefore, it is reasonable to speculate
that state 2 is a compensatory state for patients in the acute
phase of co poisoning. The increased frequency of expression of
these functional couplings in patients with acute CO poisoning
due to the reduced efficiency of information transfer in the
functional brain network can be explained by a potential
compensatory mechanism of the intrinsic brain network, leading
to stronger synchronization. More convincingly, CO poisoning
patients (19 individuals) showed State 2, whereas only nine
normal individuals demonstrated State 2. In addition, we found
a positive correlation between the fractional window and mean
dwell time of State 2 and coma duration in patients. Thus,
we hypothesized that the duration of coma after co poisoning
affected the length of compensatory state. Based on these results,
we defined State 2 as an abnormal compensatory state in patients
with acute CO poisoning. The most frequently reoccurring State
4 has the weak connectivity patterns that resembled the static
FNC patterns. In previous dFNC studies, a dynamic state that
resembles the stationary FNC patterns typically accounts for the
largest percentage of windows. This weakly connected state is
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FIGURE 1 | (A) Basal ganglia (BG), auditory (AUD), sensorimotor (SMN), visual (VIS), default mode (DMN), cognitive executive (CEN), and cerebellar networks (CB).
(B) The centroid of each FNC state and its total number (percentage) of occurrence in each state.
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TABLE 2 | The results of Mann–Whitney U test.

Patients (n = 29) Controls (n =29) p-value

Fraction (%)

State 1 8.98 (0.00–75.84) 1.12 (0.00–83.15) 0.728

State 2 12.92 (0.00–85.39) 0.00 (0.00–43.26) 0.03*

State 3 3.37 (0.00–92.70) 4.49 (0.00–93.82) 0.823

State 4 47.19 (0.00–100.00) 71.91 (1.69–100.00) 0.108

Dwell time

State 1 13.66 (0.00–45.00) 2.00 (0.00–49.33) 0.34

State 2 15.00 (0.00–152.00) 0.00 (0.00–33.00) 0.05*

State 3 6.00 (0.00–82.50) 8.00 (0.00–83.50) 0.386

State 4 26.00 (0.00–178.00) 46.00 (3.00–178.00) 0.34

Transition 6.00 (0.00–14.00) 4.00 (0.00–10.00) 0.19

According to the type and distribution of the data, fractional windows, transition
number, and mean dwell time are expressed as median (IQR).
Mann–Whitney U test for two groups.
Asterisk (*) means p < 0.05, FDR corrected.

more common in many psychiatric disorders, such as bipolar
disorder (Rashid et al., 2014), schizophrenia (Damaraju et al.,
2014; Fu et al., 2018), autism (Fu et al., 2019), and Parkinson (Kim
et al., 2017). However, the patients with acute carbon monoxide
poisoning do not exhibit such negative patterns in the occurrence
of State 4. This may be related to the fact that carbon monoxide
poisoning has a different pathophysiological mechanism than
other psychiatric disorders. There is similar connection mode
between state 1 and state 3, but the connection strength of
state 1 is obviously stronger than that of state 3. We do not
yet know the physiological significance of these two states, and
statistically there were no inter-group differences in the temporal
characteristics and intensity of the two states. Therefore, further
detailed studies are needed.

The subgroup analysis results revealed that children with
CO poisoning exhibited greater dFNC instability, including an
increased incidence of State 2, a decreased incidence of State
4, and more frequent transitions between states. In contrast,

no significant results were observed in the adult subgroup.
Therefore, this compensatory state 2 is more likely to occur after
carbon monoxide poisoning in children. In addition, children
with acute carbon monoxide poisoning spent less time in state
4. Recent studies (Marusak et al., 2017) further suggest that
this state may be associated with self-referential processing. We
speculate that the reasons for this are that the first reason is that
different levels of brain development, high levels of attention,
and cognitive control processes develop during childhood and
adolescence, and the emergence of these complex processes is
supported by the reconfiguration and refinement of functional
brain networks (Bunge and Wright, 2007; Luna et al., 2010).
The second reason may be the existence of different collateral
circulation compensations in the brain. Children and adults do
have different collateral circulation compensations under certain
brain diseases (Liu et al., 2020), but further detailed studies
are needed to evaluate this hypothesis. Dynamic functional
connectivity changes with age. Therefore, the results of this study
indicate that children with carbon monoxide poisoning exhibit
greater dFC instability than adults. It is not necessarily all carbon
monoxide poisoning, but it could be age-related (Tian et al.,
2018), so our conclusions should be treated with caution.

Certain limitations should be considered when interpreting
our findings. First, most of our patients underwent varying
degrees of hyperbaric oxygen therapy before their MRI scans.
We cannot exclude the effect of hyperbaric oxygen treatment on
our resting-state data. In future studies, it will be important to
separate the abnormalities associated with CO poisoning from
the associated effects of hyperbaric oxygen therapy on dynamic
functional connectivity properties by comparing patients treated
with hyperbaric oxygen therapy to those who did not undergo
hyperbaric oxygen therapy. Second, considering the clinical
simplicity, clinicians used the more generally applicable MMSE
score for emergency patients with CO poisoning. In contrast,
while MoCA scores are more extensive and more comprehensive
in their assessment, especially in terms of space/execution, they
are more cumbersome in their procedures and less convenient in

FIGURE 2 | (A) The mean dwell time of State 2 is positively associated with coma time in acute CO poisoning patients. (B) The fraction window of State 2 is
positively correlated with coma time in acute CO poisoning patients.
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clinical examination. It would be beneficial to further optimize
the relevant operations and apply them to routine screening after
CO poisoning. Third, when it comes to dFNC analysis, while the
limited scan time in this study (i.e., 7 min) may be insufficient
to investigate all aspects of dFNC changes. It has been shown
that short scans can successfully capture different connection
states, for example, 5 min. Longer scan times (>10 min) have
been shown to better characterize the dynamic patterns of FC
(Hindriks et al., 2016), and thus future work will extend the
scan time further. Second, dFNC analysis lacks the gold standard
for selecting dFNC estimation window size. Most dynamic
functional connectivity studies estimate FC dynamics using a
window size of 22 TRs (Kim et al., 2017; Wang et al., 2019).
Therefore, it is reasonable to choose a window width of 22
TRs in this study.

CONCLUSION

Using resting-state functional MRI data, GICA and sliding
time window techniques can identify four FC states of time-
varying functional network connectivity in the acute phase of
carbon monoxide poisoning. Of these, State 2 is a compensatory
state following carbon monoxide poisoning that occurs more
frequently in pediatric patients and correlates with coma
duration, inferring that dFNC analysis could serve as a potential
imaging biomarker while also providing new insights into
understanding the pathophysiological mechanisms underlying
carbon monoxide poisoning.
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