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ABSTRACT

The circadian clock comprises transcriptional feed-
back loops of clock genes. Cryptochromes are
essential components of the negative feedback
loop in mammals as they inhibit CLOCK-
BMAL1-mediated transcription. We purified mouse
CRY1 (mCRY1) protein complexes from Sarcoma
180 cells to determine their roles in circadian gene
expression and discovered that Myb-binding protein
1a (Mybbp1a) interacts with mCRY1. Mybbp1a reg-
ulates various transcription factors, but its role in
circadian gene expression is unknown. We found
that Mybbp1a functions as a co-repressor of Per2
expression and repressed Per2 promoter activity in
reporter assays. Chromatin immunoprecipitation
(ChIP) assays revealed endogenous Mybbp1a bind-
ing to the Per2 promoter that temporally matched
that of mCRY1. Furthermore, Mybbp1a binding to
the Per2 promoter correlated with the start of the
down-regulation of Per2 expression and with the
dimethylation of histone H3 Lys9, to which it could
also bind. These findings suggest that Mybbp1a
and mCRY1 can form complexes on the Per2 pro-
moter that function as negative regulators of Per2
expression.

INTRODUCTION

Most organisms have physiological and behavioral regu-
larities called circadian rhythms with an approximate
intrinsic period of 24 h. The circadian clock is an endo-
genous oscillator that controls daily physiological and
behavioral rhythms. Mammalian molecular oscillators
located in the suprachiasmatic nucleus (SCN) in the ven-
tral hypothalamus of the brain, constitute the master

clock (1). To keep pace with the light–dark cycle, the
SCN clock is entrained each day by light (2,3). The
master clock subsequently synchronizes peripheral oscilla-
tors via neuronal and humoral signaling (4–6). Oscillators
are located not only in the SCN but also in most periph-
eral tissues (7–9) and in established cell lines (4). Even in
fibroblast cell lines, clock genes are induced rhythmically
under specific conditions (10,11). Thus, the circadian clock
is cell-autonomous (12,13). The core circadian system con-
sists of an interacting transcriptional–translational feed-
back loop of clock genes in individual cells (1,14). The
negative feedback loop involves the regulation of two
Period genes (Per1 and Per2) and two Cryptochrome
genes (Cry1 and Cry2) (15,16). The rhythmic transcription
of the Period and Cryptochrome genes is driven by the
basic helix–loop–helix–PAS protein (CLOCK-BMAL1)
complex, which binds the E-box on the genes (17). This
CLOCK-BMAL1-mediated transcription is in turn
repressed by PER and CRY protein complexes that trans-
locate to the nucleus (15–17).
Mammalian CRY proteins belong to the photolyase/

cryptochrome protein family and were initially identified
as homologs of photolyase, a DNA repair enzyme that
removes UV light-induced DNA damage using visible
light as an energy source (18). Animal cryptochromes
are highly homologous to photolyases, but they lack the
photolyase activity and the N-terminal extension that is
characteristic of eukaryotic photolyases (19,20). Despite
the crucial role of mCRY proteins, how they participate
in core circadian system remains unclear, because little is
understood about the mCRY protein complexes involved
in these processes. Here we isolated mCRY1 protein com-
plexes from cultured cells using tandem affinity purifica-
tion (TAP) and identified proteins associated with
mCRY1. We then investigated whether one of the novel
proteins, Myb-binding protein 1a (Mybbp1a), is involved
in the regulation of clock gene expression. Mybbp1a was
originally identified as a cofactor that could bind to the
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negative regulatory domain of the transcription factor,
c-Myb (21). It binds to several other transcription factors
under various conditions (22–25). Mybbp1a has LXXLL
motifs that often mediate interactions between nuclear
receptors and their cofactors (26) and participate in
many protein–protein interactions associated with differ-
ent aspects of transcriptional regulation (27,28). Mybbp1a
binds to and inhibits the coactivator function of PGC-1a,
which is a key regulator of energy metabolism that also
has LXXLL motifs (23). Notably, Liu et al. reported that
PGC-1a stimulates the expression of Bmal1 through coac-
tivation of the ROR family of orphan nuclear receptors
and that it is essential for circadian rhythms (29). We show
here that Mybbp1a interacts with mCRY1 and represses
Per2 gene expression.

MATERIALS AND METHODS

Plasmid construction

The N-terminal TAP-tagged mCRY1 was constructed
based on a mammalian expression vector as follows.
The cDNA of mCRY1 (GenBank Accession No.,
NM_007771) was firstly cloned into the EcoRI site of
pZome-1-N (Cellzome), which is a plasmid based on
pBabe-puro for TAP-tagging proteins at the N-terminus,
using the In-Fusion method (BD Biosciences). The result-
ing region corresponding to the TAP-tagged mCRY1
sequence was then cloned into pcDNA3.1 (Invitrogen)
to drive its constitutive expression under the control of
the CMV promoter. Full-length mCRY1 was also
cloned into pcDNA3.1-His-V5 (Invitrogen). Mouse
Mybbp1a cDNA was generated by RT-PCR from total
RNA of NIH3T3 cells and cloned into pFlag-CMV2
(Sigma) at the EcoRI and SalI sites. Full-length mouse
Mybbp1a cDNA was amplified using 50-GATCGAATT
CAGCGGAGATGAAGAGCCCCACGAAAG-30 (for-
ward) and 50-GTCAGTCGACCTAAGGTGTCTGCAC
TCTCCTGC-30 (reverse) primers.
The cDNAs of mouse CLOCK (GenBank Accession

No., NM_007715) and mouse BMAL1 (GenBank
Accession No., NM_007489) were cloned as described
(30) into pFlag-CMV2 (Sigma) and pcDNA3.1-His-
Xpress (Invitrogen), respectively.

Cell culture and transfection

Sarcoma 180, NIH3T3 and COS-1 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and penicil-
lin/streptomycin, transfected using Lipofectamine PLUS
(Invitrogen) according to the manufacturer’s protocols
and harvested 24–48 h later.

Purification of TAP-tagged mCRY1 protein

Sarcoma 180 cells incubated in 100mm dishes (total 30
dishes) were harvested 24 h after transfection with TAP-
tagged mCRY1 and processed as follows at 48C. The cells
were washed with phosphate-buffered saline (PBS), suspen-
ded in 15ml of ice-cold lysis buffer [20mM Tris–HCl,
pH 8.0, 150mM NaCl, 0.5% Nonidet P-40 (NP-40),

5mM EDTA] supplemented with protease inhibitor mix-
ture (Roche Diagnostics) and lysed for 30min. Cell lysates
were prepared by centrifugation at 12 000� g for 20min.
TAP-tagged mCRY1 was batch-purified using 1.5ml (50%
slurry) of IgG beads (GE Healthcare). Lysates were incu-
bated with the beads for 1.5 h, and then washed three times
with lysis buffer. Bound, tagged proteins were released
from the beads by incubation with 600 units of TEV
protease (Invitrogen) in 5ml of reaction buffer (50mM
Tris–HCl, pH 8.0, 0.5mM EDTA, 1mM DTT) overnight.
The supernatant from the TEV reaction was collected and
diluted 1:7 with CaCl2-binding buffer (50mM Tris–HCl,
pH 8.0, 150mM NaCl, 0.05% b-mercaptoethanol, 2mM
CaCl2). The diluted eluate was batch-purified by binding
to calmodulin-coated beads (Stratagene) in 1.2ml (50%
slurry) for 2 h. After extensive washing with CaCl2-binding
buffer, tagged proteins were released from the beads with
5ml of elution buffer (50mM Tris–HCl, pH 8.0, 250mM
NaCl, 0.05% b-mercaptoethanol, 0.5% NP-40, 7.5mM
EGTA). To validate the purity of the mCRY1 protein
complexes, eluates from each step were resolved by SDS–
PAGE and then visualized by silver staining (Wako Pure
Chemical) as well as by Western blotting using anti-
mCRY1 antibody.

Protein identification

Purified mCRY1 protein complexes were concentrated by
trichloroacetic acid (TCA) precipitation, resolved by
SDS–PAGE and visualized by silver staining (Silver
Stain MS Kit, Wako Pure Chemical). Excised bands on
gels (Figure 1A) were digested in situ with trypsin. The
tryptic digest was analyzed by either MALDI-TOF-MS
(Voyager-DE STR; Applied Biosystems) or nano
LC-MS/MS (MAGIC 2002 nano LC; Michrom
Bioresources Inc.) and Q-Tof 2 (Waters Micromass).
The MALDI-TOF-MS and nano LC-MS/MS data were
searched against the public NCBI databases using MS-Fit
(http://prospector.ucsf.edu/) and Mascot software
(MatrixScience), respectively. Any matches found were
manually evaluated and confirmed.

Immunoprecipitation

Cells were harvested 24–48 h after transfection and lysed
by suspension in ice-cold lysis buffer (20mM Tris–HCl,
pH 8.0, 150mM NaCl, 0.5% NP-40, 5mM EDTA) sup-
plemented with protease inhibitor mixture (Roche
Diagnostics). Lysates were collected after centrifugation
at 12 000� g for 20min and those containing Flag-
tagged proteins were immunoprecipitated with anti-Flag
M2 agarose beads (Sigma), washed three times with lysis
buffer, resolved by SDS–PAGE and Western blotted.

Antibodies

Flag-tagged proteins were detected using anti-Flag M2
antibody (Sigma) and horseradish peroxidase-conjugated
anti-mouse IgG antibody (Chemicon). Anti-myc anti-
body was obtained from Roche Diagnostics. Anti-
mCRY1 antisera were raised against purified, bacterially
produced protein. Briefly, a GST-fusion protein contain-
ing CRY1C-terminal residues 438 to 606 was expressed in
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E. coli and purified using glutathione Sepharose beads
(GE Healthcare). The GST moiety was then cleaved
using PreScission protease (GE Healthcare). Rabbit poly-
clonal antisera were then raised against the purified pro-
tein. Anti-mouse Mybbp1a antisera were raised against
the GST-fusion protein containing Mybbp1a C-terminal
residues 1187 to 1344 expressed in E. coli as described
earlier and horseradish peroxidase-conjugated anti-rabbit
IgG antibody was obtained from GE Healthcare.

Transient luciferase assays

Luciferase assay proceeded as described (31). Briefly, the
mouse Per2 promoter region (–789 to +331) was isolated
and cloned into the pGL3-Basic vector (Promega). The
construct was cotransfected with phRG-TK (Promega)
into NIH3T3 cells as an internal control. Luciferase activ-
ities were measured using the Dual-Luciferase Reporter
Assay System (Promega) according to the manufacturer’s
instructions. Transcriptional activities were normalized
relative to Renilla luciferase activities.

Chromatin immunoprecipitation (ChIP) assay

The ChIP assays proceeded as described (31). Briefly,
NIH3T3 cells were cross-linked with 1% formaldehyde
and then washed with PBS. The cells were lysed on ice

for 20min with lysis buffer (25mM Tris–HCl, pH 8.0,
140mM NaCl, 1% Triton X-100, 0.1% SDS, 3mM
EDTA). The DNA was sheared by sonication into
2.0 kbp fragments. The chromatin fractions were cleared
using E. coli DNA and protein A/G beads (Santa Cruz),
and then incubated with anti-Mybbp1a, anti-mCRY1 or
anti-dimethyl-histone H3 (Lys9) (Upstate) antibodies
overnight at 48C, followed by protein A/G beads.
Chromatin immunocomplexes were washed once for
10min each at 48C with wash buffers 1 (20mM Tris–
HCl, pH 8.0, 150mM NaCl, 1% Triton X-100, 0.1%
SDS, 2mM EDTA), 2 (20mM Tris–HCl, pH 8.0,
500mM NaCl, 1% Triton X-100, 0.1% SDS, 2mM
EDTA) and 3 (10mM Tris–HCl, pH 8.0, 250mM LiCl,
1% NP-40, 1% deoxycholate and 1mM EDTA), followed
by three washes with TE buffer. Immunocomplexes were
removed from the beads with 1% SDS and 0.1M
NaHCO3 and then heated along with DNA input samples
overnight at 658C to reverse the cross-links. Samples were
then purified with SV Minicolumns (Promega). Target
regions were amplified by PCR using the following
primer set: mouse Per2 promoter, 50-GGCCGTCCTAT
TTGCCCTCAAG-30 (forward) and 50-GCGAGTAGGC
TCGTCCACTTC-30 (reverse); G3PDH, 50-ACCACAGT
CCATGCCATCAC-30 (forward) and 50-TCCACCACCC
TGTTGCTGTA-30 (reverse).

Figure 1. Identification of protein components of TAP-purified mCRY1 complexes. (A) Protein complexes eluted after final TAP-purification.
Numbers on left side indicate bands excised from gels. Blue characters indicate bands analyzed by MS. Identified bands are marked with asterisks.
Numbers on right side represent molecular weight markers. Bands corresponding to purified mCRY1 are indicated by arrowhead. Gel concentrations
are indicated on top. (B) Characterization of proteins that interacted with mCRY1 identified by MS analysis.
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RT-PCR

Total RNA was prepared using ISOGEN (Nippon Gene)
and transcribed to cDNA using SuperScript III First-
Strand Synthesis System (Invitrogen). We used the follow-
ing PCR primers for mouse Mybbp1a, mouse Per2 and
control G3PDH: Mybbp1a, 50-GACACAGAGGACTCA
GAGGAC-30 (forward) and 50-TGACGGGGCTCTGGG
TGTCA-30 (reverse); Per2, 50-CAGCGACCGGCCCTTG
ATGCTCG-30 (forward) and 50-ATGATGTCTGGCTC
ATGAGGTG-30 (reverse); G3PDH, 50-ACCACAGTCC
ATGCCATCAC-30 (forward) and 50-TCCACCACCCT
GTTGCTGTA-30 (reverse). The expression levels of
each gene were calculated using Image Gauge (Fuji
Photo Film) and normalized to G3PDH expression.

Real-time RT-PCR

Total RNA was prepared from the mouse liver using gua-
nidine thiocyanate followed by RNAiso (Takara) and
digested with DNase I. Complementary DNA was synthe-
sized using PrimeScript RT reagent kits (Takara).
Real-time RT-PCR proceeded using SYBR Premix Ex
Taq II (Takara) and LightCycler (Roche Diagnostics).
Reaction conditions were 958C for 10 s, followed by 45
cycles at 958C for 5 s, at 578C for 10 s and 728C for
10 s. We used the following PCR primers for mouse
Mybbp1a, mouse Per2, mouse Cry1 and control �-actin:
Mybbp1a, 50-TGCCCTGAAGCGCCTAATCAC-30 (for-
ward) and 50-GGATGTCACACAATGGGATGTC-30

(reverse); Per2, 50-TTCCACTATGTGACAGCGGA
GG-30 (forward) and 50-CGTATCCATTCATGTCGG
GCTC-30 (reverse); Cry1, 50-AGGAGGACAGATCCCA
ATGGA-30 (forward) and 50-GCAACCTTCTGGATGC
CTTCT-30 (reverse); �-actin, 50-CACACCTTCTACAAT
GAGCTGC-30 (forward) and 50-CATGATCTGGGTCA
TCTTTTCA-30 (reverse). The relative mRNA levels of
each gene were normalized to �-actin expression.

Peptide pull-down assay

Biotinylated peptides were bound to streptavidin beads
(Sigma). COS-1 cells were then transfected with Flag-
tagged Mybbp1a, lysed as described earlier and incubated
with peptide-bound beads overnight at 48C. The beads
were washed three times with lysis buffer and then
bound proteins eluted by boiling in SDS sample buffer
were resolved by SDS–PAGE and Western blotted using
anti-Flag antibody. The biotinylated peptides (Upstate)
for pull-down assays were as follows: dimethyl-histone
H3 (Lys9), ARTKQTAR[dimethyl K]STGGKAPRKQ
LA-GGK-biotin; acetyl-histone H3 (Lys9), ARTKQTAR
[acetyl K]STGGKAPRKQLA-GGK-biotin; unmodified-
histone H3, ARTKQTARKSTGGKAPRKQLA-GGK-
biotin.

Real-time luciferase assay

Real-time luciferase assays proceeded as described (31).
Briefly, the mouse Per2 promoter region (–789 to +331)
was cloned into reporter plasmid pGL3-dLuc (Per2-dLuc)
containing a rapid degradation domain at the C-terminus
of firefly luciferase. After transfection with a reporter

plasmid, NIH3T3 cells were synchronized by stimulation
with 100 nM dexamethasone for 2 h, and then the medium
was replaced with DMEM (2ml per 3.5 cm dish) contain-
ing 100mM luciferin (Wako Pure Chemical). Luciferase
activity was measured 2 h later using Kronos AB-2500
(ATTO).

RESULTS

Expression of TAP-tagged mCRY1 in Sarcoma 180 cells

We identified proteins that interact with mCRY1 using
TAP, which is a rapid method of purifying protein com-
plexes for proteome analysis (32). We decided to purify
mCRY1 protein complexes from Sarcoma 180 cells
because they are derived from a mouse sarcoma, they rap-
idly proliferate and generate large volumes of cell lysates,
and circadian oscillation of the clock genes can be induced
in these cells (Supplementary Figure S1A) (33).
Exogenously overexpressed mCRY1 predominantly loca-
lizes in the nucleus of cultured cells (15). Supplementary
Figure S1C shows that transiently overexpressed TAP-
tagged mCRY1 was also located in the nucleus of
Sarcoma 180 cells.

Purification ofmCRY1-protein complexes fromSarcoma180
cells and identification of proteins associated with mCRY1

We purified TAP-tagged mCRY1 and associated proteins
from total lysates of Sarcoma 180 cells. The eluate from
calmodulin beads was concentrated, resolved by SDS–
PAGE and silver-stained (Figure 1A and Supplementary
Figure S2). Visualized protein bands were excised and
those that migrated to a position corresponding to
higher molecular weight than that of exogenously
expressed mCRY1 (bands from 001 to 008 in Figure 1A)
were preferentially analyzed by MS along with one ran-
domly selected band with a lower molecular weight
(band 012).

We identified a small GTPase-related protein involved
in signal transduction (band 002), a transcription cofactor
(band 003, Mybbp1a, discussed in detail later), a multi-
functional nuclear protein that participates in the proces-
sing of pre-mRNA and the regulation of chromatin
structure (band 005), a circadian oscillator protein,
CLOCK (band 007) and three ribosomal proteins (band
012) (Figure 1B). We assessed the specificity of mCRY1
interactions of all of these proteins except for band 002,
which was too large for exogenous expression in mamma-
lian cells and band 007 (CLOCK), which is known to
interact with mCRY1 (16,34).

Full-length mouse cDNAs were cloned into expression
vectors with the Flag epitope. COS-1 cells were cotrans-
fected with Flag-tagged proteins together with TAP-
tagged mCRY1, and pull-down assays were performed
using IgG beads. Figure 2A (Supplementary Figure S3A
and C) shows Flag-tagged protein-mCRY1 complexes in
the precipitates. To further confirm specific interaction, we
prepared a V5-His-tagged mCRY1 expression construct
without the TAP tag to show that the identified proteins
interacted with mCRY1 and not with the TAP tag. Flag-
tagged proteins were cotransfected with V5-His-tagged
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mCRY1 into COS-1 cells, and immunoprecipitated with
anti-Flag antibody. Figure 2B (Supplementary Figure S3B
and D) shows mCRY1 in protein complexes precipitated
with anti-Flag antibody. Therefore, these results con-
firmed that these five proteins (the three ribosomal pro-
teins comprising band 012, as well as bands 003 and 005)
interacted with mCRY1.

Band 003 was identified as Mybbp1a, which has been
characterized as a transcription cofactor (21–24,35). Some
evidence indicates that Mybbp1a binds to several tran-
scription factors, although its effect on transcription
varies among genes. We postulated that Mybbp1a is
involved in the transcriptional regulation of clock genes.
We initially generated an antibody specific to mouse
Mybbp1a (Supplementary Figure S4A) and then immuno-
histochemically examined the expression of Mybbp1a in
the mouse SCN. Supplementary Figure S4B shows intense
Mybbp1a expression in the SCN cells and predominant
location in the nucleolus, which is in agreement with pre-
vious findings (21,36). However, a small amount of
Mybbp1a in the nucleoplasm can regulate transcription
factors (24).

Mybbp1a represses transcriptional activity of the
Per2 promoter

Although Mybbp1a binds to several transcription factors,
which indicates a role in transcriptional regulation,
the function of Mybbp1a in circadian gene expression
remains unknown. To determine whether Mybbp1a
regulates Per2 gene expression, we performed reporter
assays in NIH3T3 cells in which Per2 is a core oscillator
for maintenance of the circadian clock. We cotransfected
the Per2-luciferase reporter (Figure 3A) with a Mybbp1a
expression plasmid. Figure 3B shows that Mybbp1a dose-
dependently repressed Per2 promoter activity (left panel).
We then tested the effect of Mybbp1a on CLOCK-
BMAL1-dependent transactivation (Figure 3B, right
panel). Increasing amounts of Mybbp1a dose-dependently

repressed Per2 promoter activity regardless of the pres-
ence of CLOCK-BMAL1. We also examined whether or
not Mybbp1a represses Per2 promoter activity via an
E2-box. We used a reporter containing a mutant E2-box
that lacks transcriptional activation by CLOCK-BMAL1
(31) (Supplementary Figure S5A). A mutation of the
E2-box (mut E2-box reporter) resulted in the same tran-
scriptional repression (up to 44%) as the wild type (wt
E2-box reporter) (Supplementary Figure S5B, left panel).
To determine whether such repression occurs through

direct action of Mybbp1a on the Per2 gene promoter, we
performed ChIP assays in NIH3T3 cells transfected with
Flag-Mybbp1a. The polymerase chain reaction (PCR)
showed that Mybbp1a bound to the Per2 promoter
(Figure 3C). A region of the G3PDH gene that was also
included in PCR from precipitated DNA confirmed that
Flag-Mybbp1a specifically precipitated the Per2 pro-
moter. To determine whether Mybbp1a binds to the
Per2 promoter together with mCRY1, we also immuno-
precipitated endogenous Mybbp1a and mCRY1. The
results of ChIP assays showed that endogenous
Mybbp1a and mCRY1 specifically bound to the Per2
promoter (Figure 3D).
Moreover, mCRY1 also repressed the activity of the

mut E2-box reporter by 69% (Supplementary
Figure S5B, right panel), which was less than that of the
wt E2-box reporter (93%). This finding suggests that
mCRY1 also represses the Per2 promoter activity, at
least in part, in an E2-box-independent manner.

Mybbp1a binding to the Per2 promoter is involved in
negative regulation of Per2 expression

Circadian oscillators are operative even in cell lines cul-
tured in vitro (4,37,38). We examined the role of Mybbp1a
on the expression of Per2 in the cell-autonomous clock
after inducing circadian gene expression in NIH3T3 cells
with dexamethasone (13). Reverse transcription (RT)-
PCR showed that Mybbp1a mRNA expression temporally
fluctuated (Figure 4A), but without a circadian rhythm. In
contrast, the transcription of Per2 oscillated with a robust
circadian rhythm and rhythmic Per2 expression peaked at
30 and 54 h. The overall fluctuation in the mRNA level of
Mybbp1a seemed to be generated from a primary response
to dexamethasone stimulation. Thus, we examined the
temporal expression profile of Mybbp1a mRNA in livers
of mice maintained under light/dark cycles (Figure 5).
Circadian fluctuation was absent in the Mybbp1a
mRNA (Figure 5, top panel). Conversely, the rhythms
of Per2 and Cry1 expression were robustly circadian and
rhythmic Per2 and Cry1 mRNA expression peaked at
Zeitgeber times (ZT) 14 and ZT 17, respectively
(Figure 5, middle and bottom panels). Therefore, we
concluded that Mybbp1a mRNA did not oscillate in a
circadian manner.
We postulated that Mybbp1a cooperatively represses

Per2 transcription together with mCRY1 via Per2
promoter interaction. To test this hypothesis, we ana-
lyzed the temporal binding of endogenous Mybbp1a and
mCRY1 on the Per2 promoter by ChIP assays of NIH3T3
cells after dexamethasone stimulation. The ChIP findings

Figure 2. Interaction between Mybbp1a and mCRY1 confirmed by
reciprocal co-precipitation. (A) TAP-tagged mCRY1 co-transfected
with Flag-Mybbp1a into COS-1 cells. Pull-down assays were performed
using IgG beads with high-affinity to TAP-tagged protein. (B) Flag-
Mybbp1a co-transfected with V5-His-tagged mCRY1 into COS-1 cells.
Cell lysates were immunoprecipitated (IP) with anti-Flag antibody.
Symbols (+) or (–), presence or absence of Flag-Mybbp1a-expression
plasmids, respectively.
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showed that the peaks of Mybbp1a binding to the Per2
promoter were almost identical to those of mCRY1 bind-
ing (Figure 4B), suggesting that the two proteins function
as coordinate regulators of Per2 expression.
Histone H3 Lys9 dimethylation is linked to transcrip-

tional repression (39–41). Therefore, we considered that
Mybbp1a would cooperatively repress Per2 transcription
with mCRY1 via interaction with histone H3 dimethy-
lated Lys9 on the Per2 promoter. We analyzed the tem-
poral binding of histone H3 dimethylated Lys9 to the Per2
promoter. Figure 4B shows that the peaks of histone H3
dimethylated Lys9 binding to the Per2 promoter were
almost identical to those of both Mybbp1a and mCRY1.
The correlation among Mybbp1a binding, mCRY1 bind-
ing and histone H3 dimethylated Lys9 on the Per2 pro-
moter suggests that these three proteins cooperatively
regulate Per2 expression.

Mybbp1a binds to dimethylated histone H3 on Lys9

We postulated that Mybbp1a binds to the histone
H3N-terminal tail, because Mybbp1a binding to the
Per2 promoter correlated with histone H3 dimethylated

Lys9 (Figure 4B). We performed pull-down assays using
histone H3N-terminal peptide-immobilized beads to con-
firm this notion. Figure 6 shows that Mybbp1a preferen-
tially bound to the dimethylated peptide at Lys9. On the
other hand, Mybbp1a also relatively weakly bound to the
acetylated and unmodified peptide at Lys9. To further
confirm these results, we quantified the band intensity of
bound Mybbp1a to each peptide. We found that the inten-
sity of bands of Mybbp1a bound to the peptide dimethy-
lated at Lys9 was 2-fold higher than that of Mybbp1a
bound to the acetylated and unmodified peptide at Lys9
(Supplementary Figure S6), confirming that Mybbp1a
preferentially binds to histone H3 dimethylated Lys9.
This result was consistent with the finding that the tempo-
ral binding of Mybbp1a to the Per2 promoter correlated
with the dimethylation of histone H3 Lys9.

Mybbp1a can interact with CLOCK

Although Mybbp1a represses transcriptional activity of
the Per2 promoter, its function in the regulation of Per2
gene expression remains unclear. Because endogenous
CLOCK was present in mCRY1-interacted proteins

Figure 3. Mybbp1a represses transcriptional activity of Per2 promoter. (A) Schematic representation of reporter gene containing mouse Per2
promoter (Per2 promoter-Luc). Arrow and open box indicate transcription start site (TSS) and E2-box, respectively. (B) Repression of Per2
promoter activity by Mybbp1a in NIH3T3 cells. Co-transfection with increasing amounts of Mybbp1a expression plasmid (0.15, 0.30, 0.60 and
1.2 mg) and Per2 promoter-Luc without CLOCK and BMAL1 (left panel). Co-transfection with increasing amounts of Mybbp1a expression plasmid
(0.5, 1.0 and 1.5 mg) and Per2 promoter-Luc with CLOCK and BMAL1 (right panel). Symbols (+) or (–), presence or absence of expression
plasmids, respectively. Expression levels were calculated relative to luciferase activities without Mybbp1a and CLOCK-BMAL1. Note difference in
y-axis scale between left and right panels. (C) Binding of Mybbp1a to Per2 promoter. NIH3T3 cells were transfected with Flag-tagged Mybbp1a and
then analyzed by ChIP assays using indicated antibodies, followed by PCR amplification with primers for Per2 promoter. Symbols (+) or (–),
presence or absence of Flag-Mybbp1a-expression plasmids, respectively. (D) Identification of endogenous proteins on Per2 promoter region. NIH3T3
cells were analyzed by ChIP assays using either anti-Mybbp1a or anti-mCRY1 antibodies. Preimmune: preimmune serum of same animals in which
antisera were raised. No Ab: without antibody. G3PDH primers served as negative control.
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identified by MS (Figure 1B), we postulated that
Mybbp1a also interacts with CLOCK and forms protein
complexes. Supplementary Figure S5C (top panel) con-
firms that Mybbp1a interacts with CLOCK.
The functional relation between Mybbp1a and

CLOCK-BMAL1 is also suggested by the results of Luc
assays using mut E2-box reporter (Supplementary
Figure S5D). Although the level of mut E2-box reporter
activity repression by Mybbp1a alone was similar to that
of the wt E2-box reporter, mut E2-box reporter activity
was further reduced (12%, P< 0.05) when Mybbp1a coex-
isted with CLOCK-BMAL1. On the other hand, only
CLOCK-BMAL1 did not repress the level of mut
E2-box reporter activity. In addition, the level of wt
E2-box reporter activity repressed by Mybbp1a in the
presence of CLOCK-BMAL1 (39%) was more than that
(22%) in the absence of CLOCK-BMAL1. These results
suggest that the related action of Mybbp1a and CLOCK-
BMAL1 is involved, at least in part, in repression of the
Per2 promoter and that this process is independent of the
E2-box.

Effect ofMybbp1a on circadian oscillation in the
cell-autonomous clock

We conducted real-time reporter assays to determine
whether or not Mybbp1a regulates the circadian expres-
sion of Per2 in the cell-autonomous clock. Supplementary
Figure S7A shows that Mybbp1a overexpression reprodu-
cibly and significantly repressed about 40% of the
Per2 promoter activity although the inter-experimental
luciferase values varied. These results were consistent
with those of conventional Luc assays (Figure 3B).
Although Mybbp1a overexpression down-regulated the
Per2 promoter activity in real-time reporter assays, the
period length of Per2 oscillation did not significantly
differ. To further understand the potential role of
Mybbp1a in the cell-autonomous clock, we performed
knockdown experiments using small interfering RNA
(siRNA) for Mybbp1a. The levels of luciferase activ-
ity in real-time reporter assays after introducing
Mybbp1a siRNA (Supplementary Figure S7B), and the
period length of Per2 did not significantly differ.
Therefore, further studies are required to understand the
involvement of Mybbp1a in circadian oscillation in the
cell-autonomous clock.

DISCUSSION

Although mammalian CRY proteins play crucial roles in
the regulation of circadian gene expression, precisely how
this is accomplished remains unclear. A recent study has
shown that CRYs and PERs form large complexes of

Figure 4. Temporal binding of Mybbp1a to Per2 promoter correlates
with mCRY1 binding. (A) Temporal expression profile of Mybbp1a
mRNA in NIH3T3 cells. Cells were stimulated with dexamethasone
and then total RNA isolated at various time points was analyzed by
RT-PCR. Products of PCR were resolved by electrophoresis in 2%
agarose gels and stained with ethidium bromide (top panels). Levels
of mRNA were normalized to G3PDH expression and peak values of
individual curves were set to 1 (bottom panel). (B) Oscillatory binding

of Mybbp1a to the Per2 promoter. NIH3T3 cells were stimulated with
dexamethasone, and then analyzed at each time point by ChIP assays
using indicated antibodies and primers for Per2 promoter. Products of
PCR were resolved by electrophoresis in 2% agarose gels and stained
with ethidium bromide (top panels). Relative band intensities were
normalized to input intensities. Peak values of individual curves were
set to 1 (bottom panel).
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which the abundance and size distribution fluctuate during
the day (42). Therefore, we postulated that CRY proteins
interact with other proteins that might play important
roles in circadian oscillator function.

The present study focused on the roles of large proteins
that interact with mCRY1, because their functions are
frequently linked to processes in higher-order organisms
such as diseases and the nervous system (43,44), and such
proteins can bind to many partners (45). However, to
accumulate functional information about such large pro-
teins in the molecular clock mechanism is hampered by
technical limitations. From this viewpoint, we preferen-
tially selected protein bands with an apparently high
molecular weight for MS analysis (Figure 1A).

We identified seven proteins that interact with mCRY1
(Figure 1B). The presence of endogenous CLOCK indi-
cated that TAP-MS can identify endogenous proteins that
interact with mCRY1, because studies using transiently
expressed proteins found that mCRY1 interacts directly
with CLOCK (16,46). To our knowledge, we present
herein the first direct evidence that endogenous CLOCK
actually associates with mCRY1 in cell lines cultured
in vitro. This finding suggests that mCRY1 can indeed
form protein complexes with endogenous CLOCK even
though cell-specific proteins are involved in mediating
this process.

Figure 5. Temporal expression profile of Mybbp1a mRNA in mouse
liver. Mice were maintained under 12 h light: 12 h dark cycles (light on
at ZT 0) and liver samples were obtained at each time point. Levels of
Mybbp1a mRNA (top panel) were determined using real-time RT-PCR.
Expression levels were normalized to �-actin mRNA. Values are means
� SEM of three mice per time point. Expression profiles of Per2 and
Cry1 mRNA are also shown in middle and bottom panels, respectively.

Figure 6. Specific binding of Mybbp1a to histone H3 dimethylated
Lys9. Pull-down assays of lysates from COS-1 cells transfected with
Flag-Mybbp1a using histone H3N-terminal peptides that were modi-
fied or not at Lys9. Bound proteins eluted from beads previously bound
to peptides were analyzed by Western blotting against anti-Flag anti-
body. Control experiments were performed with lysates from COS-1
cells transfected with empty vector (pFlag-vector). K9(Me)2, dimethy-
lated Lys9; Unmodified, unmodified Lys9; K9(Ac), acetylated Lys9
(indicated on top).
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Although the focus of the present study was band 003,
we are also interested in the role of band 005 (hnRNP U)
in the circadian clock. The functions of both the glucocor-
ticoid receptor, for which the ligand is a major cue for
circadian oscillation (47) and b-TrCP, the F-box protein
of the SCF complex ubiquitin ligase, the substrates for
which are circadian oscillator proteins (48,49) are modi-
fied by hnRNP U. Thus, hnRNP U appears to play a
role(s) in circadian gene expression. Tamaru et al.
reported that hnRNP U protein and transcript levels
robustly change in a circadian manner in both the SCN
and hippocampus of the mouse brain (50). We found that
hnRNP U plays an important role in circadian Bmal1
expression through chromatin alteration (51). However,
the involvement of mCRY1 in the regulation of hnRNP
U function in cell-autonomous clock should be elucidated
in future studies.

Band 003 was identified as Mybbp1a, and we discovered
that it negatively regulates Per2 transcription, which is
consistent with its ability to repress the transcription activ-
ity of several factors (23–25). Our results indicate that
Mybbp1a represses Per2 gene expression through binding
to the Per2 promoter (Figure 3B, C and D). As Mybbp1a
lacks DNA-binding domains (35), it might bind to the
Per2 promoter through interaction with other factors.
The ChIP assays showed that endogenous mCRY1
bound to the Per2 promoter (Figure 3D), indicating that
Mybbp1a binds to this promoter through mCRY1 or
forms complexes containing mCRY1 on the promoter.

A non-canonical E-box (E2-box) located 20 bp
upstream of the Per2 transcription start site is a functional
element for CLOCK-BMAL1 binding (52). Luc assays
using a mutant of E2-box revealed that Mybbp1a
represses the Per2 promoter activity independently of
E2-box (Supplementary Figure S5B, left). In addition,
mCRY1 not only inhibits CLOCK-BMAL1-mediated
transactivation via the E2-box, but also represses Per2
promoter activity in an E2-box-independent manner
(Supplementary Figure S5B, right). Therefore, Mybbp1a
appears to be involved in E2-box-independent repression
via mCRY1 rather than the inhibition of CLOCK-
BMAL1-mediated transactivation.

We postulated that Mybbp1a plays an important role
in Per2 oscillation in the cell-autonomous clock. After
stimulation with dexamethasone, the expression profile
of Mybbp1a mRNA did not indicate clear circadian
oscillation in NIH3T3 cells (Figure 4A). We also found
that Mybbp1a mRNA did not exhibit any significant
circadian oscillation in the mouse liver (Figure 5, top
panel). In addition, Mybbp1a immunoreactivity in the
mouse SCN was not associated with significant circadian
rhythms (data not shown). These results indicated that
even if Mybbp1a participates in clock gene regulation,
its expression is not directly governed by the circadian
clock system.

ChIP assays after dexamethasone stimulation revealed
that Mybbp1a binding to the Per2 promoter was almost
identical to the peaks of both mCRY1 and histone H3
dimethylated Lys9 binding and that the binding peaked
at circadian intervals (Figure 4B; see 32 and 56 h). This
correlation suggests that the three proteins coordinately

regulate Per2 expression. Furthermore, the peaks of
Mybbp1a, mCRY1 binding and histone H3 dimethylated
Lys9 on the Per2 promoter appeared ahead of the trough
of Per2 expression (Figure 4A and B). Thus, Mybbp1a
and mCRY1 binding apparently repress Per2 expression
in a circadian manner. AsMybbp1a mRNA does not oscil-
late in a proper circadian manner, rhythmic Mybbp1a
binding to the Per2 promoter is probably controlled by
post-translational mechanisms. The circadian rhythmicity
of Mybbp1a binding to the Per2 promoter might be
mediated by the temporal activation of mCRY1.
Our pull-down assays showed that Mybbp1a preferen-

tially bound to histone H3 dimethylated peptide at Lys9 as
compared with both histone H3 acetylated peptide at Lys9
and histone H3 unmodified peptide (Figure 6 and
Supplementary Figure S6). These results suggest that
Mybbp1a, mCRY1 and histone H3 dimethylated Lys9
form complexes on the Per2 promoter and that these com-
plexes negatively regulate Per2 expression.
We also confirmed that Mybbp1a is expressed in the

nucleolus of SCN cells (Supplementary Figure S4B),
although its function in the nucleolus remains unclear.
However, increasing evidence indicates that Mybbp1a
functions in nuclear mRNA transcription by pol II, even
though it is mainly located in the nucleolus (22–25,53).
Thus, its expression in SCN cells supports the notion
that Mybbp1a regulates clock gene expression.
We showed that Mybbp1a can interact with CLOCK

(Supplementary Figure S5C). In addition, CLOCK-
BMAL1 is involved in the suppressive effect of
Mybbp1a on the Per2 promoter independently of the
E2-box (Supplementary Figure S5D). Therefore, one pos-
sibility is that Mybbbp1a, mCRY1 and CLOCK-BMAL1
form complexes in an E2-box-independent manner that
negatively regulate the Per2 expression. Another possibil-
ity is that this negative regulation may be, at least in part,
due to indirect effects via mediators that are controlled by
CLOCK-BMAL1. Mybbbp1a and mCRY1 complexes
may negatively regulate such mediators expression via
E-box through a mechanism requiring chromatin remod-
eling. However, more studies are needed to reach a firm
conclusion.
We postulated that gain- and/or loss-of-function experi-

ments using real-time reporter assays would reveal the role
of Mybbp1a in the circadian expression of Per2. We found
that Mybbp1a overexpression significantly decreased
levels of luciferase activity, but did not affect the period
length of Per2 oscillation (Supplementary Figure S7A).
On the other hand, siRNA-mediated knockdown of
Mybbp1a did not significantly change the oscillation pro-
file (Supplementary Figure S7B). These results indicate
that the function of Mybbp1a is not essential for circadian
clock oscillation. However, Fan et al. demonstrated using
mCRY1 proteins that can permeate cells, that CRY1 pro-
tein cycling is not necessary for circadian clock function in
mouse fibroblasts (54). Yamanaka et al. also revealed that
circadian oscillation persisted in rat-1 cells even under
conditions of constitutive mCRY1 protein overexpression
(55). Therefore, a post-translational cyclic regulatory
mechanism probably contributes to maintain the circadian
oscillation. Our findings indicated that Mybbp1a
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participates in the regulation of Per2 gene transcription,
but its precise role in the cell-autonomous clock awaits
further investigation.
In addition, Mybbp1a is a negative regulator of PGC-

1a, which is a transcription coactivator that regulates
energy metabolism (23). PGC-1a activates Bmal1 gene
expression and might integrate the circadian-clock and
energy metabolism (29). Thus, we speculate that the
Mybbp1a-mCRY1 complex also plays a role in circadian
gene expression through the modulation of PGC-1a
activity.
Transcription-permissive chromatin states are dynam-

ically established in a circadian-time-specific manner
(56–60). Mybbp1a might be involved in coupling circadian
regulators to chromatin remodeling through histone
modifications. One hypothesis is as follows, considering
our finding that Mybbp1a preferentially bound to histone
H3 dimethylated Lys9. After histone H3 Lys9 dimethyla-
tion is initiated, Mybbp1a binds to histone H3 dimethy-
lated Lys9 and forms complexes with mCRY1 on the Per2
promoter. This complex represses transcription activity of
the Per2 promoter in cooperation with unknown factors
(Figure 7). In fact, Mybbp1a plays an important role in
transcriptional regulation via histone modification. Owen
et al. reported that Mybbp1a functions as a co-repressor
of NF-kB-dependent transcription by competing with
p300 histone acetyltransferase activity (24). Fan et al. indi-
cated that Gal4-fused Mybbp1a possesses intrinsic repres-
sive activity according to the results of reporter gene
assays and that this activity is diminished by the histone
deacetylase inhibitor, trichostatin A (23). Similarly,
mCRY1 represses transcription by recruiting the histone
deacetylase complex to promoter sites (59). The repressive
activity of Mybbp1a and the mCRY1 complex are appar-
ently involved in histone modification, for example, the
deacetylation and di- and trimethylation of H3 at Lys9
(Figure 7). However, the modulation of histone methyla-
tion by the Mybbp1a-mCRY1 complex should be eluci-
dated in the future. Further investigation into the effect of
Mybbp1a on the clock gene promoter will provide more

information about circadian clock gene regulation at the
chromatin level.
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