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Halobacterium interaction networks<p>The Inferelator, a method for deriving genome-wide transcriptional regulatory interactions, successfully predicted global expression in <it>Halobacterium </it>under novel perturbations.</p>

Abstract

We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory
interactions, and apply the method to predict a large portion of the regulatory network of the
archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify
transcriptional influences on genes based on the integration of genome annotation and expression
data. The learned network successfully predicted Halobacterium's global expression under novel
perturbations with predictive power similar to that seen over training data. Several specific
regulatory predictions were experimentally tested and verified.

Background
Distilling regulatory networks from large genomic, proteomic
and expression data sets is one of the most important mathe-
matical problems in biology today. The development of accu-
rate models of global regulatory networks is key to our
understanding of a cell's dynamic behavior and its response
to internal and external stimuli. Methods for inferring and
modeling regulatory networks must strike a balance between
model complexity (a model must be sufficiently complex to
describe the system accurately) and the limitations of the
available data (in spite of dramatic advances in our ability to
measure mRNA and protein levels in cells, nearly all biologic
systems are under-determined with respect to the problem of
regulatory network inference).

A major challenge is to distill, from large genome-wide data
sets, a reduced set of factors describing the behavior of the
system. The number of potential regulators, restricted here to
transcription factors (TFs) and environmental factors, is

often on the same order as the number of observations in cur-
rent genome-wide expression data sets. Statistical methods
offer the ability to enforce parsimonious selection of the most
influential potential predictors of each gene's state. A further
challenge in regulatory network modeling is the complexity of
accounting for TF interactions and the interactions of TFs
with environmental factors (for example, it is known that
many transcription regulators form heterodimers, or are
structurally altered by an environmental stimulus such as
light, thereby altering their regulatory influence on certain
genes). A third challenge and practical consideration in net-
work inference is that biology data sets are often heterogene-
ous mixes of equilibrium and kinetic (time series)
measurements; both types of measurements can provide
important supporting evidence for a given regulatory model if
they are analyzed simultaneously. Last, but not least, is the
challenge resulting from the fact that data-derived network
models be predictive and not just descriptive; can one predict
the system-wide response in differing genetic backgrounds,
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or when the system is confronted with novel stimulatory fac-
tors or novel combinations of perturbations?

A significant body of work has been devoted to the modeling
and learning of regulatory networks [1-3]. In these studies
regulatory interactions and dynamics are modeled with vary-
ing degrees of detail and model flexibility and, accordingly,
such models can be separated into general classes based on
the level of detail with which they model individual regulatory
interactions [1,2]. At the highest level of detail lie differential
equations and stochastic models, which provide detailed
descriptions of regulatory systems and can be used to simu-
late systems dynamics, but they are computationally
demanding and require accurate measurement of a large
number of parameters. Hence, these simulations have prima-
rily been carried out for small-scale systems (relative to the
full, genome-wide, regulatory circuit for a given organism);
often these studies model systems that have been studied in
great detail for decades, such as the galactose utilization path-
way in yeast and the early development of sea urchin. At the
other end of the model complexity spectrum lie Boolean net-
works [4], which assume that genes are simply on or off, and
include standard logic interactions (AND, OR, XOR, and so
on). Despite this simplification of regulatory dynamics and
interactions, these approaches have the advantages of sim-
plicity, robustness (they can be learned with significantly
fewer data), and ease of interpretation [5]. Recent probabilis-
tic approaches to modeling regulatory network on the
genome-wide scale use Bayesian networks to model regula-
tory structure, de novo, at the Boolean level [6-11].

Additive linear or generalized linear models take an interme-
diate approach, in terms of model complexity and robustness
[12-15]. Such models describe each gene's expression level as
a weighted sum of the levels of its putative predictors. Inclu-
sion of functions that modify the linear response produced by
these additive methods (sometimes referred to as squashing
functions) allows some biologically relevant nonlinear proc-
esses (for example, promoter saturation) to be modeled. An
advantage of linear and generalized linear models is that they
draw upon well developed techniques from the field of statis-
tical learning for choosing among several possible models and
efficiently fitting the parameters of those models.

Learning and/or modeling of regulatory networks can be
greatly aided by reducing the dimensionality of the search
space before network inference. Two ways to approach this
are limiting the number of regulators under consideration
and grouping genes that are co-regulated into clusters. In the
former case, candidates can be prioritized based on their
functional role (for example, limiting the set of potential pre-
dictors to include only TFs, and grouping together regulators
that are in some way similar). In the latter case, gene expres-
sion clustering, or unsupervised learning of gene expression
classes, is commonly applied. It is often incorrectly assumed
that co-expressed genes correspond to co-regulated genes.

However, for the purposes of learning regulatory networks it
is desirable to cluster genes on the basis of co-regulation
(shared transcriptional control) as opposed to simple co-
expression. Furthermore, standard clustering procedures
assume that co-regulated genes are co-expressed across all
observed experimental conditions. Because genes are often
regulated differently under different conditions, this assump-
tion is likely to break down as the quantity and variety of data
grow.

Biclustering was developed to address better the full com-
plexity of finding co-regulated genes under multifactor con-
trol by grouping genes on the basis of coherence under
subsets of observed conditions [10,16-22]. We developed an
integrated biclustering algorithm, named cMonkey (Reiss DJ,
Baliga NS, Bonneau R, unpublished data), which groups
genes and conditions into biclusters on the basis of the follow-
ing: coherence in expression data across subsets of experi-
mental conditions; co-occurrence of putative cis-acting
regulatory motifs in the regulatory regions of bicluster mem-
bers; and the presence of highly connected subgraphs in met-
abolic [23] and functional association networks [24-26].
Because cMonkey was designed with the goal of identifying
putatively co-regulated gene groupings, we use it to 'pre-clus-
ter' genes before learning regulatory influences in the present
study. cMonkey identifies relevant conditions in which the
genes within a given bicluster are expected to be co-regulated,
and the inferred regulatory influences on the genes in each
bicluster pertain to (and are fit using) only those conditions
within each bicluster. In principle, the algorithm described in
this work can be coupled with other biclustering and cluster-
ing algorithms.

Here we describe an algorithm, the Inferelator, that infers
regulatory influences for genes and/or gene clusters from
mRNA and/or protein expression levels. The method uses
standard regression and model shrinkage (L1 shrinkage)
techniques to select parsimonious, predictive models for the
expression of a gene or cluster of genes as a function of the
levels of TFs, environmental influences, and interactions
between these factors [27]. The procedure can simultaneously
model equilibrium and time course expression levels, such
that both kinetic and equilibrium expression levels may be
predicted by the resulting models. Through the explicit inclu-
sion of time and gene knockout information, the method is
capable of learning causal relationships. It also includes a
novel solution to the problem of encoding interactions
between predictors into the regression. We discuss the results
from an initial run of this method on a set of microarray
observations from the halophilic archaeon Halobacterium
NRC-1.
Genome Biology 2006, 7:R36
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Results and discussion
The inferred global regulatory network for 
Halobacterium NRC-1
We applied our method to the Halophilic archaeon Halobac-
terium NRC-1. The Halobacterium genome contains 2,404
nonredundant genes, of which 124 are annotated to be known
or putative TFs [28,29]. The biclustering and network infer-
ence procedure were performed on a recently generated data
set containing 268 mRNA microarray measurements of this
archaeon under a wide range of genetic and environmental
perturbations ('Kaur A, Pan M, Meislin M, El-Geweley R,
Baliga NS' and 'Whitehead K, Kish A, Pan M, Kaur A, King N,
Hohmann L, Diruggiero J, Baliga NS', personal communica-
tions), [30,31]. Several TFs do not change significantly in
their expression levels in the data set; of the 124 identified
TFs, 100 exhibited a significant change in expression levels
across the data set, and the remaining 24 TFs were excluded
from the set of potential influences (see Materials and meth-
ods, below) [32]. Strongly correlated TFs (those with correla-
tion greater than 0.85) were further grouped, yielding 72
regulators (some representing multiple correlated regula-
tors). To these 72 potential regulators were added 10 environ-
mental factors for a total of 82 possible predictors for the
1,934 genes with significant signal in the data set. In addition
to this main data set, 24 new experiments (collected after
model fitting) were used for independent error estimation
subsequent to the network inference procedure.

The cMonkey method (Reiss DJ, Baliga NS, Bonneau R,
unpublished data) was applied to this data set (original 268
conditions) to bicluster genes and conditions, on the basis of
the gene expression data, a network of functional associa-
tions, and the occurrence and detection of cis-acting regula-
tory motifs in bicluster upstream sequences. Biclustering
resulted in 300 biclusters covering 1,775 genes. An additional
159 genes, which exhibited significant change relative to the
common reference across the data set, were determined by
cMonkey to have unique expression patterns and were thus
not included in biclusters; these 159 genes were inferred
individually.

The regulatory network inference procedure was then per-
formed on these 300 biclusters and 159 individual genes,
resulting in a network containing 1,431 regulatory influences
(network edges) of varying strength. Of these regulatory
influences, 495 represent interactions between two TFs or
between a TF and an environmental factor. We selected the
null model for 21 biclusters (no influences or only weak regu-
latory influences found, as described in Materials and meth-
ods, below), indicating that we are stringently excluding
under-determined genes and biclusters from our network
model. The ratio of data points to estimated parameters is
approximately 67 (one time constant plus three regulatory
influences, on average, from 268 conditions). Our data set is
not complete with respect to the full physiologic and environ-
mental repertoire for Halobacterium NRC-1, and several TFs

have their activity modulated by unobserved factors (for
example, post-translational modifications and the binding of
unobserved ligands); the regulatory relations for many genes
are therefore not visible, given the current data set. Figure 1
shows the resultant network for Halobacterium NRC-1 in
Cytoscape, available as a Cytoscape/Gaggle web start [33,34].

An example of the predicted regulation of a single bicluster,
bicluster 76 (containing genes involved in the transport of Fe
and Mn; Table 1), is shown in Figure 1b. Among the 82 possi-
ble regulators, four were selected as the most likely regulators
of this bicluster. The learned function of these TFs allows pre-
diction of the bicluster 76 gene expression levels under novel
conditions, including genetic perturbations (for example, to
predict the expression levels in a kaiC knockout strain, the
influence of kaiC can be removed from the equation by setting
its weight to zero). We discuss the predicted regulatory model
for bicluster 76 further below.

We evaluated the ability of the inferred network model to pre-
dict the expression state of Halobacterium NRC-1 on a
genome-wide basis. For each experimental condition, we
made predictions of each bicluster state, based on the levels of
regulators and environmental factors, and compared pre-
dicted expression values with the corresponding measured
state (using root mean square deviation [RMSD] to evaluate
the difference, or error, as described under Materials and
methods, below). In this way we evaluated the predictive per-
formance of the inferred network both on experiments in the
training data set and on the 24 experiments in the independ-
ent test set (which we refer to as the newly collected data set).
The expression level of a bicluster is predicted from the level
of TFs and environmental factors that influence it in the net-
work, at the prior time point (for time course conditions) or
the current condition (for steady state conditions). The error
estimates for the 300 biclusters and 159 single genes are
shown in Figures 2 and 3. For the biclusters, the mean error
of 0.37 is significantly smaller than the range of ratios
observed in the data (because all biclusters were normalized
to have variances of about 1.0 before model fitting), indicating
that the overall global expression state is well predicted. Our
predictive power on the new data (Figures 2 and 3, right pan-
els) is similar to that on the training data (the mean RMS over
the training set is within 1 standard deviation of the mean
RMS over the new data), indicating that our procedure is
enforcing reasonable parsimony upon the models (using L1
shrinkage coupled with tenfold cross-validation [CV], as
described under Materials and methods, below) and accu-
rately estimating the degree to which we can predict the
expression levels of biclusters as a function of TF and envi-
ronmental factor levels.

Although the majority of biclusters have new data RMS values
well matched by the training set RMS values, there are also
nine biclusters (biclusters 1, 37, 77, 82, 99, 137, 161, 165, and
180) with RMS values significantly higher in the new data
Genome Biology 2006, 7:R36
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Figure 1 (see legend on next page)
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than in the training data. We were unable to identify any fea-
tures of these outlying biclusters (coherence of bicluster,
bicluster size, variance in and out of sample for the biclusters,
and so on) that distinguish them from other biclusters. We
also investigated predictive performance for the 159 genes
that were not included in biclusters by cMonkey. We found
good predictive performance (over the new data as well as
over the training data) for approximately half of these genes -

a much lower success rate than seen for genes represented by
biclusters. There are a number of possible explanations for
this diminished ability to predict genes that also elude biclus-
tering. Averaging expression levels over genes that are co-reg-
ulated within biclusters can be thought of as signal averaging,
and thus single genes are more prone to both systematic and
random error than bicluster expression levels. Another possi-
ble explanation is that these elusive genes are under the influ-

The inferred regulatory network of Halobacterium NRC-1, visualized using Cytoscape and GaggleFigure 1 (see previous page)
The inferred regulatory network of Halobacterium NRC-1, visualized using Cytoscape and Gaggle. (a) The full inferred regulatory network. Regulators are 
indicated as circles, with black undirected edges to biclusters (rectangles) that they are members of. Green and red arrows represent repression (β < 0) 
and activation (β > 0) edges, respectively. The thickness of regulation edges is proportional to the strength of the edge as determined by the Inferelator (β 
for that edge). Interactions are shown as triangles connected to regulators by blue edges. Weak influences (|β| < 0.1) are not shown. (b) Example 
regulation of Bicluster 76. The four transcription factors (TFs) sirR, kaiC, VNG1405C, and VNG2476C were selected by the Inferelator as the most likely 
regulators of the genes in bicluster 76 from the set of all (82) candidate regulators. The relative weights, β, by which the regulators are predicted to 
combine to determine the level of expression of the genes of bicluster 76, are indicated alongside each regulation edge. The TFs VNG2476C and kaiC 
combine in a logical AND relationship. phoU and prp1 are TFs belonging to bicluster 76.

Table 1

Functional summary of bicluster 76: transport process putatively regulated by sirR

Gene Name Function

VNG0451G phoU Transcriptional regulator

VNG0452G pstB2 Phosphate transport ATP-binding

VNG0453G pstA2 Phosphate ABC transporter permease

VNG0455G pstC2 Phosphate ABC transporter permease

VNG0457G phoX Phosphate ABC transporter periplasmic phosphate-binding

VNG0458G prp1 Phosphate regulatory protein homolog

VNG0535C VNG0535C Membrane protein of Unknown Function

VNG1632G cbiQ Cobalt transport protein

VNG1634G cbiN Cobalt transport protein cbiN

VNG1635G cbiM ABC-type cobalt transport system, permease component.

VNG2093G glnA Glutamine synthetase

VNG2302G yuxL Acylaminoacyl-peptidase

VNG2358G appA Oligopeptide binding protein

VNG2359G appB Oligopeptide ABC permease

VNG2361G appC Oligopeptide transport permease protein

VNG2365G appF Oligopeptide ABC transporter ATP-binding

VNG2482G pstB1 Phosphate ABC transporter ATP-binding

VNG2483G pstA1 Phosphate ABC transporter permease

VNG2484G pstC1 Phosphate transporter permease

VNG2486G yqgG Phosphate ABC transporter binding

VNG2529G dppB2 Dipeptide ABC transporter permease

VNG2531G dppC1 Dipeptide ABC transporter permease

VNG2532H VNG2532H Membrane protein of Unknown Function

VNG6262G zurM ABC transporter, permease protein

VNG6264G zurA ABC transporter, ATP-binding protein

VNG6265G ycdH Adhesion protein

VNG6277G ugpB Glycerol-3-phosphate-binding protein precursor

VNG6279G ugpA Sn-glycerol-3-phosphate transport system permease

VNG6280G ugpE Sn-glycerol-3-phosphate transport system permease

VNG6281G ugpC Sn-glycerol-3-phosphate transport system ATP-binding
Genome Biology 2006, 7:R36
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ence of TFs that interact with unobserved factors, such as
metabolites. There are also about five conditions that we fail
to predict well relative to the other 264 conditions (large RMS
values in training and new data; Figures 2 and 3). Not surpris-
ingly, these five conditions are all situated directly after large
perturbations in time series, when the system is fluctuating
dramatically as it re-establishes stasis.

We also performed several tests to determine how well our
model formulation and fitting procedure performed com-
pared with three simplified formulations, as described in
detail in Additional data file 1. Briefly, these additional tests
show that our current formulation for temporal modeling is
essential to the performance of this procedure (mean RMSD

with no temporal modeling 0.40; significance of comparison
with full model P < 10-10, by paired t test) and produces signif-
icantly more parsimonious models. They also show that mod-
els constrained to a single predictor per bicluster perform
significantly worse over the new data (mean RMSD with only
a single predictor per bicluster 0.43; P < 10-16). Finally, the
additional tests show that our inclusion of interactions in the
current model formulation improves predictive power (mean
RMSD with no interactions 0.41, P < 0.03).

Homeostatic control of key biologic processes by the 
previously uncharacterized trh family
The trh family of regulators in Halobacterium (including trh1
to trh7) are members of the LrpA/AsnC family, regulators

Predictive power of inferred network on biclustersFigure 2
Predictive power of inferred network on biclusters. (a) The root mean square deviation (RMSD) error of predicted response in comparison with the true 
response for the 300 predicted biclusters evaluated over the 268 conditions of the training set. (b) The RMSD error of the same 300 biclusters evaluated 
on new data (24 conditions) collected after model fitting/network construction.

Predictive power on genes with unique expression profilesFigure 3
Predictive power on genes with unique expression profiles. Histograms of root mean square deviation (RMSD) of predicted response versus measured 
response, as calculated in Figure 2. (a) The RMSD error of predicted to true response for the 159 genes that cMonkey identified as having unique 
expression patterns and were therefore not included in any bicluster. (b) The same error over new data collected after model fitting/network 
construction for these 159 isolates.
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that are widely distributed across bacterial and archaeal spe-
cies [35]. Their specific role in the regulation of Halobacte-
rium NRC-1 genes was, before this study, unknown. We
predict that four of the trh proteins play a significant role in
coordinating the expression of diverse cellular processes with
competing transport processes. Figure 4 shows a Cytoscape
layout of the subnetwork surrounding trh3, trh4, trh5, and
trh7. There is significant similarity in the functions repre-
sented by the biclusters regulated by each of the trh proteins,
giving some indication that the learned influences have bio-
logic significance. Moreover, each trh protein regulates a
unique set of biclusters. Using the predicted subnetwork we
can form highly directed hypotheses as to the regulation
mediating the homeostatic balance of diverse functions in the
cell. Our prediction for trh3, for example, is that it is a repres-
sor of phosphate and amino acid uptake systems and that it is
co-regulated with (and thus a possible activator of) diverse
metabolic processes involving phosphate consumption. Trh3
thus appears to be key to Halobacterium NRC-1 phosphate
homeostasis (a limiting factor in the Halobacterium natural
environment). Similar statements/hypotheses can be
extracted from the learned network for other regulators of
previously unknown function; in this way, the network repre-
sents a first step toward completing the annotation of the reg-
ulatory component of the proteome. Figure 5 shows the
predicted expression profile for 12 of the biclusters shown in
Figure 4.

Experimental verification of regulatory influences
We now briefly describe three cases in which predicted regu-
latory influences were supported by further experimentation.

VNG1179C activates a Cu-transporting P1-type ATPase
We predict that bicluster 254, containing a putative Cu-trans-
porting P1-type ATPase, is regulated by a group of correlated
TFs containing VNG1179C and VNG6193H - two regulators
with putative metal-binding domains [28]. These regulators
made attractive targets for further investigation. The
Inferelator predicts that VNG1179C and/or VNG6193H are
transcriptional activators of yvgX (a member of bicluster
254). VNG1179C is a Lrp/AsnC family regulator that also con-
tains a metal-binding TRASH domain [35,36]. Strains with
in-frame single gene deletions of both VNG1179C and yvgX
(one of the proposed targets and known copper transporter)
resulted in similar diminished growth in presence of Cu. Fur-
thermore, recent microarray analysis confirmed that, unlike
in the wild-type, yvgX transcript levels are not upregulated by
Cu in the VNG1179C deleted strain. This lack of activation of
yvgX in the VNG1179C deletion strain resulted in poor
growth in presence of Cu for strains with a deletion in each of
the two genes (Kaur A, Pan M, Meislin M, El-Geweley R,
Baliga NS, personal communication).

SirR regulates key transport processes
SirR was previously described as a regulator involved in
resistance to iron starvation in Staphylococcus epidermidis

and Staphylococcus aureus. SirR is possibly a Mn and Fe
dependent transcriptional regulator in several microbial sys-
tems and a homolog to dtxR [37]. There is a strong homolog
of S. epidermidis sirR in the Halobacterium genome but the
role of this protein in the Halobacterium regulatory circuit
has not been determined. We predicted that sirR and kaiC are
central regulators, involved in regulation of biclusters associ-
ated with Mn/Fe transport, such as bicluster 76 (Figure 1b).
Included in this bicluster are three genes, namely zurA, zurM
and ycdH, that together encode a putative Mn/Fe-specific
ABC transporter, consistent with the recent observation that
sirR is needed for survival of metal-induced stress (Kaur A,
Pan M, Meislin M, El-Geweley R, Baliga NS, personal com-
munication). Figure 6 shows the predicted and measured
expression levels for bicluster 76 as a function of inferred reg-
ulators (sirR, kaiC) for all conditions, including time series,
equilibrium measurements, knockouts, and new data. Note
that regulatory influences for this bicluster were inferred only
using the 189 conditions (out of 268 total possible) that
cMonkey included in this bicluster; excluded conditions were
either low-variance or did not exhibit coherent expression for
the genes in this bicluster. SirR mRNA profiles over all 268
original experimental conditions are positively correlated
with transcript level changes in these three genes. However,
upon deleting SirR, mRNA levels of these three genes
increased in the presence of Mn, suggesting that SirR func-
tions as a repressor in the presence of Mn, in apparent con-
trast to our prediction. In fact, a dual role in regulation has
been observed for at least one protein in the family of regula-
tors to which SirR belongs, which functions as an activator
and repressor under low and high Mn conditions, respectively
[38]. Although further investigation is needed, The Inferela-
tor successfully identified part of this regulatory relationship
and the correct pairing of regulator and target.

TfbF activates the protein component of the ribosome
Halobacterium NRC-1 has multiple copies of key compo-
nents of its general transcription machinery (TfbA to TfbG
and TbpA to TbpF). Ongoing studies are directed at determin-
ing the degree to which these multiple copies of the general
TFs are responsible for differential regulation of cellular proc-
esses (Facciotti MT, Bonneau R, Reiss D, Vuthoori M, Pan M,
Kaur A, Schmidt A, Whitehead K, Shannon P, Dannahoe S,
personal communication), [39]. We predict that TfbF is an
activator of ribosomal protein encoding genes. The ribosomal
protein encoding genes are distributed in seven biclusters; all
seven are predicted to be controlled by TfbF. This prediction
was verified by measuring protein-DNA interactions for TfbF
by ChIP-chip analysis as part of a systems wide study of Tfb
and Tbp binding patterns throughout the genome (Facciotti
MT, Bonneau R, Reiss D, Vuthoori M, Pan M, Kaur A,
Schmidt A, Whitehead K, Shannon P, Dannahoe S, personal
communication).
Genome Biology 2006, 7:R36
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Conclusion
We have presented a system for inferring regulatory influ-
ences on a global scale from an integration of gene annotation
and expression data. The approach shows promising results
for the Halophilic archaeon Halobacterium NRC-1. Many
novel gene regulatory relationships are predicted (a total of
1,431 pair-wise regulatory interactions), and in instances

where a comparison can be made the inferred regulatory
interactions fit well with the results of further experimenta-
tion and what was known about this organism before this
study. The inferred network is predictive of dynamical and
equilibrium global transcriptional regulation, and our
estimate of prediction error by CV is sound; this predictive
power was verified using 24 new microarray experiments.

Core process regulation/homeostasis, including diverse transport process, by trh3, trh4, trh5, trh7, tbpD, and kaiCFigure 4
Core process regulation/homeostasis, including diverse transport process, by trh3, trh4, trh5, trh7, tbpD, and kaiC. Biclusters (rectangles with height 
proportional to the number of genes in the bicluster and width proportional to the number of conditions included in the bicluster) are colored by function, 
as indicated in the legend. In cases where multiple functions are present in a single bicluster the most highly represented functions are listed.
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The algorithm generates what can be loosely referred to as a
'first approximation' to a gene regulatory network. The results
of this method should not be interpreted as the definitive reg-
ulatory network but rather as a network that suggests (possi-
bly indirect) regulatory interactions [27]. The predicted
network model is consistent with the data in such a way that

it is predictive of steady-state mRNA levels and time series
dynamics, and it is therefore valuable for further
experimental design and system modeling. However, the
method presented, using currently available data sets, is una-
ble to resolve all regulatory relationships. Our explicit use of
time and interactions between TFs helps to resolve causality

Predictive performance on biclusters representing key processesFigure 5
Predictive performance on biclusters representing key processes. Each plot shows a bicluster with a dominant functional theme from Figure 4. The red line 
indicates the measured expression profile, and the blue line shows the profile as predicted by the network model. Conditions in the left-most region of 
each plot were included in the bicluster, the middle regions show conditions excluded from the bicluster, and the right-most region of each plot 
corresponds to the 24 measurements that were not part of the original data set. The two right-most regions of each plot, therefore, demonstrate 
predictive power over conditions not in the training set. The estimation model parameters was done using only left-most/green conditions.
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(for example, it resolves the directionality of activation
edges), but tolerance to noise, irregular sampling, and under-
sampling is difficult to assess at this point. Using cMonkey as
a preliminary step to determine co-regulated groups also
helps us to resolve the causal symmetry between co-
expressed genes by including motif detection in the clustering
process (for example, activators that are not self-regulating
will ideally be removed from any biclusters they activate
because they lack a common regulatory motif with their target
genes, allowing the Inferelator to infer correctly the regula-
tory relationship). This assumption breaks down when acti-
vators are self-activating and correctly included in biclusters
that they regulate [40]. Indeed, several TFs are found in
biclusters; these TFs are denoted in our network as 'possible
regulators' of biclusters that they are members of (undirected
black edges in all figures) but they are not dealt with further.
For example, bat is a know auto-regulator and is found in a
bicluster with genes that it is known to regulate. In general,
the current method will perform poorly in similar cases of
auto-regulation because it is not capable of resolving such
cases, and neither is the data set used in this work appropriate
for resolving such cases.

Although this method is clearly a valuable first step, only by
carrying out several tightly integrated cycles of experimental
design and model refinement can we hope to determine

accurately a comprehensive global regulatory network for
even the smallest organisms. Knockouts and over-expression
studies, which measure the dependence of a gene's expression
value on genetically perturbed factors, are valuable in verify-
ing causal dependencies. Another important future area of
research will be the inclusion of ChIP-chip data (or other
direct measurements of TF-promoter binding) in the model
selection process [41]. Straightforward modifications to the
current model selection process will allow the use of such data
within this framework. For example we are currently plan-
ning ChIP-chip experiments to verify the regulatory influ-
ences of kaiC, sirR, the trh family of TFs, and several other key
TFs that were predicted using this algorithm.

In the present study we opted not to investigate the predictive
performance of our method on simulated data. RNA and pro-
tein expression data sets have complex error structures,
including convolutions of systematic and random errors, the
estimation of which is nontrivial. Real-world data sets are
also far from ideal with respect to sampling (for example, the
Halobacterium data set contains time series with sampling
rates that range from one sample per minute to one every four
hours). Instead, we evaluated our prediction error using CV.
We have not discussed the topology (higher order structure or
local motifs) of the derived network [42-44]. This was done
primarily to limit the scope of the discussion.

A limitation of the present study is that we have inferred the
expression of genes as a function of TF mRNA expression and
measurable environmental factors. Accurate protein-level
measurements of TFs will invariably have a more direct influ-
ence on the mRNA levels of the genes they regulate. Our
method can be straightforwardly adapted to infer gene/
bicluster mRNA levels as a function of TF protein levels, or
activities, should large-scale collections of such data become
available. Global measurements of metabolites and other lig-
ands are also easily included as potential predictors given this
framework (via interactions with TFs). We expect such data
sets to be available soon [45] for several organisms as part of
ongoing functional genomics efforts, and we can foresee no
major methodologic barriers to the use of such data in the
framework described here.

Materials and methods
Model formulation
We assume that the expression level of a gene, or the mean
expression level of a group of co-regulated genes y, is influ-
enced by the level of N other factors in the system: X = (x1, x2

... xN). In principle, an influencing factor can be of virtually
any type (for example, an external environmental factor, a
small molecule, an enzyme, or a post-translationally modified
protein). We consider factors for which we have measured
levels under a wide range of conditions; in this work we use
TF transcript levels and the levels of external stimuli as pre-
dictors and gene and bicluster trancript levels as the

Measured and predicted response for transport processes (bicluster 76)Figure 6
Measured and predicted response for transport processes (bicluster 76). 
Red shows the measured response of bicluster 76 over 277 conditions 
(mRNA expression levels measured as described under Materials and 
methods, in the text). Bicluster 76 represents transport processes 
controlled by the regulators KaiC and SirR (Figure 1b). Blue shows the 
value predicted by the regulator influence network. Conditions in (a) 
correspond to conditions included in bicluster 76 (conditions for which 
these genes have high variance and are coherent). (b) Shows conditions 
out of the bicluster but in the original/training data set. (These regions 
were not used to fit the model for bicluster 76, because models were fit 
only over bicluster conditions.) (c) Contains conditions/measurements 
that were not part of the original data set and thus were not present when 
the biclustering and subsequent network inference/model fitting 
procedures were carried out. Regions B and C demonstrate out of sample 
predictive power.
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response. Methods for selecting which of these factors are the
most likely regulators, among all possible regulatory influ-
ence factors, are described below.

The relation between y and X is given by the kinetic equation:

Here, Z = (z1[X], z2[X] ... zP[X]) is a set of functions of the reg-
ulatory factors X. The coefficients βj, for {j = 1,2,...,P},
describe the influence of each element of Z, with positive coef-
ficients corresponding to inducers of transcription and nega-
tive coefficients to transcriptional repressors. The choice
zj(X) = xj for (j = 1, 2 ... P = N} amounts to the simple weighted
linear combination of influencing factors β•Z = Σβjxj [46]. To
accommodate combinatorial logic for transcriptional control,
we shall use a more general form for the function Z (described

below). The constant τ is the time constant of the level y in the
absence of external determinants.

Various functional forms can be adopted for the function g,
called the 'nonlinearity' or 'activation' function for artificial
neural networks, and the 'link' function in statistical mode-
ling. The function g often takes the form of a sigmoidal, or
logistic, activation function:

This form has been used successfully in models of develop-
mental biology [47]. In this work we employ a truncated lin-
ear form for g:

Graphical depiction of three possible interactions between predictor terms X1 and X2 (AND, OR, and XOR) that can be encoded by the design matrix ZFigure 7
Graphical depiction of three possible interactions between predictor terms X1 and X2 (AND, OR, and XOR) that can be encoded by the design matrix Z. 
Values of β· Z range from 0 (red) to 1 (white). The interactions are encoded by specific linear combinations of X1, X2 and min(X1, X2), using the 
coefficients (three elements in the vector β) for the individual components (Table 2).

Table 2

Coefficients β corresponding to the panels in Figure 7

AND OR XOR

min(X1,X2) 1 -1 -2

X1 0 1 1

X2 0 1 1

In the table below the coefficients β are given, corresponding to each of the panels in Figure 7. In practice, the parameters β obtained from the fitting 
procedure can give these or any other linear combinations.
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Both Equations 2 and 3 allow for computationally efficient
determination of β and are compatible with L1 shrinkage
(described below). In this study we use Equation 3 because it
allows for simultaneous determination of β at several values
of the shrinkage parameter (LARS) [48]. Previous studies
suggest that the distinction between these two forms is incon-
sequential given the expected error in the data [12,13].

The simplified kinetic description of Equation 1 encompasses
essential elements to describe gene transcription, such as
control by specific transcriptional activators (or repressors),
activation kinetics, and transcript decay, while at the same
time facilitating access to computationally efficient methods
for searching among a combinatorially large number of possi-
ble regulators. To better understand specific details of regula-
tion, it will almost certainly be required to follow up on
specific regulatory hypotheses using more mechanistically
detailed descriptions.

Fitting of model parameters
The experimental conditions (individual global gene expres-
sion measurements within the data set used in this study) are
classified either as belonging to a steady-state experiment or
a time series experiment. In some cases, we refer to condi-
tions as 'equilibrium' or 'steady-state' measurements out of
convenience, but cannot know whether the system, in any
strict sense, is at equilibrium; we imply only that an attempt
was made to allow the system to reach equilibrium and that
we have no knowledge of prior time-points within the same
study. By a suitable reformulation of the kinetic equation
(Equation 1) for each of these two data classes, we can com-
bine both types of measurements into a single expression to
fit the model parameters β and τ.

In a steady-state, dy/dt = 0 and Equation 1 reduces to the
following:

y = g(β•ZSS)  (4)

where Zss is the measured value of Z in the steady state. For
time series measurements, taken at times (t1,t2 ... tT), Equa-
tion 1 may be approximated as follows:

where ∆tm= tm+1 - tm is the time interval between consecutive
measurements, and ym and zmj are, respectively, the measured
value of y and zj at time tm. In this formulation, we place no

requirements on the regularity of ∆tm, and can readily use
data with differing time intervals between measurements. It
is important to note, however, that if sampling is performed
at intervals that are longer than the time scales at which spe-
cific regulatory interactions act, those regulatory interactions
will be missed in the data sampling and, correspondingly, by
the model inference method. In most cases, we have little
prior information on the regulation time scale, and hence use
Equation 5 for all conditions that were sampled during a part
of a time course. A possible limitation is that the inference
procedure may misinterpret or miss entirely a regulatory
interaction that actually occurs at a faster time scale. Under
the stimuli we have considered, steady state is reached by six
hours post-stimulation, and samples collected in that time
range are therefore analyzed using Equation 4. In short, this
method does not lessen the need for correct experimental
design, but it facilitates using data with reasonable variation
in sampling structure as well as the combination of data from
different experiments.

In comparing Equations 4 and 5, it can be seen that the right
hand sides are identical, allowing for simultaneous model fit-
ting using equilibrium and time series data. Taking together
all steady-state measurements and time course measure-
ments, the left hand sides of Equations 4 and 5 can be com-
bined into a single response vector, allowing β to be fit with
one of the many available methodologies for multivariate
regression. In regression terminology, the influencing fac-
tors, X, are referred to as regressors or predictors, whereas
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Selection of model for bicluster using cross-validation (CV)Figure 8
Selection of model for bicluster using cross-validation (CV). The ordinate 
represents an estimate of prediction error (ErrCV) from tenfold CV (the 
mean of the error in the 10 leave-out samples used is the CV error 
estimate). The shrinkage parameter t allows us to select subsets of 
predictors continuously. We evaluate our fitted model for a range of 
values of t (with t = 0 [the null model] and t = 1 [the ordinary least squares 
solution]). The error bars denote the standard error of ErrCV (the 
standard deviation of the 10 leave-out samples' error estimates). The red 
line shows the value of t selected for our final model for this cluster - the 
most parsimonious model within 1 standard error of the minimum on the 
ErrCV versus t curve.
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the functions Z specify what is often referred to as the 'design
matrix'.

The time constant τ can be determined iteratively as follows.
Beginning with an initial guess for τ, first find the regression
solution for β using the multivariate regression methods of L1
shrinkage (described below); second, solve for a new τ that
minimizes the prediction error given [49] and g(β Z); and
third, repeat the first two steps until convergence. If available,
results from independent experiments can be used to esti-
mate by τ [50], thus reducing the number of free paramaters
in the model. Taken together for all response variables, the set
of all β s and τs for all biclusters (300 in this work) and genes
(159 singleton genes in this work) constitute the full model for
the regulatory network.

Encoding transcription factor interactions in the design 
matrix
We use the design matrix Z to encode interactions among pre-
dictor variables. The form of g in Equation 2 also specifies
nonlinear interactions, but binary interactions are limited to
the form (β Z)2, as obtained from the Taylor expansion of g(β
Z), and combinatorial logic, a useful paradigm for describing
many regulatory interactions, is thus only accommodated in
a limited manner. More transparent encoding and approxi-
mation of interactions can be made by allowing functions in Z
to be either the identity function of a single variable or the
minimum of two variables. For example, the inner product of
the design matrix and linear coefficients for two predictors
that are participating in an interaction is:

βZ = β1x1 + β2x2 + β3 min(x1,x2)  (6)

Using this encoding, for example, if x1 and x2 represent the
levels of components forming an obligate dimer that activates
y (x1 AND x2 required for expression of y), we would expect to
fit the model such that β1 = 0, β2 = 0, β3 = 1. This encoding
results in a linear interpolation of (linearly smoothed approx-
imation to) the desired Boolean function. This and other
interactions (OR, XOR, and AND; Figure 7 and Table 2), as
well as interactions involving more than two components, are
easily fit by this encoding. With this scheme for encoding
interactions in the design matrix, we expect to capture many
of the interactions between predictors necessary for modeling
realistic regulatory networks, in a readily interpretable form.
For this study we limited the procedure to binary interactions
because it is unlikely that the quantity of data used would sup-
port learning beyond these pair-wise interactions. Many
other methods for capturing TFs cooperatively exist as well
[51].

Model selection with L1 shrinkage
Given our model formulation, numerous methods have been
developed for selecting subsets of predictors among candi-
date predictors and for estimating model parameters [52].
Including all predictors, for example, amounts to ordinary

least squares multivariate regression, regressing y on Z. This
model often has limited value in terms of interpretation and
in this case would severely overfit the data. Here, we adopt the
L1 shrinkage or the LASSO [48,53] for predictor selection,
which involves the following minimization:

Subject to the following additional constraint:

where βols is the ordinary least squares estimate of β. The
shrinkage parameter t can range from 0 to 1. The limit t = 0
amounts to selection of the null model (y = |y|). In the limit t
= 1 we have the ordinary least squares estimate for β, (β = β
ols). We determine the optimal value for the shrinkage param-
eter by minimizing the prediction error (as estimated by ten-
fold CV), as shown in Figure 8. We use tenfold CV to estimate
the prediction error for values of the shrinkage parameter
ranging from 0 (the null model) to 1 (the ordinary least
squares limit). For each value of the shrinkage parameter, this
results in an error estimate (the mean on the error estimated
over each of the 10 leave-out conditions; the line in Figure 8)
and the standard deviation of the 10 individual leave-out
error estimates (the error bars in Figure 8). We select the
smallest value of t that is 1 standard deviation from the mini-
mum on the CV error curve, resulting in a fairly conservative/
parsimonious estimate of the shrinkage parameter [52]. In
this way we select a separate value of the shrinkage parameter
for each bicluster or gene we attempt to select a model for.

In this manner, we fit a predictive function for each gene and
bicluster in our set resulting in a predictive, dynamic function
for each gene/bicluster for which the method did not select
the null model. All data used in this procedure are normalized
before network inference to have row variances of 1. Thus, for
a given influence on a given bicluster we can uniformly inter-
pret the magnitude of β, and use the magnitude of β to rank
the individual interactions by significance (Figure 1). We pre-
viously compared this method (L1 shrinkage with CV to select
the shrinkage parameter) with several other model selection
methods in the context of regulatory network inference and
found it to be attractive for inferring large networks [27,54].

Selection and search algorithms
We use a simple search strategy for fitting models for each
bicluster. We exhaustively evaluate all single and pair-wise
interactions saving the top five single influences and the top
two pair-wise interactions. These predictors are then pooled,
and L1 shrinkage is used to select the final model. Highly cor-
related predictors (having a Pearson correlation coefficient
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greater than 0.85) are pre-grouped before this search,
because they are unresolvable by any data-driven method.
The calculation takes less than 1 day on a single top of the line
workstation (3 GHz AMD opteron). The calculation can easily
be parallelized, which we have done (using PVM) and then
runs in less than 1 hour on a modest cluster.

Algorithm outline
Given a set of biclusters, the following algorithm may be
applied:

For each (bicluster k) {

For each (TF or environmental factor i){

update list of best single influences

foreach (TF j){

update list of best interactions list (min [i, j])}

}

Select from predictors and estimate model parameters with
L1-shrinkage/CV

Store model for gene/bicluster k}

Combine models for individual biclusters into global network

Process network for viewing in Gaggle/Cytoscape

Predictive accuracy and significance testing
True signal was compared with predicted signal using RMSD:

where Y is the true response and  is the predicted response,
n is the index over N conditions. This measure has the advan-
tage that it does not emphasize low variance segments of the
signal although several other measures of goodness are
equally appropriate.

Identification of transcription factors and putative 
transcription factors
A list of TFs and putative TFs was compiled using several
methods including PSI-BLAST, Pfam, and COGnitor, as pre-
viously described [28].

Microarray gene expression data set
The total data set, described in full elsewhere ('Kaur A, Pan M,
Meislin M, El-Geweley R, Baliga NS' and 'Whitehead K, Kish
A, Pan M, Kaur A, King N, Hohmann L, Diruggiero J, Baliga
NS', personal communications), [30,31], contains genome-

wide measurements of mRNA expression by microarrays in
292 conditions. The conditions included ten diverse environ-
mental stimuli (light, Fe, Cu, Co, ultraviolet, γ radiation,
media change, among others), gene knockouts, and samples
taken at a range of times after stimulation and at steady state.
By dual hybridization, each was compared with a reference
condition that was identical in all 292 experiments, ensuring
a high level of continuity throughout this large expression
data set. The microarray slide is comprised of unique 70mer
oligonucleotides spanning the 2,400 nonredundant genes
encoded in the Halobacterium sp. NRC-1 genome. For each
experimental condition, 8-16 replicates were assayed (includ-
ing technical replicates and biologic replicates). Replicates
include a reversal in the dyes (dye flip) used for labeling the
RNA populations to minimize bias in dye incorporation. The
significance of change was estimated by a maximum likeli-
hood method [32], and subsequent filtering of genes with sig-
nificant change was performed such that genes with fewer
than five conditions with λ values greater than 15 were
removed and set aside as genes for which we observed no sig-
nificant change (where λ values > 15 correspond to false-pos-
itive rates of less than about 5%, based on control
experiments). Of the 292 conditions, 24 had not been col-
lected at the time that the model was fit and were thus not
used in the training set. These 24 conditions were used as
independent verification of the predictive power of the
learned network model.

Availability
The regulatory network and all data types used in the infer-
ence process can be visualized using the data integration and
exploration tools Gaggle and Cytoscape, and can be accessed
via a Cytoscape java web-start [33]. Alternate data formats
are available upon request. Gaggle [55] and Cytoscape [56]
are freely available on the web. Inferelator was written using
the R statistical programming language [57] and is freely
available upon request.

Additional data files
The following additional data are included with the online
version of this article: A Word document describing
additional tests of individual components of our model for-
mulation (Additional data file 1).

Additional File 1Additional tests of individual components of our model formulationAdditional tests of individual components of our model formulation.Click here for file
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