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Abstract: Despite the extensive research on Notch signaling involvement in inflammation, its specific
role in macrophage response in autoimmune disease and defense mechanisms against bacterial
infection, such as Mycobacterium avium paratuberculosis (MAP), remains unknown. In this study,
we investigated the molecular role of Notch-1 signaling in the macrophage response during MAP
infection. In particular, we measured the in vitro effect of MAP on Notch-1 signaling and downstream
influence on interleukin (IL)-6 and myeloid cell leukemia sequence-1 (MCL-1) and consequent
cellular apoptosis, MAP viability, and macrophage polarization. Overall, the data show significant
upregulation in Notch-1, IL-6, and MCL-1 in MAP-infected macrophages, parallel with a decrease in
apoptosis and elevated pro-inflammatory response in these infected cells. On the contrary, blocking
Notch signaling with γ-secretase inhibitor (DAPT) decreased MAP survival and burden, increased
apoptosis, and diminished the pro-inflammatory response. In particular, the treatment of infected
macrophages with DAPT shifted macrophage polarization toward M2 anti-inflammatory phenotypic
response. The outcome of this study clearly demonstrates the critical role of Notch signaling in
macrophage response during infection. We conclude that MAP infection in macrophages activates
Notch-1 signaling and downstream influence on IL-6 which hijack MCL-1 dependent inhibition of
apoptosis leading to its chronic persistence, and further inflammation. This study supports Notch-1
signaling as a therapeutic target to combat infection in autoimmune diseases such as Crohn’s disease
and Rheumatoid Arthritis.

Keywords: notch; macrophages; paratuberculosis; IL-6; mcl-1; apoptosis; polarization; M1; M2;
Crohn’s disease; rheumatoid arthritis

1. Introduction

Notch signaling is an evolutionary-conserved pathway that mediates juxtracrine cell
communication through the receptor–ligand interaction. Four Notch receptors, known as Notch
1–4, and five ligands, known as Delta-like (DLL) 1, 3, 4 and Jagged 1–2, have been recognized in
mammals. The activation of the Notch receptor by the transmembrane ligand on juxtaposed cells
leads to proteolytic cleavage of the Notch receptor by the γ-secretase complex, which eventually leads
to the release and nuclear translocation of the Notch intracellular domain (NICD), where it interacts
with DNA binding protein CSL (C promotor-binding factor 1 (CBF1)/RBP-J in humans, suppressor of
hairless in Drosophila melanogaster, Lin-12 and Glp-1 (Lag-1) in Caenorhabditis elegans), and activates
the transcription of Notch target genes such as hairy enhancer of split (HES) and HES with YRPW
motif (HEY) [1].
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The Notch signaling pathway coordinates numerous cellular processes throughout the body,
including immunity [2]. A considerable body of literature has confirmed the role of Notch signaling in
immune cell development and function [1,2]. Although the role of Notch signaling in lymphocyte
development and functions is well accepted, there is still considerable ambiguity about the role of
Notch signaling in myeloid cells including macrophages [3]. This includes the role of Notch signaling
in the macrophage immune response, and defense mechanisms against intracellular bacterial infections
which remain unknown.

Macrophages are considered the key effector cells of innate immunity that serve as the first line
of defense to encounter invading pathogens [4]. However, they are the primary target for infection
by various pathogens, including Mycobacterium avium subspecies paratuberculosis (MAP) [5]. MAP is
an obligate intracellular pathogen that has been associated with several pathological conditions such
as Crohn’s disease (CD) [6], Type 1 diabetes [7], and Rheumatoid Arthritis (RA) [8]. MAP infects
and persistently survives in macrophages by adopting several survival strategies to escape host defense
mechanisms [5]. The apoptosis of infected macrophages is considered one of the host defenses to
eradicate the infected cell and its resided bacteria [9]. Additionally, apoptotic macrophages present
bacterial antigens to the adaptive immune system to ensure bacterial effective clearance and constraint
the infection [10].

Notch signaling has been reported to regulate apoptosis in various cell types [11]. However,
the role of Notch signaling in regulating macrophage apoptosis, particularly during MAP infection,
is still poorly determined. Evidence suggests the involvement of Notch-1 signaling in regulating
macrophage apoptosis by inducing the expression of myeloid cell leukemia sequence-1 (MCL-1) [12].
MCL-1 is an anti-apoptotic protein that forms heterodimerization with pro-apoptotic protein Bak
and Bax to abrogate their apoptotic effect [13]. In macrophages, the expression level of MCL-1 is
mediated by several factors including STAT3 [14], a transcription factor that mediates cellular responses
to various cytokines including interleukin (IL)-6 [15]. Previously, we reported the upregulation of
IL-6 expression and the consequent increase in bacterial viability in MAP-infected macrophages [16].
Several reports have described the regulatory role of Notch-1 on IL-6 expression, as the IL-6 promoter
in humans and mice showed a conserved binding motif of Notch signaling protein [17,18]. This hints to
a possible involvement of Notch-1 signaling in macrophage immune response and defense mechanisms
against MAP infection.

The plasticity of the macrophage allows for the switch of its phenotypic response according to
microenvironmental cues. In particular, Macrophages may assume pro-inflammatory phenotype M1 in
response to interferon (IFN)-γ, tumor necrosis factor (TNF)-α and bacterial lipopolysaccharide (LPS).
On the other hand, IL-4 and IL-13 promote macrophages to adopt M2 anti-inflammatory phenotype [19].
Therefore, the proper activation of the macrophage is important to achieve the successful elimination
of the invading pathogens or an insulting stimulation, while a disparity in macrophage activation
is associated with pathological conditions including autoimmune diseases [20,21]. Accordingly,
elucidating the signaling pathways that coordinate macrophage activation under different conditions
is essential for understanding the molecular basis involved in the development of diseases, including
MAP-associated disorders. The role of Notch-1 signaling in macrophage polarization in response
to MAP infection has not previously been reported. In this study, we investigated the in vitro effect
of MAP infection on Notch-1 signaling and downstream influence on IL-6 and MCL-1 expression
in infected macrophages. In particular, we evaluated the role of Notch-1 signaling in apoptosis
and consequent MAP viability and its effect on macrophage polarization and inflammatory response
in MAP-infected macrophages.
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2. Materials and Methods

2.1. Cell Culture and Treatment

The human monocytic cell line THP-1 (ATCC TIB-202) was used to model macrophages. THP-1
cells were cultured in RPMI-1640 medium (Thermo Fisher, Cat# A1049101, Waltham, MA, USA)
containing 10% fetal bovine serum (FBS) (Thermo Fisher, Cat# 26140) and maintained in a humidified
5% CO2 incubator at 37 ◦C. THP-1 monocytes were differentiated to THP-1-derived macrophages
with 50 ng/mL of phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, Cat# 8139, Missouri, USA)
for 48 h. Cells were then washed with phosphate buffer saline (PBS) (Thermo Fisher, Cat# 20012050)
and incubated with culture media for further processing.

To target Notch signaling in THP-1-derived macrophages, the γ-secretase inhibitor DAPT
[N-(N-[3,5-difluorophenacetyl]-l-alanyl)-S-phenylglycine t-butyl ester] (Cell Signaling Technology,
Cat# 15020, Danvers, MA, USA) was used, cells were treated with DAPT (0–40 µM) for 24 h. To inhibit
MCL-1 in THP-1-derived macrophages, Maritoclax (MCL-1 inhibitor) (Tocris, Cat# 5368, Minneapolis,
MN, USA) was used, cells were treated with Maritoclax (0–80 µM) for 24 h.

2.2. Bacterial Culture

The clinical MAP strain (UCF4; isolated from CD patient) and Mycobacterium smegmatis (ATCC
27199BD) were cultured using Bactec MGIT Para-TB medium tubes (Becton Dickinson, Cat# 245122,
NJ, USA). Bactec MGIT Para-TB supplements (Bovine albumin, Catalase, Casein, and Oleic acid) was
added for MAP tubes. Bactec MGIT Para-TB medium tube contains 7 mL of modified Middlebrook
7H9 broth base and an oxygen-sensitive fluorescent sensor embedded on the bottom of each tube,
where actively respiring bacteria cause the sensor to fluoresce. All Bactec MGIT Para-TB medium tubes
were incubated in BD BactecTM MGITTM 320 Analyzer at 37◦ C.

2.3. Quantitative Real-Time PCR (RT-PCR)

Total RNA was isolated from cells using TRIzol™ reagent (Thermo Fisher, Cat# 15596018) according
to the manufacturer’s instructions; 800 ng of total RNA was used to synthesize cDNA, and quantitative
real-time PCR was performed using the StepOnePlusTM Real-Time PCR System (Thermo Fisher,
Cat# 4376600) with Fast SYBR Green Mastermix (Thermo Fisher, Cat# 4385610) as detection dye.
Housekeeping β-actin primer (Thermo Fisher) was used to measure the endogenous baseline CT
values. Relative mRNA expression levels were calculated by using the equation 2(−∆CT)

× 1000, where
∆CT= [(Sample RT-PCR CT value) − (β-actin CT baseline value)]. The primers (Thermo Fisher) used
for the RT-PCR in this study are shown in Table 1.

2.4. Measurement of MAP Viability and Load

To measure relative MAP viability in infected macrophages, Live/DeadTM BaclightTM bacterial
viability assay (Thermo Fisher, Cat# L7007) was used. Briefly, THP-1-derived macrophages were
infected with MAP (UCF 4, 107 CFU/mL) for 24 h, after washing to remove extracellular bacilli, cells
were collected and lysed with 500 µL of M-PER™ Mammalian reagent (Thermo Fisher, Cat# 78503).
Samples were centrifuged at 10,000× g for 10 min, then 100 µL of each sample supernatant was loaded
in triplicate into separate wells of 96-well flat-bottom microplate and mixed with 100 µL of staining
reagent mixture (SYTO® 9 green- fluorescent nucleic acid stain and Propidium iodide red-fluorescent
nucleic acid stain). Following 15 min of incubation in the dark, the integrated intensities of the green
(530 nm) and red (630 nm) emission and excitation at 485 nm were measured using SpectraMAX® i3x
Multi-mode microplate reader. Then the green/red fluorescence ratios were calculated, which detected
the Live/Dead MAP ratio. The least-squares fit line was generated from various proportions of Live:
Dead MAP, and the equation was used to calculate the MAP viability represented as colony-forming
units per milliliter (CFU/mL). The direct effect of DAPT on extracellular MAP growth in Bactec MGIT
Para-TB medium tubes was evaluated by BD Bactec™ MGIT™ 320 Analyzer.
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Table 1. Primer sequences.

Gene Primer Sequence (5′-3′) Amplicon Length (bp)

β-actin CTCATCTTGTTTTCTGCGCAAGTT
CTTCCCTCCTCAGATCATTGCTC 226

Notch-1 TGAAATTCAGGGCCCCTCC
GCATCGGGCACCTGAAC 162

HES-1 CAGATCAATGCCATGACCTACCC
GGAAAGCAAACTGGCCATCG 250

MCL-1 TGGTGGTGGTTGGTTAAAAGTCA
GTGGAGTTCTTCCATGTAGAGGAC 152

IL-6 AGGAGAAGATTCCAAAGATGTAGCC
TGCTCTAGAACCCAGCAAAGAC 228

iNOS GGAGCAACGTTGAGGAAATAAGACT
AAGAGCCAGAAGCGCTATCAC 252

CD206 GGAGGATTCCATGTATTTGTGAGC
AAATGAGTGAAGTGAAATCAGTTACCT 510

IL-10 ATGTCTAGTTCAGGCAGTCCCA
GGGCTTGCTCTTGCAAAACC 272

2.5. Measurement of Active Cadpase-3 and IL-6 Proteins Levels by Enzyme-linked Immunosorbent
Assay (ELISA)

To measure macrophage apoptosis, the level of active caspase-3 cleaved at Asp175/Ser176 in cell
lysates was measured using active Caspase-3 ELISA Kit (Thermo Fisher, Cat# KHO1091) following
the manufacturer’s instructions. To measure IL-6 secretion level in cell culture medium, IL-6 Human
ELISA kit (Thermo Fisher, Cat# BMS213HS) was used following the manufacturer’s instructions.
Cleaved caspase-3 and IL-6 levels were determined by reading optical density at 450 nm using
SpectraMAX® i3x Multi-mode microplate reader.

2.6. Statistical Analysis

To determine the statistical significance in this study, all data were pre-tested for normal distribution
using the Kolmogorov–Smirnov normality test followed by Unpaired tow-tailed t-test. The values
were presented as mean ± standard deviation (SD). All statistical analyses were performed using Prism
8 (GraphPad software, version 8.4.3, San Diego, CA, USA), with p < 0.05 considered significant.

3. Results

3.1. MAP Infection Induces Notch-1, IL-6 and MCL-1 Expression in Macrophage

To explore the effect of MAP infection on Notch-1, IL-6, and MCL-1 expression in infected
macrophages, THP-1-derived macrophages were infected with MAP (107 CFU/mL) for 24 h. We found
that MAP infection significantly induced Notch-1, IL-6, and MCL-1 gene expression by 1.3, 1.2,
and 1.9-fold, respectively, compared to untreated cells (p < 0.05; Figure 1A,B,D).

At the protein level, MAP infection significantly induced IL-6 secretion in cell culture medium as
shown in Figure 1C (p < 0.05).

The ability of MAP infection to induce Notch-1 receptor expression promoted us to determine
the impact of MAP infection on Notch signaling activation by measuring the expression of HES-1,
a Notch target gene. As shown in Figure 1E, there was a significant upregulation in Hes-1 expression
(1.2-fold) in MAP-infected macrophages compared to uninfected cells (p < 0.05).

To study the effect of MAP infection compared to the controls on inflammatory response
in a macrophage system, Notch-1, IL-6, MCL-1, and HES-1 expression levels were measured
in THP-1-derived macrophages. As shown in Figure 1F–I, LPS, which was used as a positive
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inflammatory control, produced similar effects as observed in MAP infection. In particular, significant
upregulation was observed in Notch-1, IL-6, MCL-1, and HES-1 compared to uninfected cells (p < 0.05).
On the contrary, this effect was not detected in macrophages challenged with heat-inactivated MAP
(dead MAP) or M. smegmatis, a non-pathogenic related microorganism.Microorganisms 2020, 8, 1006 5 of 15 
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were performed in triplets. Data are shown as mean ± SD, and significance is considered as *p < 0.05. 
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Figure 1. Mycobacterium avium paratuberculosis (MAP) induces expression of Notch-1, IL-6, and myeloid
cell leukemia sequence-1 (MCL-1) in infected macrophages. (A–E): Expression level of Notch-1,
interleukin (IL)-6, MCL-1, and hairy enhancer of split (HES)-1 was measured in infected macrophages
using MAP (UCF 4, 107 CFU/mL) for 24 h. (F–I): Expression level of Notch-1, IL-6, MCL-1, and HES-1
in macrophages infected with M. smegmatis, MAP, heat-inactivated MAP, and lipopolysaccharide (LPS)
(10 ng/mL). Gene expression levels were measured using RT-PCR. IL-6 protein level was measured
using Enzyme-linked Immunosorbent Assay ELISA. All experiments were performed in triplets. Data
are shown as mean ± SD, and significance is considered as * p < 0.05.

3.2. Effect of DAPT on Expression of Notch-1, IL-6 and, MCL-1 in Macrophages

To confirm the role of Notch-1 in downstream signaling and its effect on the expression of IL-6
and MCL-1 in THP-1-derived macrophages, Notch signaling was blocked pharmacologically using
a γ-secretase inhibitor known as DAPT. In absence of infection, treatment with DAPT (0–40 µM)
resulted in a significant decrease in Notch-1 expression at 20–40 µM concentration levels compared to
untreated macrophages (average 36%) (p < 0.05; Figure 2A). Similarly, IL-6 gene expression decreased
significantly at 20–40 µM DAPT concentration compared to untreated macrophages (average 46%)
(p < 0.05; Figure 2B). IL-6 secretion in cell culture medium was also significantly decreased in response
to DAPT treatment by 40% at 10–40 µM concentration levels (p < 0.05; Figure 2C). Surprisingly, MCL-1
expression decreased by 45%-86% in response to DAPT treatment at 10–40 µM concentration levels
(p < 0.05; Figure 2D). To confirm the effect of DAPT on Notch-1 activation, we measured the effect
of DAPT treatment on HES-1. We found that the expression levels of HES-1 were significantly
reduced by 36%-44% at 20–40 µM DAPT concentration compared to untreated macrophages (p < 0.05;
Figure 2E). Pre-treatment of THP-1-derived macrophages with DAPT (0–40 µM) for 24 h, followed
by MAP infection (107 CFU/mL for 24 h) diminished the ability of MAP to induce Notch-1, IL-6,
MCL-1 and HES-1 expression compared with untreated infected group (p < 0.05). In particular, 30 µM
DAPT pre-treatment resulted in a decrease in the expression of Notch-1 (1.5 ± 0.1), IL-6 (1.4 ± 0.3),
MCL-1 (0.44 ± 0.03) and HES-1 (1.2 ± 0.08) compared with the untreated infected group (2.25 ± 0.15,
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2.7 ± 0.25, 1.99 ± 0.21, and 1.91 ± 0.29 respectively) (p < 0.05; Figure 2F,G,I,J). At the protein level,
DAPT (10–40 µM) significantly diminished IL-6 secretion in MAP-infected macrophages by an average
of 56% (p < 0.05; Figure 2H).
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Figure 2. Effect of γ-secretase inhibitor (DAPT) on Notch-1 signaling. (A–E): Notch-1, IL-6, MCL-1
and HES-1 expression was measured in macrophages that were pre-treated with DAPT (0–40 µM).
(F–J): Expression levels of Notch-1, IL-6, MCL-1 and HES-1 in THP-1-derived macrophages that were
pre-treated with DAPT then infected with MAP (UCF 4, 107 CFU/mL) for 24 h. The gene expression
levels were measured by RT-PCR. IL-6 protein level was measured using ELISA. All experiments were
performed in triplets. Data are shown as mean ± SD, and significance is considered as * p < 0.05.

3.3. Effect of DAPT on MAP Survival in Macrophage via Notch-1

To assess the role of Notch-1 in host defense against infection, MAP viability was measured in
DAPT-treated macrophages under two different conditions: Post-infection (Figure 3A) where cells were
infected with MAP (107 CFU/mL) for 24 h, then treated with DAPT (0–40 µM) for 24 h, and pre-infection
(Figure 3B) where cells were pre-treated with DAPT (0–40 µM) for 24 h, then infected with MAP
(107 CFU/mL) for 24 h. To our surprise, DAPT treatment caused a significant decrease (>50%) in
MAP viability in both treatment approaches compared to untreated cells (p < 0.05). Furthermore,
we investigated the direct effect of DAPT on extracellular MAP growth in microbiological medium
using Bactec MGIT Para-TB medium treated with DAPT (0–40 µM). There was up to a 45% reduction
in MAP growth in DAPT (40 µM)-treated culture groups.

3.4. rIL-6 Induces Notch-1, MCL-1 and HES-1 Expression in THP-1-Derived Macrophage

Next, to elucidate the possible interplay between IL-6 and Notch-1 signaling in macrophages,
THP-1-derived macrophages were treated with exogenous recombinant rIL-6 (0–500 U/mL) and then
analyzed for the expression level of Notch-1, MCL-1 and HES-1. As shown in Figure 4A, rIL-6 treatment
caused significant upregulation in Notch-1 expression by 4.3 to 5.5-fold in a dose-dependent manner
compared with untreated macrophages (p < 0.05), whereas MCL-1 expression was upregulated by 3.9
to 5.4-fold at 250, and 500 U/mL levels, respectively (p < 0.05; Figure 4B). Similarly, rIL-6 treatment
(250 and 500 U/mL) caused upregulation in HES-1 by 3.8 to 6.2-fold, respectively (p < 0.05; Figure 4C).
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Figure 3. Effect of DAPT on MAP viability. (A): MAP viability was measured in THP-1-derived
macrophage infected with MAP (UCF 4, 107 CFU/mL) followed by DAPT (0–40 µM) treatment.
(B): MAP viability was measured in THP-1-derived macrophages pre-treated with DAPT (0–40 µM)
followed by MAP infection (UCF 4, 107 CFU/mL). MAP viability was measured using Live/Dead™

Baclight™ bacterial viability assay. All experiments were performed in triplets. Data are shown as
mean ± SD, and significance is considered as * p < 0.05.

3.5. Effects of rIL-6 on MAP Viability in Infected Macrophages via Notch Signaling

To investigate the involvement of Notch signaling in rIL-6-mediated MAP survival in infected
macrophages, the effect of rIL-6 on MAP viability in macrophages pre-treated with DAPT (30 µM for
24 h) was examined. As shown in Figure 5A, rIL-6 promoted MAP survival in infected macrophages in
a dose-dependent manner (6.2 × 106 – 6.7 × 106 CFU/mL) compared to (5.5 × 106 CFU/mL) in untreated
cells (p < 0.05). However, DAPT pre-treatment dramatically diminished the ability of rIL-6 to sustain
MAP survival in infected macrophages by 31%–59% at different rIL-6 concentration levels (p < 0.05;
Figure 5B). Interestingly, DAPT pre-treatment caused a decrease in MAP survival in macrophages
even in the presence of rIL-6 (2.5 × 106 – 4.6 × 106 CFU/mL) compared to untreated macrophages
(5.5 × 106 CFU/mL) (p < 0.05). These findings prompted us to elucidate the direct effect of MCL-1 on
MAP survival in infected macrophages. The MCL-1 was inhibited pharmacology using Maritoclax
(20–80 µM). As shown in Figure 5C, Maritoclax significantly decreased MAP survival in macrophages
by 30%-38% compared to untreated macrophages (p < 0.05).
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Figure 5. Effect of rIL-6, DAPT and Maritoclax on MAP viability. (A): MAP viability was measured
following treatment with rIL-6 (0–500 U/mL) in infected macrophages. (B): MAP viability was measured
in infected macrophages which were treated with DAPT (30 µM) then with rIL-6 (0–500 U/mL). (C) MAP
viability was measured in infected macrophages which were treated with Maritoclax (0-80 µM). MAP
viability was measured using Live/DeadTM BaclightTM bacterial viability assay and represented as
(CFU/mL). All experiments were performed in triplets. Data are shown as mean ± SD, and significance
is considered as * p < 0.05.

3.6. Notch Signaling Alters Apoptosis in MAP-Infected Macrophages

To evaluate the effect of infection on macrophage apoptosis, Caspase-3 activity was measured in
THP-1-derived macrophages infected with MAP (107 CFU/mL) for 24 h. MAP-infected macrophages
resisted apoptosis with a slight decrease in Caspase-3 activity (7.3%), whereas heat-inactivated MAP
and M. smegmatis showed 16.8% and 23.6% increase in Caspase-3 activity, respectively (p < 0.05).
Then, to assess the role of Notch-1 signaling in regulating apoptosis in MAP-infected macrophages,
Caspase-3 activity was measured in DAPT pre-treated THP-1-derived macrophages prior infection with
MAP. Caspase-3 activity was elevated significantly in DAPT pre-treated macrophages by (20%–29.4%)
compared to untreated macrophages (p < 0.05).

3.7. MAP Infection Modulates Macrophage Polarization

The expression of iNOS as M1 pro-inflammatory macrophage marker and CD206 as M2
anti-inflammatory macrophage marker were examined following MAP infection (107 CFU/mL)
for 24 h. As shown in Figure 6, MAP infection caused upregulation of iNOS expression by 1.8-fold
(A) and downregulation in CD206 by 0.42-fold (B) compared to uninfected cells (p < 0.05). M1/M2
ratio (C) was significantly high (3.8-fold) in MAP-infected cells compared to uninfected cells (p < 0.05).
Furthermore, the expression of IL-6 and IL-10 were determined in MAP-infected macrophages.
The results show a significant upregulation of IL-6 expression by ~1-fold (C) and a significant
downregulation in IL-10 expression by 0.5-fold (D) compared to uninfected cells (p < 0.05).

3.8. Determination of Notch-1 Signaling Role in Macrophage Polarization in MAP-Infected Macrophages

Next, to explore the involvement of Notch signaling in macrophage polarization in MAP-infected
macrophages, Notch signaling was blocked using DAPT (30 µM). Remarkably, treatment with DAPT
prior to and post-infection diminished the MAP ability to induce iNOS expression by 1.2-fold,
and 1.1-fold, respectively (p < 0.05). DAPT caused upregulation in CD206 expression (1.4 ± 0.3) in
pre-infection treatment and (0.8 ± 0.1) in post-infection treatment compared to untreated infected cells
(0.58 ± 0.1) (p < 0.05). The M1/M2 ratio significantly decreased in DAPT-treated cells prior infection
(1.2 ± 0.52), and much more in post-infection (2.1 ± 0.52) compared to untreated infected cells (4.8 ± 0.9)
(p < 0.05; Figure 7 A–C). Moreover, the expression of IL-6 was lower in DAPT-treated cells prior
to infection (1.3 ± 0.13), and post-infection (1.3 ± 0.04) compared to MAP-untreated infected cells
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(1.8 ± 0.18) (p < 0.05). IL-10 expression was upregulated (1.3 ± 0.15) prior to infection, and (1.1 ± 0.15)
in post-infection compared to untreated infected cells (0.51 ± 0.3) (p < 0.05; Figure 7D,E).Microorganisms 2020, 8, 1006 9 of 15 
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ratio was determined by calculating the expression ratio of iNOS/CD206 (C). All experiments were
performed in triplets. Data are shown as mean ± SD, and significance is considered as * p < 0.05.

4. Discussion

The highly conserved Notch signaling has been accepted as an essential player in an immune system.
The role of Notch signaling in lymphocyte activation and functions has been widely studied. However,
its role in myeloid cells such as macrophages remains unclear [21]. This is despite the fact that several
studies have hinted to a possible involvement of Notch signaling in macrophages during inflammation
and infection [22,23]. Notch signaling appears to favor an inflammatory microenvironment in
order to modulate the macrophage towards pro-inflammatory response [22,23]. For example, some
studies reported a possible reciprocal modulation between Notch signaling and Toll-like receptor
(TLR)-signaling and inflammatory cytokine signaling [23]. Fung et al. also reported the expression of
specific Notch receptors and ligands on macrophages in response to pro-inflammatory and bacterial
stimuli [22]. However, the specific role of Notch signaling in macrophages during bacterial infection is
still unknown.

In general, Mycobacteria employ several survival tactics to escape macrophage-mediated
elimination, such as switching the cell death type in infected macrophages from apoptosis to necrosis,
which serves its survival and evades its antigen presentation to the adaptive immune system [10].
In this study, we demonstrated that Notch-1 signaling is involved in regulating macrophage apoptosis
by inducing MCL-1 expression. MCL-1 is an anti-apoptotic protein that plays an essential role
in macrophage viability and survival using several factors including STAT3 [14]. The latter is
a transcription factor that is activated by various cytokines including IL-6 [15]. Previously, our group
also reported that MAP induced IL-6 expression in infected macrophages model, which resulted in
increased MAP survival [16]. We speculated then, that IL-6 expression may be directly regulated by
Notch signaling which supports a report where a chromatin immunoprecipitation assay was used
and detected the involvement of Notch-1 signaling in regulating IL-6 expression in an LPS-activated
macrophage model [17]. Thereafter, we hypothesized that MAP infection may induce Notch-1
signaling and consequently increase IL-6 and MCL-1 expression and ultimately lead to a delayed
macrophage apoptosis. The phenotypic outcome of this is an increase in bacterial persistence
and overall inflammation. This study clearly demonstrated that Notch-1 was upregulated following
MAP infection in THP-1-derived macrophages. The data in this study also indicate the MAP-induced
Notch-1 signaling activation through the upregulation of HES-1 expression, a Notch target gene.
The activation of Notch-1 signaling in MAP-infected macrophages was consistent with the upregulation
of IL-6 and MCL-1. Our data confirm earlier observations in the macrophage model infected with
Mycobacterium Bovis-BCG [24] and tuberculin-purified protein derivative (PPD) treatment [12]. Likewise,
LPS treatment produced results similar to the MAP infection, which confirms the expected outcome
when LPS is used [25]. As expected, our negative controls consisting of nonpathogenic M. smegmatis
and heat-inactivated MAP were processed rapidly following phagocytosis and resulted in a minimum
inflammatory response. This finding strongly associates MAP infection with Notch-1 signaling in
modulating macrophage response and inflammation.

To further validate the role of Notch signaling in regulating IL-6 and MCL-1 expression, we blocked
Notch signaling using the γ-secretase inhibitor known as DAPT. As expected, Notch-1 and HES-1
expression decreased significantly in infected and uninfected macrophages which supported our
selection of the type of inhibitor used in this study. The impact of blocking Notch signaling was direct,
causing a decrease in IL-6 and MCL-1 expression. Our data confirm earlier observations about reduced
MCL-1 expression in another system using RAW264.7 cells and Notch-1 silencing technology [12].
Surprisingly, our data demonstrated a dramatic decrease in MCL-1 expression in response to DAPT
treatment compared to Notch-1 and IL-6 response. This suggests a dual effect for Notch-1 and IL-6 in
regulating MCL-1 expression. Most importantly, blocking Notch signaling with DAPT reduced MAP
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infection and the inflammatory response which strongly indicates that Notch signaling is essential for
IL-6 and MCL-1 expression in response to intracellular infections such as MAP or M. bovis.

The essential role of IL-6 in promoting MAP survival in infected macrophages has been long
studied in our lab [16], and we have always sought to unravel the underlying mechanism(s) involved in
this observation. This study was designed to determine if Notch-1 may play a role here. Our data show
a dramatic decrease in MAP viability in infected macrophages in response to DAPT treatment, and this
finding directly links Notch-1 signaling to macrophage response in terms of defense mechanisms
against MAP infection. The role of Notch signaling in the macrophage response was further confirmed
following post-infection and pre-infection treatment with DAPT, which resulted in a decrease in MAP
viability and inflammatory response which supports another report using lung mice infected with M.
tuberculosis [25]. In contrast, the Notch inhibitor led to a higher virus load and inflammatory response
in the lung mice during H1N1 virus infection [26]. To validate the intracellular effect of DAPT on
Notch signaling and downstream expression, we determined the direct effect of this inhibitor on
MAP in microbiologic culture media, and the result showed a partial reduction in extracellular MAP
growth. DAPT is not an antibiotic and is not known to have antimicrobial activity. We speculate that
the interference of DAPT in MAP culture growth may be related to post-translational modification such
as protein glycosylation or lipoglycosylation; these processes include proteolysis via specific proteases
and peptidases. Such modifications are essential for some enzymes and protein function and provide
several physiological consequences in Mycobacteria [27]. In particular, we speculate that these proteolytic
enzymes may be inhibited by proteolysis inhibitors such as γ-secretase inhibitors. This novel finding
strongly suggests that targeting Notch signaling using DAPT will diminish MAP viability directly, as
demonstrated extracellularly and indirectly through the potentiate macrophage response.

In various bacterial infection models, IL-6 was reported to induce DLL-1 expression in monocytes
through the activation of STAT3. In turn, DLL-1 was noted to enhance IL-6 production and subsequent
STAT3 activation [28]. This interplay between IL-6 and Notch ligand expression led us to extend
our efforts to elucidate the possible interplay between IL-6 and Notch-1 signaling in macrophages.
Our data revealed an induction in Notch-1 and HES-1 expression in THP-1-derived macrophages in
response to exogenous rIL-6 treatment, which pinpoints the autocrine and paracrine effect of IL-6
on Notch-1 signaling and further emphasizes the positive feedback loop between IL-6 and Notch-1
signaling. Similarly, MCL-1 upregulation in response to rIL-6 treatment confirms the reciprocal
modulation of IL-6 and Notch-1 signaling in regulating MCL-1 expression. This supports a previous
report which suggested that STAT3 may play an essential role in inducing MCL-1 expression in
macrophages [14]. Interestingly, targeting Notch signaling in rIL-6-treated macrophages weakened
IL-6 to sustain MAP survival in infected macrophages, which confirms—one more time—the critical
role of Notch signaling in MAP infection. To our surprise, blocking MCL-1 pharmacologically with
Maritoclax caused a significant decrease in MAP viability and burden in infected macrophages. To our
knowledge, this is the first time this novel finding is reported. While the data strongly support the role
of Notch-1 in the modulation of macrophage response during infection, it also suggests that MCL-1 is
involved and should be elucidated further.

Since Mycobacteria escape macrophage-mediated elimination by switching the cell death mode
toward necrosis, and since MCL-1 inhibition decreases MAP survival in infected macrophages,
we investigated if delayed apoptosis occurs during MAP infection. Our results revealed a decrease in
Caspase-3 activity in MAP-infected macrophages compared to the uninfected group and macrophages
exposed to heat inactivated MAP and non-pathogenic M. smegmatis. This is consistent with previous
reports that virulent mycobacterial strains induce less apoptosis in THP-1-derived macrophages [29].
The decrease in Caspase-3 activity in MAP-infected macrophages is consistent with the upregulation
of MCL-1 expression which suggests that MCL-1 is involved in inhibiting apoptosis during the MAP
mode of action. We further confirmed this observation by targeting Notch signaling by DAPT
which resulted in lessening the MAP ability to inhibit apoptosis. This novel finding links Notch-1
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signaling in regulating macrophage response, apoptosis, and burden of MAP infection and exacerbating
of the inflammatory response.

We further looked at a possible role for Notch signaling in macrophage polarization during
MAP infection. As expected, and confirming what others reported in other microbial infections,
we observed induction of M1 polarization versus M2 polarization in response to MAP infection
and further confirmed it via the increased M1/M2 [30,31]. These data were validated by the elevated
expression of IL-6 at the expense of IL-10 in these cells. Most importantly, blocking Notch signaling
with DAPT during MAP infection reversed the M1/M2 ratio by switching the macrophage response
towards an anti-inflammatory phenotypic response. This was further confirmed with the reduced IL-6
and increased IL-10 expression in these cells. The findings clearly support the critical role of Notch
signaling in macrophage infection, especially in MAP-associated diseases, including CD and RA.

Overall, this study provides new insight into molecular mechanisms involved in MAP-mediated
infection in an in vitro macrophage system. The outcome clearly demonstrated that MAP activates
Notch-1 signaling and has a downstream influence on IL-6 to hijack the MCL-1-dependent inhibition of
apoptosis, which causes chronic intracellular persistence, and subsequent inflammation and possibly
tissue damage. The study also provides data to support strategies based on the targeting of Notch
signaling for therapeutic purposes (Figure 8). The crosstalk between Notch signaling and other
pathways provides an opportunity for combinatorial treatment to target many pathways simultaneously,
which may augment the therapeutic benefits.Microorganisms 2020, 8, 1006 13 of 15 

 

 
Figure 8. Schematic representation of the outcome of this study. (A): 1) MAP induces Notch-1 
signaling and downstream influence on IL-6 to hijack MCL-1 dependent inhibition of apoptosis, 
which allow its chronic intracellular persistence, and subsequent inflammation. 2) Notch-1 and IL-6 
reciprocal modulation to amplify MCL-1 expression, suggesting the critical role of Notch-1 signaling 
and its downstream effect in intensifying MAP-mediated effect in macrophages. 3) MAP promoting 
M1 versus M2 polarization through Notch-1 signaling. (B): Targeting Notch signaling in MAP-
infected macrophages enhanced macrophage apoptosis, decreased MAP burden, and promoted M2 
polarization and anti-inflammatory cytokines production. TLRs: Toll-like receptors, NICD: Notch 
intracellular domain. 
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