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ABSTRACT: Cholestasis represents one out of three types of drug induced
liver injury (DILI), which comprises a major challenge in drug development.
In this study we applied a two-class classification scheme based on k-nearest
neighbors in order to predict cholestasis, using a set of 93 two-dimensional
(2D) physicochemical descriptors and predictions of selected hepatic
transporters’ inhibition (BSEP, BCRP, P-gp, OATP1B1, and OATP1B3).
In order to assess the potential contribution of transporter inhibition, we
compared whether the inclusion of the transporters’ inhibition predictions
contributes to a significant increase in model performance in comparison to
the plain use of the 93 2D physicochemical descriptors. Our findings were in
agreement with literature findings, indicating a contribution not only from
BSEP inhibition but a rather synergistic effect deriving from the whole set of
transporters. The final optimal model was validated via both 10-fold cross
validation and external validation. It performs quite satisfactorily resulting in 0.686 ± 0.013 for accuracy and 0.722 ± 0.014 for
area under the receiver operating characteristic curve (AUC) for 10-fold cross-validation (mean ± standard deviation from 50
iterations).

■ INTRODUCTION

Drug induced liver injury (DILI) is a major issue worldwide,
both for patients and health providers.1,2 It is one of the
primary causes for attrition during clinical and preclinical
studies and the main reason for drug withdrawal from the
market.3−6 DILI is divided into types, (i) hepatocellular, (ii)
cholestatic, or (iii) mixed (hepatocellular and cholestatic),
according to the type of liver damage and the clinical chemistry
biomarker alterations.7 The cholestatic and mixed hepatocel-
lular and cholestatic type are the two most severe
manifestations of DILI and yield almost half of the recorded
cases of DILI.8,9

Cholestatic liver injury, or more simply cholestasis, is the
disruption of the bile flow, which might be either due to biliary
tract obstruction or to complications in bile acid uptake. While
the mechanistic basis for hepatocellular DILI is still a mystery
for the majority of the cases, more knowledge exists for
cholestatic DILI. There is growing evidence for a vast amount
of cholestasis cases pinpointing the important role of hepatic
transporters.10

Hepatic transporters are classified into basolateral and
canalicular ones. Basolateral transporters are responsible for
the uptake of drugs and other endobiotics and xenobiotics from
the blood, influencing the exposure of the hepatocyte to
potential damage. Canalicular transporters regulate the hepatic
clearance, as well as the secretion of bile salts and bile
conjugates into bile.10−15 Any disturbance of the transporters’
physiological function may result in the accumulation of
potentially harmful bile products that can finally cause

cholestasis.10 Figure 1 provides an overview on the respective
location of hepatocyte transporters.
Several transporters’ malfunctions have been associated with

cholestasis. The most important one, due to its pivotal role in
bile salts clearance, is the bile salt export pump
(BSEP).8,10,16−21 Apart from BSEP, there is evidence for the
implication of other canalicular efflux transporters such as the
multidrug resistance-associated protein 2 (MRP2),8−10,22 breast
cancer resistance protein (BCRP),8−10 multidrug resistance
protein 3 (MDR3),8,10 and P-glycoprotein (P-gp).8−10 MDR3
functions as an ATP-dependent phospholipid flippase, trans-
locating phosphatidylcholine from the inner to the outer
canalicular membrane. Canalicular phospholipids are then
solubilized by canalicular bile salts to form mixed micelles,
protecting cholangiocytes from the detergent properties of bile
salts. While P-gp is also not transporting bile salts, it is
implicated in cholestasis because of its large amount of
substrates and inhibitors which cause drug−drug interactions
that disrupt the smooth function of the hepatocyte.10 The
basolateral transporters play also an important role, both the
uptake transporters, such as organic anion transporting
polypeptides 1B1, 1B3, and 2B1 (OATP1B1, 1B3, and
2B1)8−10 and sodium (Na+) taurocolate cotransporter
(NTCP),8−10,23,24 and the efflux transporters, like multidrug
resistance-associated protein 38−10 and 48−10,20 (MRP3 and
MRP4). In particular, in cases of cholestasis, the basolateral
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uptake transporters NTCP and OATP1B1 have been found
down-regulated.10,11 However, in this case, OATP1B3 is up-
regulated as a compensatory mechanism for the elimination of
xenobiotics from sinusoidal blood.10,25,26 On the contrary, in
cases of cholestasis, MRP3 and MRP4 are up-regulated to
facilitate the efflux of the toxic bile salts out of the hepatocyte.27

Thus, simultaneous inhibition of several of these transporters
could induce drug toxicity due to inadequate elimination from
the blood or increase the cholestatic effect due to accumulation
of bile salts in the hepatocyte.
Consequently, drug-induced liver injury and cholestasis are

important toxicity alerts to be considered in drug development.
Interestingly, there are only a few computational studies for the
prediction of cholestasis reported in literature.28,29 With respect
to the involvement of hepatic transporter, there are some in
vitro studies correlating cholestasis with transporter inhibition,
such as BSEP,17,18,30 MRP3, MRP4,20 and NTCP.31 Also
several in silico studies for the identification of potentially
cholestatic compounds via modeling of transporters and then
associating them with the cholestatic effect of their inhibitors
have been conducted. A characteristic example is the study by
Greupink et al. in 2012, who developed a pharmacophore
approach for NTCP24 in order to identify potentially NTCP
inhibitors. Under the same principles, in 2014 Ritschel and
colleagues71 performed a 3D ligand-based pharmacophore
model for BSEP inhibition. However, in most of these cases the
amount of validated drugs is small and what is basically
described is the association between transporter inhibition and
cholestasis. Thus, as the respective is associated with
cholestasis, it is assumed that an inhibitor is causing cholestasis.
Most recently, Muller et al.,32 in order to model DILI, also
modeled some more hepatotoxicity end points, including
cholestasis. Moreover, Mulliner et al.33 presented a multilevel
modeling approach for DILI, where cholestasis was also
included as a morphological hepatobiliary finding. However,
examining the liver transporters contribution was not within the

scope of their work. Finally, it is noteworthy to mention some
multiscale modeling approaches for DILI. DILIsym (www.
dilisym.com) is a mechanistic mathematical model of DILI, that
has been used to investigate the effects of BSEP inhibition on
drug-induced liver injury,34 as well as on bile acid-mediated
DILI.35 Additionally, Sluka et al. developed a multiscale, liver-
centric in silico modeling framework for acetaminophen
pharmacology and metabolism that can be extended in
predicting hepatotoxicity due to acetaminophen overdosing.36

In this study we present a classification scheme in order to
predict cholestasis from a public data set, using physicochemical
descriptors as well as predicted transporter inhibition profiles.
For the latter we used our in house classification models for
BSEP,37 BCRP,38 P-gp,38 OATP1B1, and OATP1B3.39

■ METHODS
Data Compilation. Training Set. For compiling the DILI

training data set we searched in PubMed (http://www.ncbi.
nlm.nih.gov/pubmed),40,41 Google,42 Scopus (https://www.
scopus.com/),43 and the SIDER database v244,45 using the
search terms: “drug-induced cholestasis” or “cholestasis”. The
retrieved publications8,31,46,47 were then investigated manually
for human data, i.e. compounds that are positive or negative for
drug-induced cholestasis in humans. Those compoundsin
principle drugswere added to those obtained from the
SIDER v244,45 database. Unfortunately, cholestasis is an end
point that is not widely examined in terms of experimental or in
silico studies that would potentially guide us to big data sets.
Thus, even though we were able to compile several drugs
positive for cholestasis, there was almost no information in
terms of the negatives. On the other hand, DILI in general is
studied quite extensively and there are several respective data
sets. Since choleastasis is a possible manifestation for DILI, we
can consider safely that any compound negative for DILI will
definitely be also negative for cholestasis. Thus, the negative
compounds for DILI that we had compiled and curated in a
previous work were also used as negatives for this study. The
data set was carefully curated according to the following rules:

• All inorganic compounds were removed based on their
chemical formula in MOE 2014.09.48

• Salt parts and compounds containing metals and/or rare
or special atoms were removed and the chemical
structures were standardized using the Standardiser tool
created by Francis Atkinson.49

• Duplicates and permanently charged compounds were
removed using MOE 2014.09.48 Here we have to note
that stereoisomers, even if biologically can be considered
as different compounds, were considered as duplicates,
since they give the exactly same vector of descriptors. If
two (or more) stereoisomers are of the same class, only
one was kept. If they were of different classes, they were
all removed.

• 3D structures were generated using CORINA (version
3.4),50 and their energy was minimized with MOE
2014.09,48 using default settings, but changing the
gradient to 0.05 RMS kcal/(mol A2). In addition, the
existing chirality was preserved.

After these curation steps 152 compounds remained as
positives for cholestasis. The negatives for DILI, and
subsequently for cholestasis, were 466 compounds. However,
when uniting the data, there were compounds with contra-
dictory class assignments. These compounds were removed

Figure 1. Transporters located on the hepatocyte. Blue symbols
represent mainly the canalicular transporters, and red symbols, the
basolateral ones. The arrows define the direction of transport. The
transporters used in this study are presented within rectangular frames.
MRP1−6 multidrug resistance-associated proteins 1−6, OSTα/OSTβ
organic solute transporter, BSEP bile salt export pump, BCRP breast
cancer resistance protein, MATE1 multidrug and toxin extrusion
transporter 1, ABCG5/G8 ATP-binding cassette subfamily G member
5/8, MDR3 multidrug resistance protein 3, P-gp P-glycoprotein,
ATP8B1 ATPase-aminophospholipid transporter, OATP organic
anion transporting polypeptide, NTCP sodium (Na+) taurocolate
cotransporting polypeptide, OCT organic cation transporter 1, OAT
organic anion transporter.
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from the data set, yielding a data set of in total 578 compounds
(131 positives and 447 negatives). The compiled data set is
provided in the Supporting Information.
External Test Set. Recentlyand after having already

compiled our training set for cholestasis and developed the
respective modela data set covering multiple levels of
hepatotoxicity was published by Mulliner and co-workers.33

The data are hierarchically clustered by the authors into three
levels of hepatotoxicity: level 0 corresponds to general
hepatotoxicity, level 1 corresponds to clinical chemistry findings
and morphological finding as distinguished parts of general
hepatotoxicity, and level 2 discriminates both clinical chemistry
and morphological findings into hepatocellular and hepatobili-
ary injury. We use only clinical data, i.e. the human data, of
morphological findings for hepatobiliary injury as an external
test set for validating the developed cholestasis model. Once
more, we performed chemical data curation and removed the
compounds overlapping with the training set, which led to 1347
compounds (230 positives and 1117 negatives) as an external
test set.
Merged Data Set. We also merged the training with the test

set and tried to generate a model based on the united data. The
merged data set comprises 1904 compounds: 355 positives and
1549 negatives for cholestasis. Here we must note that the total
number of compounds in the merged data set is not the same
as the sum of the compounds of training set and test set. The
reason is that when removing the overlapping compounds
between training set and test set, all of the compounds were
removed from the test set, since we had already selected the
final model for cholestasis. From those overlapping com-
pounds, 21 had contradictory class labels. This did not matter
so much, since they were totally removed from the test set.
However, when merging the two data sets for modeling, we did
not want to decide regarding the class of those compounds.
Generation of Statistical Models. Molecular Descriptors.

For both data sets, several types of molecular descriptors have
been calculated, such as all 192 2D MOE descriptors, the 3D
VolSurf series of descriptors,32 as well as ECFPs (extended
connectivity fingerprints; ECFP6), using RDKit (http://www.
rdkit.org/).51 The list of the final descriptors used for the
proposed model is given in the Supporting Information (Table
S1). In addition to this, predicted hepatic transporter inhibition
profiles were also included in the list of descriptors. The
transporters investigated comprise BSEP, P-gp, BCRP,
OATP1B1, and OATP1B3.
In particular, for basolateral transporters we calculated the

predictions for four in silico classification models built upon
PaDEL descriptors52 for OATP1B1 and OATP1B339 inhib-
ition. For obtaining the predictions we use the models’ version
implemented in eTOXlab,53 an open source modeling
framework for implementing predictive models. Out of each
model we got a binary result: positive or negative. For each
transporter we use the sum of these binary scores, denoted
“Sum binary score”. The sum binary score can take values
between 0 (if all models predict the compound as negative) and
4 (if all models predict the compound as positive). For
basolateral transporters, we used the continuous score obtained
by the BSEP37 inhibition prediction model. Float prediction-
scores were also retrieved for P-glycoprotein38 and BCRPinhi-
bition.38 A more thorough description of the transporters
inhibition models is provided in the Supporting Information
(Table S2), where the size of the training set, the inhibition
threshold of the training set, and the algorithm and

performance of each individual model based on AUC values
are provided.

Algorithms Used. The two-class classification models were
built using the software package WEKA (version 3.7.12).54 We
investigated the performance of several base classifiers, such as
logistic regression, tree methods (random forest and J48 tree),
support vector machines (SMO in WEKA with polynomial,
RBF, and Puk kernels), naiv̈e Bayes, and k-nearest neighbors.
Moreover, because the data set is slightly imbalanced, in order
to equilibrate the effect of the majority class on model
performance, we also applied the cost-sensitive meta-classifier
MetaCost.55 The cost matrix applied corresponds to the
imbalance ratio of the data (3:1). Additionally, several meta-
classifiers were explored for attribute selection (AttributeSe-
lectedClassifier), as well as for improving the statistical
performance, such as Bagging56 and Boosting.57,58

Model Validation. The models were originally validated via
10-fold cross validation, which is considered a quite trustworthy
method of validation.59 The best modelsaccording to 10-fold
cross-validation evaluationwere further validated via using
the data set by Mulliner.33 Subsequently, for the best obtained
models, 50 iterations were performed by changing the cross-
validation seed (for splitting the data within cross validation)
and the respective performance parameters were calculated. In
order to compare whether the inclusion of the transporters
predictions in the descriptors set improves significantly the
model’s performance, a two-sample t test was performed in R.60

The statistics metrics taken into consideration were accuracy,
sensitivity, specificity, Matthews correlation coefficient (MCC),
area under the curve (AUC), precision and weighted average
precision. Apart from the conventional metrics of accuracy,
sensitivity, and specificity, we also use AUC, since it is a
measure of the models capability to rank the predictions, while
it decouples classifiers from class imbalance and error costs.
Moreover receiver operating characteristic (ROC) graphs are
very useful for visualization of the models results.61 The MCC
value, considering its formula, takes into account all values of
the confusion matrix:

=
× − ×

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

Where, TP is true positives, FP is false positives, TN is true
negatives, and FN is false negatives. Thus, it is considered more
balanced and informative than the column- or linewise
metrics.62 Weighted average precision is the average precision
obtained for the two classes but weighted from the total
number of instances of the classes.54 It is a quite helpful
parameter in multiclass classification problems, as well as for
imbalanced data sets where the number of negatives is greater
than the number of positives. Especially for the latter case, due
to the definition of precision [PPV = TP/(TP + FP)], its value
for the positive class would be low, which not necessarily means
that the total performance of the model is bad. Of course, since
we are dealing with a toxicity classification problem, like
cholestasis, the metrics that is of particular interest and that
should by no means drop below 0.5 is sensitivity or true
positive rate.

Defining Applicability Domain of the Models. In order
to be confident regarding the validity of the models we used, we
investigated the coverage of the transporters models for the
cholestasis data. Additionally, we checked how reliable the
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predictions of the cholestasis model for the cholestasis test set
are. The applicability domain was checked on KNIME with the
Enalos nodes63,64 that compute the applicability domain on the
basis of the Euclidean distances.65 The number of compounds
within the model’s applicability domain for each model and for
each cholestasis data set is provided in the Supporting
Information (Table S3).

■ RESULTS AND DISCUSSION

Generation of a Cholestasis Classification Model.
Several combinations of descriptors and classifiers were
investigated and the optimal classification model was selected
on the basis of the results of 10-fold cross validation. With
respect to the classifier, the best results were obtained using as
base classifier IBkthe k-nearest neighbors implementation in
WEKAwith k = 5. The meta-classifier MetaCost was also
applied, with the application of the cost matrix [0.0, 1.0; 3.0,
0.0], i.e. weighting the minority class 3 times more than the
majority class, in order to cope with the slightly imbalanced
training set. 2D MOE descriptors were performing better than
fingerprints and/or VolSurf descriptors, especially for sensi-
tivity, MCC and AUC. Combining the VolSurf descriptors with
2D MOE descriptors also did not provide any significant
improvement of the results. From the whole set of 2D MOE
descriptors we decided to use a subset of 93 interpretable
descriptors that give almost the same performance compared to
using all 2D MOE descriptors. Apart from the 93 2D
descriptors, we also included the predicted transporter
inhibition profiles. In order to assess the importance and
significance of this additional information individually, we used

them in different combinations: all transporters, only BSEP, all
transporters excluding either BSEP, or P-gp, or BCRP, or the
OATPs. This led to in total seven models (Table 1).
It is interesting to mention that we also exchanged the

training-test set roles between the two data sets and tried to
generate a model for cholestasis based on the bigger data set
from the work of Mulliner et al.33 However, even though the
results for 10-fold cross validation were equivalent to the model
we propose (generated on the compiled training set of 578
compounds), the results for the external validation of the 578
compounds were rather poor (results not shown). Thus, we
decided to stay with our original model.
Furthermore, we tried to generate a cholestasis model on the

merged data for the subset of 93 2D MOE descriptors, with or
without the transporters interaction profiles. Interestingly, the
k-nearest neighbor settings (k = 5), which gave quite
satisfactory results for 10-fold cross validation while modeling
either the training or the test set standalone, did not have the
same effect for the united data. For the merged data set SVM
(SMO implementation in WEKA) using a polynomial kernel,
with exponent equal to 2, performs better. The use of
MetaCost with a cost matrix of [0.0, 1.0; 5.0, 0.0], due to the
new imbalance ratio of the data, is also necessary. Additionally,
under these settings, the performance of the model is
significantly better when using the transporters predictions as
additional descriptors. The obtained performance of this model,
as well as the respective p-values of the performed two-sample
paired t test out of 50 iterations, is presented in the Supporting
Information (Table S4).

Table 1. Performance of the Model for MetaCost [0.0, 1.0; 3.0, 0.0] + IBk (k = 5), Changing the Descriptor Settings via
Including or Excluding Particular Transporters

model settings validation accuracy sensitivity specificity MCC AUC precision
weighted average

precision

93 2D MOE dscrs 10 CV 0.656 0.496 0.702 0.175 0.657 0.328 0.713
test set 0.611 0.609 0.611 0.168 0.617 0.244 0.774

93 2D MOE dscrs + all transporters pred. 10 CV 0.704 0.611 0.732 0.301 0.726 0.400 0.760
test set 0.564 0.591 0.559 0.113 0.585 0.216 0.758

93 2D MOE dscrs + BSEP pred 10 CV 0.682 0.481 0.740 0.200 0.665 0.352 0.721
test set 0.629 0.517 0.652 0.131 0.604 0.234 0.760

93 2D MOE dscrs + all transporters pred without BSEP 10 CV 0.683 0.603 0.707 0.270 0.702 0.376 0.749
test set 0.558 0.587 0.551 0.104 0.595 0.212 0.755

93 2D MOE dscrs + all transporters pred without P-gp 10 CV 0.725 0.522 0.766 0.241 0.706 0.315 0.789
test set 0.572 0.574 0.571 0.110 0.589 0.216 0.756

93 2D MOE dscrs + all transporters pred without BCRP 10 CV 0.696 0.618 0.718 0.294 0.719 0.391 0.758
test set 0.569 0.604 0.561 0.125 0.599 0.221 0.762

93 2D MOE dscrs + all transporters pred. without OATPs 10 CV 0.654 0.496 0.700 0.173 0.660 0.327 0.713
test set 0.612 0.522 0.63 0.117 0.606 0.225 0.756

Table 2. Mean Standard Deviation Values Obtained from 50 Iterations of 10-fold Cross-Validation for the Statistics Metrics of
Accuracy, Sensitivity, Specificity, MCC, AUC, Precision, and Weighted Average Precision

model settings accuracy sensitivity specificity MCC AUC precision
weighted average

precision

93 2D MOE dscrs mean 0.657 0.523 0.697 0.192 0.661 0.336 0.720
sd ±0.011 ±0.030 ±0.012 ±0.027 ±0.015 ±0.015 ±0.010

93 2D MOE dscrs + all transporters pred mean 0.686 0.621 0.706 0.284 0.722 0.382 0.755
sd ±0.013 ±0.030 ±0.015 ±0.027 ±0.014 ±0.016 ±0.011

93 2D MOE dscrs + BSEP pred mean 0.669 0.508 0.716 0.199 0.660 0.345 0.722
sd ±0.012 ±0.029 ±0.015 ±0.025 ±0.014 ±0.014 ±0.009

93 2D MOE dscrs + all transporters pred without BSEP mean 0.677 0.632 0.690 0.278 0.707 0.374 0.754
sd ±0.013 ±0.031 ±0.015 ±0.028 ±0.015 ±0.015 ±0.011
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Inspecting the obtained results in Table 1, it becomes
obvious that the best settings for the model for 10-fold cross
validation are achieved with the inclusion of all transporter
inhibition predictions in the list of descriptors. Nevertheless,
this is not the case for the external validation, where including
predicted inhibitor profiles for all transporters yields lower
accuracy and specificity values, while sensitivity remains almost
the same. Interestingly, the use of BSEP inhibition prediction
stand-alone does not seem to be sufficient. There is a drop in
the statisticsespecially for sensitivityin comparison to the
use of the whole set of transporter predictions, both for 10-fold
cross-validation and for the external test set.
Statistical Analysis of Transporter Predictions on the

Model’s Performance. In order to assess if the predicted
transporter inhibition profiles indeed statistically significantly
improve the models, we performed 50 iterations of 10-fold
cross validation followed by a two sample t test on the
performance parameters. For this we used the models with 2D
MOE descriptors, 2D MOE plus all transporters, 2D MOE plus
BSEP, and 2D MOE plus all transporters without BSEP (Table
2).
Analyzing the p-values for the pairwise comparisons

(Supporting Information Table S5) the main conclusion is
that indeed the use of liver transporter inhibition predictions
contributes significantly to the models performance when
compared to the use of only 2D physicochemical descriptors.
Interestingly, it is not only the BSEP inhibition contribution,
which matters. On the contrary, when only BSEP predictions
are used, there is only a slight increase in sensitivity and
specificity of the model, while sensitivity decreases. The other
way round, if all transporters predictions are used, sensitivity
increases, but accuracy and specificity reach their peak only
after the inclusion of BSEP predictions. This suggests that
BSEP apparently contains important information. Nevertheless,
it does not contain all the important information, despite the
fact that it is the most widely discussed transporter in literature
with respect to cholestasis.8,10,16−21 A possible explanation for
this interesting result could be the different thresholds required
for BSEP inhibition to cause cholestasis versus the threshold of
the BSEP inhibition model. For the BSEP model, every
compounds with an IC50 > 50 μM was classified as
noninhibitors, while IC50 < 10 μM was the threshold for
characterizing a compound as inhibitor. However, for the
development of cholestasis, an IC50 < 300 μM has been
reported as sufficient.17 Thus, potentially predicted non-
inhibitors could actually be cholestatic compounds. The other
transporters included in our study are in general not well
described in literature via experimental procedures, but they are
rather pinpointed due to the fact that they are transporting bile
salts or bile conjugates (with the exception of P-gp, whose role
is attributed mainly to drug−drug interactions). Thus, our
study gives extra weight to literature indications concerning
BCRP, P-gp, OATP1B1, and 1B3.
It was quite curious that even though the transporters

predictions significantly increase the performance both for the
model built on the training set of 578 compounds and for the
model trained with the merged data set of 1904 compounds
(but with a different base classifier); this was not the case for
the prediction on the test set. The performance of all statistics
metrics decrease, when transporters predictions are used as
descriptors. We are unable to provide a solid explanation for
this phenomenon. We can only speculate a different way of
class assignment between the two data sets, since they are

coming from different sources. Another plausible explanation
could be the fact that the external validation set had a
contradiction rate of almost 20% regarding the class labels of
those compounds shared with the training set (71 out of 419
shared compounds had contradictory class labels). We assume
that this is due to the drawbacks of the toxicity reporting
system: under-reporting,66−68 voluntarily basis,68−70 difficulties
to obtain the data, which are often proprietary,66 as well as the
lack of the prerequisite of a causal relationship between drug
and adverse event.68 In any case, despite these contradictions
between the training and the test set, the model retained its
satisfactory performance.
Furthermore, we would like to mention that there is also

experimental evidence for the implication of the basolateral
efflux transporters MRP3 and MRP4,8−10,20 as well as for the
canalicular efflux transporter MRP2.8−10,22 We are aware of this
fact, but for these transporters there are currently not sufficient
data available to develop high quality models that can be further
used for contributing to our cholestasis model. Additionally, we
should pinpoint the fact that we are using predictions for the
inhibition of transporters rather than real in vitro data. This
could potentially accumulate some additional error in the final
predictions of the cholestasis model. In any case, despite any
deteriorating factors, our final in silico models for cholestasis
were extensively validated with 10-fold cross validation and
statistical tests. Furthermore, the external validation set was of a
significant size being even bigger than the training set. For both
cases the results were quite satisfactory. Moreover, for both
training sets (regular and merged one) there is a trend
indicating the importance of transporter predictions in the
development of cholestasis. The performance of the classi-
fication models from which we obtained the predictions
provides us with enough confidence to use them in our input
matrix. Moreover, the percentage of the cholestasis data that are
within the applicability domain of the transporters models
ranges between 93.1% and 99.5% (Table S3, Supporting
Information), which is quite satisfactory and further enhances
our confidence in using predicted transporter interaction
profiles as descriptors.

■ CONCLUSIONS

In this study we present a two-class classification model for the
prediction of cholestasis (or cholestatic DILI) based on a public
data set of 578 compounds. The model is incorporating
information both from 2D physicochemical descriptors, as well
as predictions of inhibition of the hepatic transporters BSEP,
BCRP, P-gp, OATP1B1, and OATP1B3. The performance of
the resulting model is rather satisfactory and is validated both
via 50 iterations of different 10-fold cross validations, as well as
an external test set of over 1300 compounds.33 Our results
demonstrate that adding transporter predictions as additional
descriptors to the list of 2D physicochemical descriptors is
improving model performance. This is in alignment with
evidence from literature which shows that inhibition of selected
hepatic transporters contributes to cholestasis.
Interestingly, the increase in model performance cannot be

attributed solely to BSEP inhibition, which is the transporter
that is most correlated to cholestasis in literature. The
performance increases only when the whole list of transporter
inhibition predictions is included. This result points toward a
rather synergistic effect of several transporters, including the
less elucidated role of OATPs, BCRP, and P-gp in cholestasis.
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Our study is the first of its kind regarding combining
physicochemical descriptors and predicted transporter informa-
tion in order to predict cholestasis. This provides a useful
extension to previous approaches for the prediction of
cholestasis.
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