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Background: Cancer heterogeneity is a major challenge in clinical practice, and to some
extent, the varying combinations of different cell types and their cross-talk with tumor cells
that modulate the tumor microenvironment (TME) are thought to be responsible. Despite
recent methodological advances in cancer, a reliable and robust model that could
effectively investigate heterogeneity with direct prognostic/diagnostic clinical application
remained elusive.

Results: To investigate cancer heterogeneity, we took advantage of single-cell
transcriptome data and constructed the first indication- and cell type-specific reference
gene expression profile (RGEP) for breast cancer (BC) that can accurately predict the
cellular infiltration. By utilizing the BC-specific RGEP combined with a proven
deconvolution model (LinDeconSeq), we were able to determine the intrinsic gene
expression of 15 cell types in BC tissues. Besides identifying significant differences in
cellular proportions between molecular subtypes, we also evaluated the varying degree of
immune cell infiltration (basal-like subtype: highest; Her2 subtype: lowest) across all
available TCGA-BRCA cohorts. By converting the cellular proportions into functional gene
sets, we further developed a 24 functional gene set-based prognostic model that can
effectively discriminate the overall survival (P = 5.9 × 10−33, n = 1091, TCGA-BRCA cohort)
and therapeutic response (chemotherapy and immunotherapy) (P = 6.5 × 10−3, n = 348,
IMvigor210 cohort) in the tumor patients.

Conclusions: Herein, we have developed a highly reliable BC-RGEP that adequately
annotates different cell types and estimates the cellular infiltration. Of importance, the
functional gene set-based prognostic model that we have introduced here showed a great
ability to screen patients based on their therapeutic response. On a broader perspective,
we provide a perspective to generate similar models in other cancer types to identify
shared factors that drives cancer heterogeneity.

Keywords: breast cancer, specific gene expression profile, cellular infiltration, prognosis, risk score,
immunotherapy, cancer heterogeneity
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1 INTRODUCTION

Cancer biology has now reached a point where it is well understood
that cancer cells interact with their microenvironment, which
ultimately determines whether it will respond to treatment,
develop resistance, recur or metastasize. Therefore, it is a must to
recapitulate the prevailing information on various cancer models to
draw some stringent conclusions connecting the common/shared
factors involved in the tumor microenvironment (TME).
Considering this, herein, we focused on breast cancer (BC),
which is the most common invasive disease and the leading
cause of cancer death in women worldwide (1). Despite the
partial success of conventional therapies (surgery, chemotherapy,
radiotherapy, and targeted therapy) and other ongoing therapeutic
advances (immunotherapy), it remains a concern why some
patients eventually develop metastases and others respond poorly
to treatment. Currently, the assessment of the prognostic and
predictive significance of tumor-infiltrating lymphocytes (TILs)
in BC is gaining quite a momentum (2, 3). Since TILs comprise
a heterogeneous population of cells with different physiological/
pathological effects in the tumor microenvironment (TME),
therefore, new emerging technologies (e.g., single-cell RNA
sequencing: scRNA-seq) have gained an advantage in resolving
their functional interpretation in BC (4).

While the accuracy of predicting the cellular composition is an
imperative factor to understand the heterogeneity associated with
TME (5–7), the defined analysis of bulk datasets using a robust
deconvolution strategy is also an considerably important
parameter (5, 6, 8–11). To some extent, reference gene
expression profiling (RGEP) has proven to be successful in this
context, as evident from studies using RGEP either by, 1) directly
using scRNA-seq data, such as the head and neck squamous cell
carcinoma RGEP (called HNSCC-RGEP hereafter), or 2) using
sorted bulk gene expression datasets, such as LM22 (9),
ImmunoStates (12) and ABIS (13). Given that the reliability of
RGEPs depends on disease-specific gene expression patterns,
disease status/stage, and diversity within the tissue cell
population, it is necessary to consider multiple parameters
ranging from direct health/disease status to complex indicators
(tissue- and disease-specific) (12, 14, 15). Interestingly in BC, a few
studies have provided prognostic models based primarily on the
cellular proportions (16, 17). However, when applying non-
specific RGEPs to predict the cellular compositions of patients,
the technical bias can be expected, therefore, the reliability of the
prognostic models will come under concern. Of interest, one study
suggested that the pathway-based prognostic models performed
systematically better than gene-based models and proposed that
by including the clinical information, the prognostic prediction of
such models can be further enhanced (18).

Considering all these facts, herein, we aimed to establish BC-
specific RGEP by using scRNA-seq datasets, as an initial
perspective that can be used in the future to generate similar
models in other cancer types to identify common factors driving
cancer heterogeneity. Our work primarily focused on previously
reported 15 cell types (including fibroblasts, malignant cells, and
13 immune cell types) of BC patients (19), combined with our
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recently published deconvolution method (LinDeconSeq) (8)
and comprehensive comparisons with the preexisting RGEPs.
As an extended application, we also developed 24 functional gene
sets (biological processes and signaling pathways) to correlate
infiltration of prognosis-related cell types, in order to obtain a
robust prognostic value (risk groups, therapeutic regimens) from
BC cohorts.
2 MATERIALS AND METHODS

2.1 Datasets
The BC-related datasets used in this study were retrieved from the
Gene Expression Omnibus (GEO) (accession numbers:
GSE114725, GSE75688, GSE5462, GSE18728, GSE41998,
GSE37946, GSE25066). Similarly, the gene expression and
phenotype data (an open access level 3 gene expression matrix
data) of TCGA-BRCA and other 32 cancer types were obtained
from The Cancer Genome Atlas Project (TCGA). Additionally,
three BC datasets (Caldas, Chin, and Yao), along with their
phenotype details were retrieved from the GDC Xena Hub
(https://xenabrowser.net/datapages/). The Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) datasets
were accessed from the European Genome-Phenome Archive
(EGA) using accession number EGAS00000000083. Other gene
expression datasets such as NKI, Mainz, Transbig, UNT, and
UPP were obtained from the R Bioconductor packages,
breastCancerNKI, breastCancerMAINZ, breastCancerTRANSBIG,
breastCancerUNT and breastCancerUPP, respectively. The
scRNA-seq datasets of BC (Bassez et al.) that received anti-PD-1
were retrieved upon request from the website https://
lambrechtslab.sites.vib.be/en/single-cell (20). In the absence of
any published datasets of BC patients receiving immunotherapy,
we utilized a urothelial cancer dataset that received anti-PD-L1
therapy (IMvigor210), and was downloaded from the R package
IMvigor210CoreBiologies (version 1.0.0) (21). The details about
all these datasets were given in Supplementary Table S1. To
mention, all these samples were not pre-screened, but only tumor
(normal samples were excluded) samples were included in the
prognostic analysis. In addition, our newly establish BC-specific
RGEP was compared with the external RGEPs including LM22
(9), Yu et al.’s (HNSCC-RGEP) (14), ABIS (13), immunoStates
(12), which were obtained from the attachments or links given in
these articles.

2.2 Methods
2.2.1 Normalization of Bulk Gene Expression Data
for BC Cohorts
Particularly for microarray datasets (from NCBI-GEO), both
background correction and quantile normalization were
performed using the Robust Multiarray Averaging (RMA)
method (22). In case of bulk RNA-Seq and scRNA-Seq
datasets, the gene expression profiles were normalized as
counts per million (CPM) quantifications and were then
subjected to natural-log transformation.
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2.2.2 Construction of BC-Specific RGEP
BC-specific RGEP is tissue and disease-specific reference matrix
derived from breast tumor scRNA-seq data, where the rows
represent genes and columns are cell types. It should be
mentioned that each entry represents the average expression of
the gene within that cell type. The details on the construction of
the BC-specific RGEP have been provided below.

2.2.2.1 Pre-Processing and Clustering of BC scRNA-Seq
Data
Raw UMI count matrix data of scRNA-seq obtained from eight
BC patients (GEO ID, GSE114725) (19) and was analyzed using
Seurat (version 4.0.1) (23). The cells with <200 or >3,000
expressed genes and those with <500 or >10,000 UMIs were
discarded (Supplementary Figure 1A, 22,970 cells were retained).
The raw UMI counts were then log-normalized with a scale of
10,000, and highly variable genes were identified using the vst
method. In order to eliminate batch effects across samples and
biological effects among normal and tumor states, the first 30
principal components tool was extracted using the integration tool
Harmony (24). Cells were then clustered using the FindCluster
function and resolution = 0.5. We found that both clusters 11 and
Frontiers in Immunology | www.frontiersin.org 3
17 had highly outlier distributions of expressed genes and UMI
counts and filtered out (Supplementary Figure 2B). Following
these processing steps, there remained 12,132 cells clustered into
17 groups for the cell type annotations. We manually annotated
the cell types by comparing the canonical markers with the
differential expression genes identified by the FindAllMarkers
method with logfc.threshold = 0.5 and min.pct = 0.1 (Figure 1B
and Supplementary Table S2).

2.2.2.2 Selection of Cell Type-Specific Genes (Also Called
Signature Genes)
An accurate deconvolution requires the selection of cell type-
specific genes (i.e. the signature genes) whose expression levels
must be informative enough to distinguish the cell types
throughout the sample (12, 15). Hence, we combined four
gene sets [750 DEGs identified by the FindAllMarkers (Seurat,
version 4.0. 1) method at logfc. threshold = 0.5 and min.pct = 0.1
(23), 547 genes identified from LM22 (9), 317 genes from
immunoStates (12), 635 genes from the Tirosh I et al. study
(26)] to construct a reliable BC-specific RGEP. Following
removal of duplicates, 1506 unique genes were used as
signature genes for the BC-specific RGEP.
A

B

C D

FIGURE 1 | Construction of BC-specific RGEP for cell type deconvolution using scRNA-seq data. (A) Two-dimensional UMAP plot of 12132 single cells from 8
breast cancer patients. Each point represents one single cell, colored according to cell cluster. (B) Dot-plot showed the expression of the selected DEGs in each cell
cluster. (C) Tumor score was inferred from the stromal and immune signature using ESTIMATE algorithm (25). Each box shows the median and interquartile range
(IQR 25th–75th percentiles), whiskers indicate the highest and lowest value within 1.5 times the IQR and outliers are marked as dots. P-value, Student’s t-test (***p <
0.001). (D) The expression of the signature matrix of breast tissue, the expression was row-normalized (normalize each expression value by the sum over the row)
across cell types. The upper bound of the color bar is 1.
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2.2.3 Construction of Simulated and Realistic “Bulk”
Gene Expression Data
The simulated bulk gene expression samples were generated
from a random proportion of 15 cell types (provided in BC-
specific RGEP) using the Dirichlet distribution, followed by
replaced sampling from the GSE114725 (19) scRNA-seq
dataset based on the random proportions. This resulted in a
total of 100 samples, with each sample containing 10,000 cells.
To validate the BC-specific RGEP, two scRNA-seq datasets
(Bassez et al., and GSE75688) (20, 27), where the cellular
proportions for each patient sample were known in advance,
were used as realistic bulk gene expression data (by aggregating
reads from all cell barcodes for each patient sample).

2.2.4 Deconvolution and Estimation
Quality Assessment
To evaluate the performance of BC-specific RGEP, we used
LinDeconSeq, a deconvolution toolkit that we recently
developed using weighted robust linear regression (8). The
accuracy of deconvolution was assessed by the Pearson
correlation coefficient r and the root-mean-square error
(RMSE), mainly calculated from the true and estimated cellular
proportions across all the patients.

2.2.5 Functional Gene Set-Based Prognostic Model
To accurately predict the prognosis and therapeutic benefits of
BC patients, we proposed a functional gene set-based prognostic
model, the construction of which consisted of three main steps:
converting gene expression into activation scores of functional
gene sets, identifying functional gene sets significantly associated
with cellular proportions, and establishing the prognostic model
based on the identified functional gene sets in the previous step.
The details of each step were as follows.

2.2.5.1 Calculation of Activation Score Using Gene Set
Variation Analysis (GSVA) Tool
To assess the activation of 9,321 functional gene sets [the union
of H (hallmark gene sets), C2 (curated gene sets) and C5
(ontology gene sets) from MSigDB (28)] for each patient in BC
cohort, we exclusively used a nonparametric and unsupervised
software algorithm called GSVA (29) in the R package with the
microarray mode.

2.2.5.2 Identification of Functional Gene Sets Significantly
Associated With Cellular Proportions
After estimating the activation scores (called “GSVA score”
hereafter) of functional gene sets for each BC patient, we
further calculated the correlations between the proportions of
11 cell types estimated from the TCGA-BRCA cohort and the
GSVA scores, and subsequently performed Fisher Z-
transformations by equation 1.

�zg =
1
2 o
C∈cellTypes

ln
1 + rgC
1 − rgC

 !
(1)

Where rgC is the Pearson’s correlation of gene set g with cell
type C. Then standardize the Fisher-transformed correlations by
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their median and median absolute deviation (MAD):

Sg =
�zg −median(z)

1:4826�MAD(z)
(2)

P-values were then calculated for Sg using the standard normal
distribution, and functions with P-values less than 0.01 were
considered significantly associated with cellular proportions.

2.2.5.3 Establishing the Prognostic Model (Proportion-
Based Model Also Apply)
Based on the identified functional gene sets mentioned above,
LASSO-Cox and multivariate Cox regression methods were
applied to identify the most effective functional gene sets (or
cell types for the proportion-based prognostic model) to build a
prognostic model. LASSO-penalized Cox regression was used to
filter out less relevant factors. Multivariate Cox regression
analysis was applied to optimize the model. An optimal risk
assessment model was constructed utilizing the regression
coefficients derived from Cox regression multivariate analysis
by multiplying the GSVA score (or cellular proportion for the
proportion-based prognostic model) of each function.

2.2.6 Kaplan-Meier Survival Curve
The prognostic model was designed to provide a risk score
corresponding to each patient. Kaplan-Meier (KM) survival
analysis was performed in combination log-rank test to
determine whether the high- and low-risk groups identified by
the surv_cutpoint function [implemented in the R package
survminer (version 0.4.2)] exhibit significantly different survival
patterns or not. In addition, the log-rank test determined
whether the estimated survival curves were the same for each
group, and in the case that the P-value is less than 0.05, the
survival curves were statistically different.

2.2.7 Differentially Expressed Genes (DEGs)
Associating With the Prognostic Risk Groups
To identify DEGs between high- and low-risk groups, we
corrected for the batch effects between BC cohorts using
Combat (30). These DEGs were then determined using the R
package Limma (31), and were further defined at the threshold of
|log2FC| > 0.1 and Benjamini-Hochberg adjusted P-value ≤ 0.01,
primarily to calculate the statistically significant differences in
gene expression.

2.2.8 Functional Enrichment Analysis
Gene annotation enrichment analysis for DEGs between high-
and low-risk groups was performed using the R package
clusterProfiler (32). Gene Ontology (GO) terms and KEGG
pathways were considered statistically significant according to
the Benjamini-Hochberg (33), adjusted P-value < 0.01.

2.2.9 Immunoreactivity Characterization
Immunophenoscore (IPS) uses a number of markers of immune
response or immune toleration to quantify four different
immune-phenotypes in a tumor sample, including antigen
presentation, effector cells, suppressor cells, and checkpoint
October 2021 | Volume 12 | Article 751530
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markers. A z-score summarizing these four categories is
generated, with a higher z-score of IPS indicating a more
immunogenic sample (34, 35). In addition, scores of
exhaustion, cell cycle, and activation gene sets were calculated
by GSVA toolkit (see Supplementary Table S5) (29).

2.2.10 Classification Analysis
To distinguish ER-positive/negative subtypes, a support vector
machine (SVM) classifier was applied to 80% of the samples in
the TCGA-BRCA cohort using parameters from five-fold cross-
validation with standard parameters (using R package e1071).
The remaining samples were used for classifier testing. A random
forest model with ntree = 2000 (R package randomForest) was
used to distinguish high- and low-risk BC patients. To mention,
here the training set used 80% of the ten BC cohort samples,
while the remaining 20% was used for testing (Supplementary
Table S1). The receiver operating characteristic (ROC) curve was
used to assess the classification performance of the model, and
the area under the curve (AUC) was calculated using the pROC
package (36).

2.2.11 Code Availability
The custom codes are available from the corresponding authors
upon request.
3 RESULT

3.1 Construction of the Reliable and
Robust BC-Specific RGEP
As mentioned earlier, both indication-specific (tissue and disease
type) and cell type-specific reference from scRNA-seq data is a key
to deconvolute the cellular composition (15). We therefore
initially obtained a total of 22,970 cells (after initial quality
control) from the normal and cancerous tissues of eight BC
patients (GEO accession number: GSE114725) (19)
(Supplementary Figures 1A, B and Supplementary Table S1).
As previously suggested (12), we applied the integration toolkit
Harmony (24) to simultaneously eliminate technical bias caused
by the batch effects and/or biological effects in the normal and
tumor samples. As a result, 19 different cell clusters were
identified, of which two (clusters 11 and 17) showed excessive
outliers in the distribution of expressed genes and UMI counts
(possibly enriched with the duplicate cells), hence, were excluded
from the analysis (Supplementary Figures 1B, C). The integrated
visualization revealed an extensive mixing of shared cell
populations among patients and between the normal and tumor
states, indicating that biases were significantly reduced
(Supplementary Figure 1D).

On the basis of canonical cell markers, we identified 15 cell types
for the clusters, including BC malignant cells (mainly characterized
by the expression of KRT19, KRT18, CDH1, EPCAM), fibroblasts
(COL1A1, COL1A2, DCN), proliferating T cells (STMN1, MKI67),
cytotoxic T cells (FGFBP2, NKG7, PRF1), Transitional T (CD8A,
CD8B, GZMK, CCL5), Treg (FOXP3, TNFRSF4), Naive-like T cells
Frontiers in Immunology | www.frontiersin.org 5
(IL7R, TCF7), NK cells (KLRD1, KLRC1), neutrophils (CSF3R,
FCGR3B, G0S2), pDC (IL3RA, LILRA4), dendritic cells (HLA-
DPB1, HLA-DPA1), macrophages (C1QA, C1QB, FN1),
monocytes (LYZ, FCN1, VCAN), mast cells (TPSAB1, CPA3), and
B cells (CD79A, MS4A1, CD79B) (Figures 1A, B and Table S2).
The high correlations (r > 0.8) of the aggregated expression profiles
between the immune cell types that we observed were consistent
with one previous study (19), confirming the reliability of our
annotated cell types. It should be mentioned that the study we used
for comparison also included malignant cells and fibroblasts, so we
applied ESTIMATE (25) to analyze the tumor purity scores and
found that malignant cells had the highest tumor purity, followed by
the fibroblasts, while immune cells had the lowest, which is
consistent with the findings by Chung et al. (27) (Figure 1C). To
this end, the results clearly support the reliability and adequacy of
our annotated cell types for BC scRNA-Seq data.

After the cluster annotation and validation, approximately
12,132 high-quality cells were retained of which transitional T-
cells were predominant while few other cell types (proliferating T
cells, pDCs, and malignant cells) accounted for a very small
proportion (Supplementary Figure 1F). In order to create a
reliable and robust BC-specific RGEP for deconvolution, we
averaged the gene expression within each cell type, and only
the cell type-specific genes (signature genes) were retained. In the
end, a specific RGEP with 1506 genes and 15 cell types was
determined for the BC. The average expression levels of the
signature genes were found to be specific for each cell type
(Figure 1D and Supplementary Table S3). Notably, we also
specified the expression of highly correlated genes (due to close
cell lineages), primarily to optimize the covariance in the
deconvolution model (Supplementary Figure 1G).

3.2 BC-Specific RGEP Outperformed Non-
BC-Specific RGEPs in Capturing the
Intrinsic Heterogeneity of BC Cohorts
To evaluate the prediction performance of BC-specific RGEP, we
first deconvoluted the simulated BC bulk gene expression samples
using LinDeconSeq (8), and observed very high consistency (r = 1,
P-value < 1 × 10-30) (Figure 2A, see Materials and Methods). To
obtain realistic datasets, we extracted BC scRNA-Seq data (40 BC
patients, seven broad cell types, and their proportions/patient were
known in advance) from a previously published study (20) (Bassez
et al.’s data, see Supplementary Table S1). Here again, the
deconvolution showed a significantly high correlation (r = 0.91,
P-value < 2.1 × 10-19) between predicted and the true proportions
(Figure 2B). As a proof of principle, we tested another RGEP
(called “HNSCC-RGEP”) (14) generated from head and neck
squamous cell carcinoma (HNSCC) and found that our BC-
specific RGEP made the predictions closer to the true
proportions (i.e., higher correlation and lower RMSE)
(Figure 2C). A similar trend was also observed in the GSE75688
scRNA-Seq dataset (27) (Supplementary Figures 2A, B and
Supplementary Table S1). These results indicate that our BC-
specific RGEP can accurately predict the cellular compositions in
BC-TME, and with better predictive performance compared to
October 2021 | Volume 12 | Article 751530
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other non-specific references (even generated from different
tissues like HNSCC).

We next assess the performance of BC-specific RGEP on
traditional bulk transcriptome sequencing data (i.e. bulk RNA-
seq data) by determining the proportions of 15 reference cell
types in each sample. Here again, we used ESTIMATE (25) to
determine the tumor purity, and found that prediction based on
BC-specific RGEP showed a higher correlation compared to the
one based on HNSCC-RGEP (Figure 2D). We also collected
the malignant purity of TCGA-BRCA samples predicted
by other tools, including ABSOLUTE, LUMP, IHC and CPE
algorithms from the literature of Dvir Aran et al. (37). When
comparing all of them, our predictions also showed a good/
favorable performance (Supplementary Figures 2C–G). We also
aggregated the predicted proportions of 15 cell types in TCGA-
BRCA samples as fibroblasts, immune cells, and malignant
cells and observed that the proportion of malignant cells was
the highest whereas fibroblasts appeared to be the lowest
Frontiers in Immunology | www.frontiersin.org 6
(Figure 2E). The proportions of immune, fibroblast and
malignant cells showed significant differences in the PAM50
subtypes of BC, indicating different degrees of infiltration
(Figure 2F). Moreover, the Normal-like samples showed the
highest percentage of fibroblasts, and Luminal B had the lowest
number of fibroblasts. Basal-like tumors displayed the highest
degree of immune cell infiltration, followed by Her2 tumors,
while Luminal A tumors showed the lowest. To avoid the effect of
covariance on the deconvolution, we aggregated 13 immune cell
types of BC-specific RGEP into seven major lineages (B cells,
mast, myeloid, neutrophil, NK, pDC, and T cells) and found that
the proportions of B cells, myeloid, NK, and T-cells differed
significantly between BC primary tumor and the normal tissue.
These observations were consistent with previous studies
(Figures 2E–G) (19, 38, 39).

To more systematically assess the BC-specific RGEP, we
collected three additional non-BC-specific RGEPs, namely
LM22 (9), immunoStates (12), and ABIS (13), and used
A B C

F G H

D E

FIGURE 2 | Accuracy of cellular proportions estimated using BC-specific RGEP. (A) Scatter-plot of the estimated and true cellular proportions for the 100 simulated bulk
breast tumor samples. Each dot represents one sample and r denotes the Pearson’s correlation coefficient. P-value, Student’s t-test. (B) Scatter-plot of the estimated
and true cell proportions for the Bassez et al.’s scRNA-seq breast cancer data (20). Each dot represents one patient and r denotes the Pearson’s correlation coefficient.
P value, Student’s t-test. The proportion of myeloid was the combined effect of monocyte, macrophage, and dendritic cell types, and T cell was the combined effect of
Naïve-like, Treg, transitional, cytotoxic, and proliferating T cell types. (C) Side-by-side boxplot indicated the correlation (top) and RMSE (bottom) between the estimated
and true cellular proportions, respectively, using BC-specific RGEP and HNSCC-RGEP (derived from HNSCC scRNA-seq data) (14) based on Bassez et al.’s dataset
(20). P-value, Student’s t-test. (D) Using the tumor purity of TCGA-BRCA patients estimated by ESTIMATE as the gold standard, scatter-plot showed the degree of
consistency of the malignant proportion estimated using BC-specific RGEP (Left) and HNSCC-RGEP (14). (Right) with the gold standard purity. Each dot represents one
sample and r denotes Pearson’s correlation coefficient. P-value, Student’s t-test. (E) Box plots showed the proportional distribution of fibroblast, immune cells and
malignant cells, where the proportion of immune cells was the combined effect of B, mast, monocyte, macrophage, dendritic, pDC, neutrophils, NK, naïve-like, Treg,
transitional, cytotoxic and proliferating T cells. Each box shows the median and interquartile range (IQR 25th–75th percentiles), whiskers indicate the highest and lowest
value within 1.5 times the IQR and outliers are marked as dots. (F) Comparison of the proportions of fibroblasts, immune and malignant cell types in different cancer
subtypes. Each box shows the median and interquartile range (IQR 25th–75th percentiles), whiskers indicate the highest and lowest value within 1.5 times the IQR and
outliers are marked as dots. Wilcoxon rank-sum test was used for statistical analysis (****p < 0.0001). (G) Comparison of the proportions of major immune cell types
between primary tumor and solid tissue normal samples. Each box shows the median and interquartile range (IQR 25th–75th percentiles), whiskers indicate the highest
and lowest value within 1.5 times the IQR and outliers are marked as dots. Wilcoxon rank-sum test was used for statistical analysis (ns, “no significance”, **p < 0.01,
****p < 0.0001). (H) ROC curve measuring the ability to distinguish ER+ and ER- of BRCA samples using cellular proportions estimated by BC-specific RGEP and
non-BC-specific RGEPs in combination with the LinDeconSeq deconvolution method (8).
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them with LindeconSeq to predict the cellular compositions of
TCGA-cohort, respectively. To compare the accuracy and
reliability of BC-specific RGEP with non-specific RGEPs
for predicting cel lular proportions, area under the
curve (AUC) index was employed. Specifically, an SVM
classifier was used to distinguish ER+ and ER- of BC
patients based on the predicted cellular proportions by each
RGEP, and then an AUC index was calculated (see Materials
and Methods). Higher AUC indicates better classification
ability, which suggests that this RGEP-predicted cellular
composition is more capable of characterizing the intrinsic
heterogeneity of BC patients with different subtypes. The result
demonstrated that our BC-specific RGEP had the highest AUC
(0.89) value (Figure 2H), suggesting that it is superior in
characterizing the intrinsic heterogeneity of BC patients with
different subtypes.

3.3 Construction of Functional Gene Set-
Based Prognostic Model
After scaling the cellular proportions of TCGA-BRCA cohort, we
focused on the TME cell network, mainly to determine the
suitability of BC-specific RGEP to the tumor-immune cell
interactions, cell lineages, and their effects on overall survival
(OS) in BC patients (Figure 3A). The analysis showed significant
differences (log-rank test, P-value < 0.05) in survival between the
high and low proportion groups of these cells, with the exception
of neutrophils (Figure 3A). Subsequently, 11 immune cell types
were selected by the LASSO-Cox regression model (with
minimized lambda) to build the proportion-based prediction
model according to multiple Cox regression (Supplementary
Figures 3A, B, concordance-index: 0.61). We found that
the patients stratified into the high-risk score group had
significantly worse overall survival compared to the low-risk
score group in the TCGA-BC cohort (log-rank test, P-value =
7.45 × 10-7, see Materials and Methods) (Figure 3B). Notably,
since the accuracy of deconvolution can be influenced by
multiple factors (including data type, e.g., microarray/RNA-
seq), the accurate identification of stable signatures holds a
great value for predicting the prognosis. Therefore, we
specifically used gene set variation analysis (GSVA), which
provides an advantage over single samples in order to perform
comprehensive pathway-centric analyses in an unsupervised
manner. Moreover, this strategy also helps to explore the
perturbation of key functional gene sets in different patients
for the prognosis prediction.

To investigate the association between these cell types and
biological functions, we retrieved the H (Hallmark gene sets), C2
(curated gene sets), and C5 (ontology gene sets) collections from
the MSigDB database (28), and estimated the GSVA (29) score for
each sample. In this way, we retained the 964 functional gene sets
with significant correlations (P-value < 0.01) and entered them
into the LASSO-Cox regressionmodel for features selection. In the
end, we obtained 24 functional gene sets (/pathways) and used
them (i.e. “GSVA score” of 24 functions) to construct a prognostic
model similar to the proportion-based strategy (Figures 3C and
Supplementary Figures 3C–F, concordance index: 0.782,
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Table S4, see Materials and Methods). The overall outcome was
consistent in the proportion-based model, except that the
differences between high- and low-risk groups (determined by
the surv_cutpoint function) were more significant for the
functional gene set-based prognostic model (Figure 3D, log-
rank test, P-value = 5.9 × 10-33). Interestingly, the associations
with proliferating T-cells and macrophages were observed
predominantly among the 24 functional gene sets (Supplementary
Figure 3D). In particular, the association of proliferating T-cells
with nucleosome localization, spindle checkpoint suggests biological
processes in cell proliferation, while the associations with
macrophages with MHC protein complexes, negative regulation of
T-cell receptor signaling pathways suggest involvement in anti-
tumor immunity.

To mention, the multivariate Cox analysis revealed that 24
functions (HR: 5.0, 95CI: 3.36-7.5) and tumor stage IV (HR:
6.4, 95CI: 2.88-14.3) were independent prognostic factors for
OS in BC patients and can characterize the prognostic risk
better than the proportions of 11 cell types (Figure 3E). In
addition, the area under the curve (AUC) predictive value for
the functional gene set-based model showed the highest
survival rate by 3 years (Figure 3F). As compared to the
other clinical characteristics and proportions of 11 cell types,
the functional gene set-based model revealed the favourable
predictive power (Figure 3G). Also, we found that the high-risk
group had shorter survival times and more deaths (Figure 3H).
We additionally tested nine microarray expression datasets (see
Supplementary Table S1) and observed the significant
differences between high- and low-risk groups in these
validation cohorts (Figures 3I–K and Supplementary
Figures 4A–F, log-rank test, P-value < 0.05). Overall, the
analysis in multiple test cohorts suggests that our functional
gene set-based prognostic model can clearly define the intrinsic
characteristics of BC patients’ prognosis.

3.4 Clinical and Biological Characteristics
of High- and Low-Risk Groups Depicted
by the Functional Gene Set-Based
Prognostic Model
The relationship between prognostic risk score and clinical
characteristics was further examined in the entire cohorts (10
BC cohorts, 4980 samples, Supplementary Table S1). It was
found that the risk scores showed significant differences within
the clinical characteristics, however, with the exception for age
status (Figure 4A, Wilcoxon test, P-value <0.05). Of importance,
each of the five molecular subtypes of PAM50 showed variations,
e.g., Luminal A showed the best prognosis with the lowest risk
score, whereas Her2 and Basal types were found to be more
aggressive with the highest risk scores (Figures 4A, B). We also
determined several independent factors and found that, a)
histologic grading and pathologic staging of BC showed
positive progression of stage and risk score, b) the patients
with ER-positive showed a tendency to have a better prognosis
(and lower risk) compared to ER-negative patients, c) those with
or without radiotherapy showed a significant difference and had
a higher risk score in the post-radiotherapy cohort. Since, the
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FIGURE 3 | Construction and validation of the functional gene set-based prognostic model in the BRCA cohorts. (A) Cellular interaction of the TME cell types. The size
and filled color of each circle represent the prognosis effect of each cell type and were scaled by P-value. The lines connecting TME cells represent cellular interactions,
where the thickness of the line represents the strength of correlation estimated by Spearman’s correlation analysis. A positive correlation is indicated in red and negative
correlation in blue. (B) Kaplan-Meier survival curves of overall survival (OS) from the TCGA-BRCA cohort using a prognostic model constructed from the proportion of 11
cell types (obtained by LASSO-COX selections) of BC patients. (C) Flow chart of constructing functional gene set-based prognostic mode consisted of three parts. First,
correlation analysis was performed for the proportion of 11 cell types and the GSVA (29) score of 9,321 functional gene sets, respectively. Second, Fisher-Z-Transformation
converted correlations into almost normally distributions, and significant functions with P-value < 0.01 could be retained. Third, LASSO-Cox functions selection was employed
and then a functional gene set-based prognostic model was constructed. (D) Kaplan-Meier survival curves of OS from the TCGA-BRCA cohort using functional gene set-
based prognostic model. (E) Multivariate analysis of the clinical characteristics, cellular proportion-based risk score and function-based risk score and functional gene set-
based risk score with the OS. Log-rank test, **P < 0.01. (F) ROC curves of the functional gene set-based risk score at 1, 3, 5, 10 and 20 years after follow-up. (G) ROC
curves of the clinical characteristics, cellular proportion-based risk score and functional gene set-based risk score at the year three after follow-up. (H) The patterns of the OS
and survival status between the high- and low- groups for the TCGA-BRCA cohort. (I-K) Kaplan-Meier survival curves of OS, RFS and DMFS of patients in the low- and
high-risk groups for the METABRIC (40) (I), NKI (41) (J) and Mainz (42) (K) datasets, respectively. Relapse-free survival: RFS; Distant recurrence-free survival: DMFS.
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cohorts were not matched before and after the radiotherapy, thus
the differences between them may vary relative to the treatment
response. In addition, Pan-Gyn analysis confirmed that a
positive trend increases the risk of C1 to C5 (Figure 4A). On
the basis of deconvolution using LinDeconSeq (8) and BC-
specific RGEP, TME cell infiltration of high- and low-risk
groups revealed significant differences except for Naïve-like
cells (Figure 4C). We also calculated the correlations of risk
scores with genes from 24 functional sets based on the TCGA-
BRCA cohort and extracted the top 10 genes each with the
strongest positive and negative correlations, comparing the
expression of these genes in the high- and low-risk groups
showed significant differences (Supplementary Figure 5, P-
value < 0.05). As shown in Supplementary Figure 5, genes
with positive correlation have higher expression in high-risk
group; conversely, genes with negative correlation have lower
expression in high-risk group.
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To further investigate the differences in the transcriptome
between high- and low-risk groups, we additionally evaluated
the number of parameters related to immune signature using the
GSVA method. We observed significant differences between the
high- and low-risk groups in the immunophenoscore (IPS)
variable, i.e., the high-risk group showed a more severe T-cell
exhaustion and cell proliferation activity, indicating a suppressed
immune response with a worse prognosis (Figure 4D, see
Materials and Methods). The association of risk scores with the
expression of key immune checkpoint genes (including PD-L1
(CD247), PD1 (PDCD1), LAG3, and CTLA4) were explored and
significant negative correlation were found, indicating that BC
patients with high-risk scores responded poorly to immune
checkpoint blockade therapy (Supplementary Figure 6). We
further substituted the differentially expressed genes between
high- and low-risk groups (see Supplementary Table S6) and
found that the genes upregulated in the low-risk group were
A B C

E FD

FIGURE 4 | Multi-perspective bioinformatics analysis of clinical and biological characteristics of high- and low-risk groups. (A) Stratified analysis of clinical characteristics for
the risk score of the functional gene set-based prognostic model in ten BRCA cohorts. Each box shows the median and interquartile range (IQR 25th–75th percentiles),
whiskers indicate the highest and lowest value within 1.5 times the IQR and outliers are marked as dots. The dots represent scaled risk score values. Wilcoxon rank-sum
test was used for statistical analysis (ns, “no significance”, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001). (B) The fraction of patients with PAM50 subtypes in the
high- and low-risk groups. (C) The proportion of TME cells in high- and low-risk groups. Each box shows the median and interquartile range (IQR 25th–75th percentiles),
whiskers indicate the highest and lowest value within 1.5 times the IQR and outliers are marked as dots. The dots represent the scaled fraction values of TME cells.
Wilcoxon rank-sum test was used for statistical analysis (ns, “no significance”, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001). (D) The relative distribution of immune
signature gene scores was compared between high- and low-risk groups in ten BRCA cohorts. (Left-top) IPS score, (Left-bottom) Cell-cycle score, (Right-top) Exhaustion
score and (Right-bottom) PI3K pathway score. (E) GO and KEGG analyses for differentially expressed genes in the high- and low-risk groups. Up-regulated genes in low-
risk group (top) and in high-risk group (down) are shown. (F) Forest plot showing differentially mutated genes between the high- and low-risk groups. Only genes with more
than 10 mutations in the samples in one group were included in the analysis. The statistical difference of the two groups was compared through the Fisher exact test. *P <
0.05; **P < 0.01; ***P < 0.001.
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mainly enriched in immune-related categories, such as
lymphocyte differentiation and Th17 cell differentiation. On the
contrary, genes upregulated in the high-risk group were mainly
enriched in the categories related to cell proliferation, such as
nuclear division, cell cycle, and response to hypoxia (Figure 4E
and see Supplementary Table S7). Interestingly, we also observed
that TP53, MIA3 were frequently mutated genes in the high-risk
group, while CDH1 and PIK3CA predominated in the low-risk
group (Figure 4F). Overall, the high- and low-risk groups
represented by the 24-functional gene sets prognostic model
Frontiers in Immunology | www.frontiersin.org 10
showed significant differences in the clinical and transcriptomic
characteristics, suggesting that the prognostic model can mirror
the BC prognosis.

3.5 Functional Gene Set-Based Prognostic
Model Serves as a Predictive Parameter
With Therapeutic Benefit in BC Cohorts
To investigate whether the risk scores predicted by our functional
gene set-based prognostic model can effectively predict the tumor
response in BC patients, we performed pairwise comparisons of
A B

C D E

F IG H

FIGURE 5 | Therapeutic benefit of the 24 functional gene set-based prognostic BC model. (A) Pairwise comparison of the risk scores in the patients pre- and post-
chemotherapy for the GSE5462 (43) and GSE18728 (44) cohorts. Significance P-values were determined by pairwise Student’s t-test. (B) Boxplot showing the
distribution of risk scores for different neoadjuvant chemotherapy response in the GSE41998 (45), GSE37946 (46), and GSE25066 (47) cohorts. Significance P-value
was determined by Student’s t-test. Progressive disease (PD), stable disease (SD), partial response (PR), complete response (CR), pathologic complete response
(pCR), and residual disease (RD). (C) Kaplan-Meier survival curves of distant recurrence-free survival (DRFS) from the GSE25066 cohort using functional gene set-
based prognostic model. (D) Alluvial diagram of risk groups with different predicted response (pCR and RD), and molecular subtypes (Normal-like, LumA, LumB,
Her2, and Basal). (E) Comparisons of risk scores for different status in BC scRNA-seq data provided by Bassez et al. (20). Pairwise comparison of risk scores for the
cohort1 (Left) and cohort2 (Right) before and on anti-PD1 treatment. Significance P-values was determined by Student’s t-test. (F) Boxplot showing the distribution
of risk scores for different anti–PD1 response in the IMvigor210 cohort. Significance P-value was determined by Student’s t-test. (G) Kaplan-Meier survival curves of
OS from the IMvigor210 cohort using functional gene set-based prognostic model. (H) Waterfall plot illustrating the distribution of risk scores for patients with
different anti-CTLA4 immunotherapy responses in the IMvigor210 cohort. (I) ROC curve of random forest classifier for predicting high and low risk BC patients using
24 functional gene sets.
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the risk scores (before and after treatment) with adjuvant
chemotherapy, mainly in two BC cohorts (GSE5462 and
GSE18728). We found significant differences in the majority of
patients who responded with a lower risk score after
chemotherapy (Figure 5A, see Supplementary Table S1). In
accordance with patients ’ response to neoadjuvant
chemotherapy, BC patients (in GSE41998) were further divided
into four groups: progressive disease (PD), stable disease (SD),
partial response (PR), and complete response (CR). Here, the
analysis showed that the risk scores of BC patients with CR/PR
were significantly lower than those with SD/PD. The BC patients
from the GSE37946 data also showed a significantly lower risk
score for pathologic complete response (pCR) compared to the
residual disease (RD). To our surprise, the risk score of the pCR
cohort was found to be significantly higher compared to RD in the
GSE25066 data, which can be partially explained by the intrinsic
association between risk score and disease-free survival (DRFS),
i.e., high risk favored good prognosis in this particular data set
(Figures 5B, C). The association between risk score, treatment
response and PAM50 subtypes was further investigated, and
found that the high-risk group was mainly enriched for Her2
and Basal aggressive subtypes with predominantly pCR status,
while the low-risk subgroup was mainly LumA, LumB, and
Normal-like with predominantly RD status. This may suggest
that the difference in risk between different tumor subtypes is
greater than the difference before and after treatment of the
consent subtype (Figure 5D).

We further investigated whether the risk score could predict
immunotherapeutic benefit for BC patients. For this purpose, we
Frontiers in Immunology | www.frontiersin.org 11
used scRNA-seq data from two cohorts consisting of 40 BC
patients who received anti-PD1 therapy for approximately 10
days (see Supplementary Table S1). The pairwise comparisons
of risk scores (before and after immunotherapy treatment)
showed low-risk scores after the treatment in both cohorts,
however, it was not significant (Figure 5E). In the absence of
any published datasets of BC patients receiving immunotherapy,
we utilized urothelial cancer dataset that received anti-PD-L1
therapy (IMvigor210), in order to test our functional gene set-
based prognostic model to classify high- and low-risk groups.
The boxplots further showed that the risk scores were
significantly low in the patients with complete or partial
response (CR/PR) compared to those with stable or progressive
disease (SD/PD) (Figure 5F). In addition, the Kaplan-Meier
curves showed that the patients in the low-risk group had a
significantly better prognosis than those in the high-risk group
(Figure 5G). In the ranking of risk scores from low to high, the
low-risk side was enriched with PR/CR patients, whereas the
high-risk side was predominated with SD/PD patients
(Figure 5H). Overall, these analyses suggest that the risk scores
calculated by our BC functional gene set-based prognostic model
perform well for stratifying response to the immunotherapy.

In order to build the classifier that could predict the high- and
low-risk group for BC patients, we applied the random forest
algorithm (R package randomForest, version 4.6) using the GSVA
scores of 24 functional gene sets as features in the training cohorts
(ten BC cohorts, 80% for training and the remaining 20% for
testing) (seeMaterials and Methods, see Supplementary Table S1).
And we found the overall accuracy and AUC of the test cohorts as
A B

FIGURE 6 | Functional gene set-based model of BC patients as a prognostic factor for 24 other cancer types. (A, B) Impact of risk scores derived from BC
functional gene set-based prognostic model on survival of pan-cancer patients. A high score is associated with both worse (A) and better (B) overall survival. Overall
survival of patients with high score was compared with those with low score in a Kaplan–Meier survival curve analysis. Statistical significance was assessed by log-
rank test. Only significant cancers with P-value < 0.05 were shown.
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81.5% and 0.852, respectively, showing a favorable predictive power
(Figure 5I). Of note, interleukin 21-mediated signaling and protein
localization in the nucleoplasm emerged as the most important
features in our analysis (Supplementary Figure 7).

3.6 Extending the Functional Gene
Sets-Based Prognostic Model of BC to
Pan-Cancer
Next, we investigated whether the association of 24 functional
gene sets which we found in BC also applies to other cancers. To
achieve this, we used the BC prediction model to calculate risk
scores for 32 other cancers in the TCGA database (except BRCA
cancers) and used the optimal cut point as an additional
parameter to divide patients into two groups per cancer type.
Then Kaplan–Meier survival curve analysis was performed
between the high- and the low-expression groups. Among 32
cancer types, we found BC functional gene set-based prognostic
model was significantly associated with overall survival in 24
cancer types (Figures 6A, B). In ACC, LGG, PRAD, DLBC,
LIHC, SARC, KICH, MESO, UVM, LAML, and PCPG, the risk
score obtained from 24 prognosis-related functional gene sets
was observed as a favourable survival factor (Figure 6A), while
the score was associated with worse survival in BLCA, KIRP,
READ, CESC, LUAD, THCA, COAD, LUSC, THYM, HNSC,
OV, PAAD, and KIRC (Figure 6B).

Taken together, our results suggest that the 24 functional
genes closely associated with BC prognosis may have general
prognostic significance for all other cancers.
4 DISCUSSION

Cancer is a multifactorial disease that combines yet to be known
initial causative factors with the dysregulated biological pathways
to reshape the genome (48, 49). In fact, cancer heterogeneity is a
major challenge in the clinical setup and to some extent
contributes to the treatment failure and/or acquires resistance in
the cancer patients. It is also now well established that varying
combinations of the different cell types and their cross-talk with
tumor cells modulate TME, which further complicates the
scenario. To address these challenges, advanced methods such
as scRNA-seq have taken the central stage. Particularly in BC, a
few scRNA-seq studies have been performed to gain better insight
into the complex interactions between the immune system and
tumor cells (15, 50). This in turn also raises some concerns about
how to effectively explore this BC-TME heterogeneity with a direct
prognostic/diagnostic clinical application. Since several studies
have shown that reference-based deconvolution methods
provide an important means to resolve the cellular compositions
of bulk samples (5, 6, 8, 9, 11, 51), this prompted us to investigate
the heterogeneity of BC-TME and patient prognosis by combining
reference expression profiles (RGEPs).

Herein, we constructed a BC-specific RGEP using 15 cell
types derived from scRNA-seq data of eight BC patients by
considering multiple factors such as tissue and tumor types,
disease status, data source (single-cell or sorted bulk data), and
Frontiers in Immunology | www.frontiersin.org 12
signature gene selection (Figures 1A–D). By benchmarking
different gene expression reference profiles, we showed that the
estimation accuracy is ultimately limited by the origin and
quality of the RGEPs (Figures 2A-H). Moreover, we confirmed
that when deconvolution algorithms are combined with scRNA-
seq from tumor biopsies, the indication-specific consensus
profiles of immune, stromal and malignant cells can be
obtained directly from TME. Importantly, we observed that the
proportions of both fibroblasts and immune cells estimated by
BC-specific RGEP showed significant differences between the
molecular subtypes of BC patients (Figure 2F), thus validating
the direct clinical application of this novel tool. We observed that
basal-like and Her2 tumors had the highest median degree of
immune cell infiltration, whereas Luminal A tumors showed the
lowest. Moreover, these differences profoundly affect the clinical
treatment strategy and prognosis of BC patients, as confirmed by
univariate Cox regression analysis which was based on the
cellular proportions estimated with BC-specific RGEP
(Figure 3A). Of note, even though we used the deconvolution
tools similar to the previously reported non-specific RGEP
studies, a slight variation in the outcome of certain variables
(e.g., infiltration score of TME and patient prognosis) can be
expected due to the additional clinical parameters which we have
introduced in our current analysis.

We also evaluated transcriptome sequencing data and found
that the cellular proportion-based on our prognostic model can
well predict the prognosis of TCGA-BRCA cohorts, and
confirming the previous studies (Figure 3B) (16, 52). Since the
accuracy of deconvolution is affected by many factors (such as
data type (microarray/RNA-seq)), we attempted to find stable
signatures for predicting the prognosis of BC patients. Therefore,
we used gene set variation analysis (GSVA) (29), which works on
single samples and allows comprehensive pathway-centric
analyses using statistical ranks in an unsupervised manner.
Moreover, the correlations between the proportions of 11 cell
types and 9,321 functional gene sets were analyzed independently
to enhance the analysis. The functional gene sets that were
significantly associated with cellular proportions were used in
Lasso-Cox regression, and 24 functions were retained for the
construction of BC prediction models (Figures 3C, D). The
validation in ten BC cohorts demonstrated that our functional
gene set-based prognostic model has good predictive power
(Figures 3I–K and S4A–F). Despite the selection of features
(24 functional gene sets) from different TCGA-BRCA cohorts,
it was still possible to visualize the common hallmarks among
BC cohorts using GSVA.

Given that prognostic risk scores provide individualized risk
estimates for an outcome, the risk scores estimated by our
functional gene set-based prognostic model adequately
reflected the clinical characteristics of BC patients (Figure 4A).
Also, when determined by the optimal cut-off point for the risk
score, both high- and low-risk groups showed distinct
transcriptional characteristics. For instance, the genes that were
up-regulated in the low-risk group were mainly enriched in
immune-related categories, whereas genes that were up-
regulated in the high-risk group were mainly enriched in
October 2021 | Volume 12 | Article 751530

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Cellular Infiltration and Prognostic Model
categories related to cell proliferation (Figures 4D, E). Regarding
the assessment of patient response to the therapy (chemotherapy
and immunotherapy), the obtained risk scores also showed good
discrimination between pre- and during/post-treatment
(Figures 5A–H). Specifically, the selective 24 functions showed
good predictive power in discriminating the high- and low-risk
samples (Figure 5I). We further extended the BC functional gene
set-based prognostic model to pan-cancer, and demonstrated the
model is also suitable to other 24 cancers types (Figures 6A, B).
Taken together, the functional gene set-based prognostic model
that we have introduced showed a great ability to screen patients
based on their therapeutic response. On a broader perspective,
we provide a perspective to generate similar models in other
cancer types and to identify shared factors that drives
cancer heterogeneity.

It is also important to discuss the limitations of this current
study, 1) some cell types that are lineage closely in the BC-specific
RGEP are highly correlated, which may affect the accuracy of
deconvolution, b) similar to other prognostic models, here also the
difficulty of using the standardized cut-off for interpreting the risk
scores remains. Nevertheless, our analysis showed that our refined
BC-specific RGEP reflect the intrinsic expression of cells, and the
proposed functional gene set-based prognostic model is a robust
one for survival prediction and treatment guidance in BC patients.
Thus, its implementationmay help in stratifying BC patients to get
benefit from adjuvant chemotherapy and cancer immunotherapy.
Indeed, the experimental validation of our results may be highly
valuable to elucidate the clinical spectrum of BC. On a broader
perspective, we provide a perspective to generate similar models in
other cancer types to identify shared factors that drives
cancer heterogeneity.
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