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Abstract
iCTNet (integrated Complex Traits Networks) version 2 is a Cytoscape app and
database that allows researchers to build heterogeneous networks by
integrating a variety of biological interactions, thus offering a systems-level view
of human complex traits. iCTNet2 is built from a variety of large-scale biological
datasets, collected from public repositories to facilitate the building,
visualization and analysis of heterogeneous biological networks in a
comprehensive fashion via the Cytoscape platform. iCTNet2 is freely available
at the Cytoscape app store.
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Introduction
In the past decade, an exponential increase in the amount and vari-
ety of publicly available genomic, transcriptomic, proteomic and 
other ‘omics’ data has occurred, altogether encompassing a wide 
range of biological interactions. Each dataset captures distinct fea-
tures of molecular functions involved in complex traits, with the 
goal of describing and ultimately understanding biological com-
plexity. However, these datasets are mostly used in isolation, and 
even the integration of any two of them would take a significant 
effort for the average biological investigator.

Previous work in this area is largely limited to merging data of only 
two types. Goh et al.1 built the first “Diseasome”, a bipartite net-
work of diseases and their associated genes. Lage et al.2 merged 
protein-protein interaction networks with disease-gene associations. 
Similar approaches have been taken to integrate genes (transcripts) 
with tissue3 and miRNA4. More recently, drug-target (and drug-side 
effects) networks have attracted attention due to the potential of 
this approach to illuminate on candidates for drug repositioning5,6. 
While the integration of heterogeneous biological interactions 
would be key in fueling practical applications of systems biology 
from rational drug discovery to disease risk prediction, dedicated 
approaches and tools to accomplish this task are only starting to 
emerge.

Heterogeneous data sets can be joined based on common keys (i.e., 
identifiers or ontology terms), but the integration of large-scale 
biological interactions is time-consuming, and particularly ham-
pered by the lack of universal identifiers in different repositories. 
We previously described the integrated Complex Trait Networks 
(iCTNet) as an attempt to capture multiple biological relationships 
available in the public domain. In the original version of iCTNet7, 
five types of biological interactions (protein-protein, disease-gene, 
drug-gene, tissue-gene, disease-tissue) were integrated in a graph 
fashion, allowing for practical and intuitive integration of those data 
sources within the Cytoscape 2 environment. We argue that incor-
porating an expanded roster of popular databases would maximize 
the utility of this tool in many ways. Such integration of heteroge-
neous interactions would further accelerate our understanding of 
complex traits, and ultimately enable development of predictive 

disease models and facilitate drug discovery and repositioning. In 
this study, we present iCTNet2, a Cytoscape 3 app and database 
incorporating nine different types of interactions among six differ-
ent types of entities: phenotypes, genes (proteins), miRNAs, tis-
sues, drugs, and drug side effects. In addition to increasing the size 
of the database by a factor of 10, a central and distinctive feature of 
iCTNet2 is the incorporation of disease and anatomical ontologies 
as scaffolds onto which the different data types are integrated.

Material and methods
Overview of iCTNet2
iCTNet2 app is an update to the iCTNet plugin for Cytoscape2. The 
app was developed in Java version 7 for Cytoscape 3. The core of 
iCTNet2 is the iCTNet2 database, which can be accessed via the 
iCTNet2 app from Cytoscape8, through a user-friendly graphical 
interface (Figure 1). iCTNet2 app uses the Model-view-controller 
(MVC) pattern, dividing the app into three parts. The Model 
objects represent the data structures of a variety of biological enti-
ties and interactions. The View objects include three panels, where 
the user can search and select entities. The Control objects inherit 
org.cytoscape.work.AbstractTask class, implementing the database 
connection and the communication between the Model and the 
View.

Database
All data resources have been processed and stored in a relational 
MySQL (http://www.mysql.com) database system. Currently, the 
iCTNet2 app is the only available access to the iCTNet2 database. 
The database schema has been designed using MySQL Workbench 
5.2 (http://www.mysql.com/products/workbench). All the queries 
are executed in terms of stored procedures through JDBC API. 
Once the user clicks the “Load” button, the data is queried and 
loaded into Cytoscape. The iCTNet2 database collects a variety of 
large-scale biological datasets from public repositories to facilitate 
the building, visualization and analysis of heterogeneous biologi-
cal networks. Additionally, iCTNet2 incorporates the disease ontol-
ogy (DO)9 as the primary vocabulary for cataloguing phenotypes in 
a tree-like structure. Table 1 lists the publicly available resources 
used to build the iCTNet2 database.

Types of nodes
Phenotypes/diseases. In addition to DO, we also included two other 
disease vocabularies: the Experimental Factor Ontology (EFO) and 
MEDIC. EFO is an ontology developed by the European Bioinfor-
matics Institute (EBI) with a detailed disease component10. MEDIC is 
a list of vocabularies produced by the Comparative Toxicogenomics 
Database (CTD)11 which incorporates disease terms from the Online 
Mendelian Inheritance in Man (OMIM)12 and the U.S. National 
Library of Medicine’s Medical Subject Headings (MeSH) (http://
www.nlm.nih.gov/mesh/). The DO includes OMIM cross-references, 
thus providing the mapping for our network. DO cross-references 
were mapped onto OMIM and MeSH to provide mappings to 
MEDIC. Since the DO did not include direct mappings to the EFO, 
relevant EFO terms were manually mapped. Our mapping currently 
only covers the subset of EFO disease terms available in the GWAS 
catalog as of Dec 201413 (We submitted these 137 mappings to the 
DO, which now includes them as cross-references). In total, there 
are 6,338 phenotype records in the iCTNet2 database.

      Amendments from Version 1

•	 The	manuscript	has	been	streamlined,	a	clear	hypothesis	has	
been	laid	out	and	examples	of	additional	functions	(e.g.	“simi-
larity	network”)	are	being	provided

•	 An	additional	panel	was	added	to	Figure	3	(panel	C)	in	which	
the	“similarity	network”	feature	is	shown

•	 Figure	1	has	been	redrawn	to	satisfy	reviewer’s	request

•	 Table	1	has	been	updated	to	include	version	and	data	of	
access	for	the	resources	used	in	this	paper.	

•	 The	exact	number	of	interactions	is	now	specified	for	each	
edge	type.	

•	 A	warning	message	has	been	introduced	when	user	tries	to	
download	a	large	network

See referee reports

REVISED
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Gene. Gene names are obtained from the HUGO Gene Nomen-
clature Committee’s list of human genes (HGNC). iCTNet2 only 
includes currently valid genes, but also incorporates outdated gene 
symbols and synonyms into an alias table for reference. Non- 
protein coding genes are included as well. In order to map symbols 
or identifiers across different data resources, genes are identified 
using the integer portion of their HGNC IDs14. The iCTNet data-
base includes 38,079 gene records.

miRNAs. miRNAs and their targets are collected from an online 
database miRCat (http://www.mirrna.org), which in turn, assem-
bles data from five databases: microRNA.org, miRTarBase, tarbase, 
microT (v3.0) and miR2Disease.

Tissues. Tissue types were taken from BRENDA tissue ontology15. 
We rooted the ontology at ‘whole body’ (BTO:0001489) to exclude 
the non-animal tissue portions of the ontology.

Drugs. We used the CTD as the primary resource for drugs as refer-
ences to DrugBank16 identifiers are provided thus facilitating the 
mapping between these two resources. Therefore, iCTNet2 con-
tains information of 151,378 drugs in total. However, the function 
of only 10% of them is currently associated (mapped) to genes. 
Mapped drugs in iCTNet include over 13,000 curated chemicals 
and associations with several other major chemical databases. 
While DrugBank 3.0 contains fewer entries than CTD, it has exten-
sive information on most FDA approved therapeutics.

Side effects. The side effect ontology is retrieved from the Medi-
cal Dictionary for Regulatory Activities (MedDRA) (http://www.
meddra.org). While providing a high quality and widely adopted 
vocabulary, the commercial nature of this resource prevents large-
scale republication of its terms. Instead, our database reports the 
Unified Medical Language System (UMLS) (http://www.nlm.nih.
gov/research/umls/) concepts for side effects. Since MedDRA is a 

Figure 1. iCTNet 2.0 screenshot.

Page 4 of 16

F1000Research 2015, 4:485 Last updated: 07 JAN 2016

http://www.mirrna.org
http://www.meddra.org
http://www.meddra.org
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/


Ta
b

le
 1

. T
h

e 
d

at
a 

re
so

u
rc

es
 c

o
lle

ct
ed

 in
 iC

T
N

et
2.

Ty
p

e
R

es
o

u
rc

es
V

er
si

o
n

/D
at

e
U

R
L

nodes

Ph
en

ot
yp

e
D

is
ea

se
	O

nt
ol

og
y

20
13

-1
2-

12
ht

tp
://

di
se

as
e-

on
to

lo
gy

.o
rg

/	

G
en

e
H

G
N

C
(in

cl
ud

in
g	

no
n-

co
di

ng
)

20
14

-0
2-

05
ht

tp
://

w
w

w
.g

en
en

am
es

.o
rg

/	

m
iR

N
A

m
irC

at
20

13
-1

1-
11

ht
tp

://
w

w
w

.m
irr

na
.o

rg
	

Ti
ss

ue
B

R
EN

D
A

	T
is

su
e	

O
nt

ol
og

y
20

13
-1

0-
09

ht
tp

://
w

w
w

.b
re

nd
a-

en
zy

m
es

.o
rg

	

D
ru

g
C

TD
20

13
-1

2-
20

ht
tp

://
ct

db
as

e.
or

g/
	

Si
de

	e
ffe

ct
M

ed
ic

al
	D

ic
tio

na
ry

	fo
r	R

eg
ul

at
or

y	
A

ct
iv

iti
es

(M
ed

D
R

A
)

M
ed

D
R

A
	1

6.
1

ht
tp

://
w

w
w

.m
ed

dr
a.

or
g	

Si
de

	e
ffe

ct
U

M
LS

	M
et

at
he

sa
ur

us
20

11
A

B
ht

tp
://

w
w

w
.n

lm
.n

ih
.g

ov
/re

se
ar

ch
/u

m
ls

/

edges

Ph
en

ot
yp

e-
ge

ne
G

W
A

S	
C

at
al

og
v1

.0
.1

:	2
01

5-
07

-0
8

ht
tp

://
w

w
w

.g
en

om
e.

go
v/

gw
as

tu
di

es
/	

Ph
en

ot
yp

e-
ge

ne
O

M
IM

20
13

-1
1-

11
ht

tp
://

w
w

w
.o

m
im

.o
rg

/	

Ph
en

ot
yp

e-
ge

ne
C

TD
20

13
-1

2-
20

ht
tp

://
ct

db
as

e.
or

g/
	

Ph
en

ot
yp

e-
tis

su
e

O
nt

ol
og

y	
In

fe
re

nc
e

G
en

e-
tis

su
e

G
N

F	
G

en
e	

A
tla

s
20

10
-0

2-
01

ht
tp

://
w

w
w

.g
nf

.o
rg

/	

D
ru

g-
ph

en
ot

yp
e

C
TD

20
13

-1
2-

20
ht

tp
://

ct
db

as
e.

or
g/

	

D
ru

g-
ge

ne
C

TD
20

13
-1

2-
20

ht
tp

://
ct

db
as

e.
or

g/
	

D
ru

g-
ge

ne
D

ru
gB

an
k

20
12

-0
8-

10
ht

tp
://

w
w

w
.d

ru
gb

an
k.

ca
/	

D
ru

g-
si

de
	e

ffe
ct

SI
D

ER
SI

D
ER

	2
:	2

01
2-

10
-1

7
ht

tp
://

si
de

ef
fe

ct
s.

em
bl

.d
e/

	

Si
de

	e
ffe

ct
-ti

ss
ue

O
nt

ol
og

y	
In

fe
re

nc
e

Pr
ot

ei
n-

pr
ot

ei
n

iR
ef

In
de

x	
pp

iT
rim

iR
ef

In
de

x	
12

.0
ht

tp
://

ire
fin

de
x.

or
g	

	
ht

tp
://

w
w

w
.n

cb
i.n

lm
.n

ih
.g

ov
/C

B
B

re
se

ar
ch

/		
Yu

/d
ow

nl
oa

ds
/p

pi
Tr

im
.h

tm
l

m
iR

N
A

-g
en

e
m

irC
at

ht
tp

://
w

w
w

.m
irr

na
.o

rg

Page 5 of 16

F1000Research 2015, 4:485 Last updated: 07 JAN 2016

http://disease-ontology.org/
http://www.genenames.org/
http://www.mirrna.org
http://www.brenda-enzymes.org
http://ctdbase.org/
http://www.meddra.org
http://www.nlm.nih.gov/research/umls/
http://www.genome.gov/gwastudies/
http://www.omim.org/
http://ctdbase.org/
http://www.gnf.org/
http://ctdbase.org/
http://ctdbase.org/
http://www.drugbank.ca/
http://sideeffects.embl.de/
http://irefindex.org
http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/ppiTrim.html
http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/ppiTrim.html
http://www.mirrna.org


source vocabulary for the UMLS, the mapping is straightforward 
and reversible. Nonetheless, upon request we will provide research-
ers who have a valid MedDRA license with an untranslated ver-
sion of our database which includes the hierarchical relationships 
between side effects.

Types of interactions
Phenotype-gene (n=17,778). The phenotype-gene associations are 
the primary resources to study the genetic factors of complex traits. 
iCTNet2 merges phenotype-gene associations from three online 
databases: GWAS Catalog, OMIM and CTD. Only CTD relation-
ships with direct evidence of “marker/mechanism” were included. 
To convert from SNP to gene associations, we combined overlap-
ping loci for each GWAS Catalog disease as recently described17. 
The author reported gene for each loci was selected as the primary 
association for each disease.

Phenotype-tissue (n=5,377). These edges represent physiopatho-
logical information (i.e. which tissues/organs are likely affected by 
each disease). To identify tissue relationships with diseases and side 
effects, we used an ontology inference method. Anatomical disease 
and side effect terms were manually mapped to their affected tis-
sues in the BTO. For example, connective tissue disease (DOID:65) 
was mapped to connective tissue (BTO:0000421). Affected tissues 
were propagated to more specific terms, so only high-level DO and 
MedDRA terms required manual mapping. See Data S1–Data S3 
for the complete mappings.

Gene-tissue (n=108,400). iCTNet2 collects an extensive atlas of 
tissue-specific gene expression from the GNF gene atlas18. The 
expression patterns of 79 human tissues are available that can pro-
vide important clues about gene functions.

Drug-disease (n=11,701). The drug-disease interactions (indica-
tions) are collected from CTD, which in turn, are manually curated 
from the literature.

Drug-gene (n=3,426). The drug-gene interactions are assembled 
from CTD and DrugBank, two major databases containing drug 
information.

Drugs-side effects (n=1,828). The side effects of drugs in humans 
are an essential source to understand human phenotypes. iCTNet2 
collects the information of 888 drugs and 1,450 side effect terms 
from the side effect resource (SIDER)19, with available side effect 
frequency.

Protein-protein interactions (PPI) (n=98,228). PPIs are among the 
most studied interactions in network biology, although the known 
interactions may present only one tenth of the entire interactions. 
PPIs are collected from ppiTrim20, which further curates iRefIndex21, 
a master database consolidating interactions from 15 different 
sources (including BIND, HPRD, etc).

miRNA-gene (n=2,457). MicroRNAs (miRNAs) are short RNA 
sequences that regulate the expression of target genes. miRNA-
gene interactions are collected from the online database miRCat.

Database
All data resources have been processed and stored in a relational 
MySQL (http://www.mysql.com) database system. Currently, 
the iCTNet2 app is the only available access to the iCTNet2 
database.

Visualizations
Once installed, iCTNet2 will show up automatically on the left 
hand side of the Cytoscape window. So through the Cytoscape plat-
form, networks constructed via iCTNet2 can be visualized in dif-
ferent layouts with many visualization features. Cytoscape built-in 
functions or analysis apps can be easily applied as well.

Results
iCTNet 2.0 is an updated, expanded and improved version of the 
Cytoscape 2.x plugin our group developed7. In this new version, 
developed as a Cytoscape 3.x App, a user can select and download 
relationships across several biological entities (e.g. diseases, genes, 
drugs, side effects, etc) to create a heterogeneous network that can 
be displayed in Cytoscape for further analysis. iCTNet 2.0 can be 
used to generate new hypothesis about disease relationships, shared 
pathogenic mechanisms, or prioritize drugs for drug repurposing. 
In addition, this app can be used to visualize all known information 
about a particular disease, or process and create publication-ready 
figures. There are three options to start building networks with 
iCTNet2. As the metagraph (the graph describing the interactions 
among the different node types) can be cyclic (Figure 1), we simpli-
fied the construction process by enabling the user to select the start-
ing node type as being a disease, gene or drug. Once the starting 
node type has been selected, the user can choose to add additional 
features to the network, such as genetic data, interactions among 
proteins, the drugs that target them and the side effects associated 
with those drugs. Different types of networks (e.g. disease, gene or 
drug) offer complementary views from different perspectives. Next, 
a case study is presented starting with the network from disease 
nodes as an example.

Global Disease gene network
Starting from any phenotype(s) in the database, users can add gene, 
drug and tissue directly (if connections among them exist), and sec-
ondly add miRNA, side effects and PPIs to further grow the net-
work. As an example, we created three disease (phenotype)-gene 
networks by selecting all data available in the GWAS Catalogue 
(threshold p-value 1E-7), CTD and OMIM databases. The con-
nected component of each network was markedly different in size 
and topological properties. The GWAS network was comprised of 
1547 nodes (82 diseases + 1465 genes) connected through 2010 
edges (ratio N/E = 0.77), the CTD network included 5166 nodes 
(1168 diseases + 3998 genes) and 12657 edges (N/E = 0.41) and 
the OMIM network was formed by 2265 nodes (699 diseases + 
1566 genes) and 2228 edges (N/E = 1.01). Upon layout within 
Cytoscape (spring embedded) a clearly distinct topology emerged 
for each network, with the GWAS network displaying a wheel and 
spoke pattern with most diseases at the center (Figure 2A), and the 
OMIM network displaying a circular symmetric pattern, with most 
diseases towards the periphery (Figure 2C). The CTD network dis-
played a pattern that resembled an aggregate of the other two, an 
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expected outcome given that this database includes information on 
both common and rare diseases (Figure 2B). The different topol-
ogy between GWAS and OMIM networks clearly reflects the type 
of information each database contains. The central disposition of 
most diseases in the GWAS network (and the larger proportion of 
genes to diseases) highlights their polygenic nature and reflects 
the large amount of gene (locus) sharing among common diseases, 
consistent with our current understanding of their pathogenesis. On 
the other hand, the peripheral disposition of diseases in the OMIM 
network is a reflection of the limited genetic sharing characteristic 
of monogenic diseases, which dominate this database. Consistent 
with these observations, a network analysis conducted within Cyto-
scape showed differences between GWAS and OMIM networks in 
several parameters, including centrality, neighborhood connectivity 
and shortest path length distributions (Figure 2). By using the “cre-
ate similarity network” feature (located in the App menu) a user can 
convert disease-gene networks into disease-disease similarity net-
works (i.e. from bi-partite to homogeneous), in which two diseases 
are connected if a user-specified threshold of shared genes is met.

The autoimmune disease set (autoimmunome)
We next downloaded the GWAS disease-gene network for 18 com-
mon autoimmune diseases (and their first degree protein interac-
tions) (Figure 3A). A clear pattern of gene sharing can be observed 
(green triangles in the center of the network represent shared genes 
between at least two diseases), consistent with our understanding 
on the genetic commonalities among autoimmune diseases. Using 

Figure 2. Human disease-gene networks.	Networks	were	generated	using	iCTNet	2.0	for	diseases	represented	in	the	GWAS	Catalog	(A),	
the	Comparative	Toxicogenomics	Database	(B)	and	OMIM	(C).	Note	the	different	topological	characteristics	(described	below	each	network),	
particularly	between	A	and	C.	Topological	analysis	was	performed	with	Network	analysis	(a	Cytoscape	Core	app).

standard Cytoscape procedures (i.e. selected node type = genes 
and then created a new network), we further filtered this network 
to obtain only the protein interactome associated with more than 
one autoimmune disease (Figure 3B). A highly connected compo-
nent (n=98) emerged (N/E = 0.60) with several key genes of known 
immunological function (e.g. STAT1, STAT3, NFKB1, RELA and 
MAPK1) at its center. Using the “create similarity network” fea-
ture, diseases with more than 2 shared genes were connected in a 
new graph (Figure 3C). To further explore the biological relevance 
of these nodes, a gene ontology analysis was performed on this net-
work using the BiNGO App22 and results were displayed as a new 
network (Figure 3D). Confirming our previous observations, the set 
of genes associated with multiple autoimmune diseases is highly 
enriched (as indicated by the orange colored nodes) in immunologi-
cal processes ranging from levels as general as leukocyte prolifera-
tion, and regulation of immune response, to as specific as regulation 
of MAPKKK and JAK-STAT cascades.

Drug indications for autoimmune diseases
In an attempt to evaluate the current pharmacological landscape 
in autoimmune disease treatment, we added all drugs known to be 
used to treat each autoimmune disease in the network according to 
CTD. As observed for genetic associations, while most treatments 
are disease-specific, there is substantial sharing of treatment modal-
ities among multiple diseases (Figure 4). This suggests that drug 
repurposing is a plausible strategy for diseases with shared genetic 
susceptibility and pathophysiological mechanisms.
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Figure 3. The autoimmune disease network. (A)	Common	autoimmune	diseases	and	 their	associated	genes	 (according	 to	 the	GWAS	
catalog)	are	displayed.	(B)	Genes	associated	with	multiple	autoimmune	diseases	form	a	densely	connected	network	at	the	protein	level.	
(C)	Disease	similarity	network	created	from	(A).	Two	diseases	are	connected	with	more	than	2	genes	are	shared.	(D)	Gene	ontology	analysis	
of	the	genes	in	(B)	shows	over-representation	of	immune	related	proteins.
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Figure 4. Autoimmune disease-drug indications network. Increased	sharing	of	indications	can	be	readily	detected	among	diseases	of	
similar	etiology.	Drugs	are	represented	by	blue	squares,	and	the	opacity	of	the	square	is	proportional	to	its	degree,	thus	shared	drugs	appear	
darker.	Diseases	are	represented	as	circles.

Conclusion
The iCTNet2 database and Cytoscape app are a systematically-
developed resource and tool for studies requiring integration of 
multi-domain biological information. iCTNet2 illustrates how pow-
erful the integration of heterogeneous biological interactions can 
be, through a simple and user-friendly interface. Comprehensive 

views of a given disease, including its genetic risk, gene expres-
sion profile, biological pathways affected, and actual and potential 
therapeutic options are just a few clicks away. Similarly, global 
landscapes of entire groups of diseases (i.e. malignancies, autoim-
mune disorders, etc) and their relevant “data neighbourhoods” can 
be easily created. Being a Cytoscape app, iCTNet2 also provides 
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flexibility to conduct further analysis on the generated networks for 
further exploration, such as disease gene prediction, module detec-
tion, and topological network analysis.

Software availability
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gQueensu/iCTNet2_v2 

Archived source code as at the time of publication
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The authors have addressed all the concerns raised in the last review.  The manuscript reads much more
smoothly and clearly now.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 None in addition to those disclosed in the first report.Competing Interests:

Version 1

 02 September 2015Referee Report

doi:10.5256/f1000research.7350.r9868

 Gary Bader
Department of Computer Science, University of Toronto, Toronto, ON, Canada

The authors describe a Cytoscape app that provides the entry point to the iCTNet resource, containing
networks connecting a variety of concepts, including genes, drugs, side effects, tissues, miRNAs and
phenotypes. This resource is very useful for users wishing to start with one of these information types and
navigate to others e.g. to find all genes and drugs involved in a disease of interest. In general the app
works very smoothly. My comments relate mainly to missing details and text to be clarified, as detailed
below.
 
Major points:
P5 “Next, a case study is presented starting with the network from disease nodes as an example.” It
would be useful to describe the full workflow, including the scientific question, rationale and end goal.

There is a “Create similarity network” feature present in the App menu, but this is not described in the
manuscript. It would be useful to add a section describing the feature and a use case.
 
If the user loads too much data, the app will take a long time to respond and the process can’t easily be

canceled. The user should be warned in the manuscript or via the app that large queries may take a long
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canceled. The user should be warned in the manuscript or via the app that large queries may take a long
time.
 
Search starting points can be gene, disease or drug. Why can’t users search by other starting points e.g.
tissue?
 
The last update date of the ICT database and the date and version used for each resource should be
clearly communicated to the user e.g. via the manuscript, app and/or ICT website.
 
Minor points:
Page 2: clarify “stacked onto”.
 
P2: “ids” -> identifiers
 
P3: “The CTD (12)” – what does ‘(12)’ mean?
 
P3 – drugs paragraph. This section is a bit unclear. CTD provides references to drugbank identifiers?
Should it be that CTD provides references to drugbank records?  How is the ‘function’ of drugs defined –
is this just the drug target?  Drugbank contains fewer entries compared to what?
 
P3 – “phenotype-gene” section.  “To convert from SNP to gene associations, we combined overlapping
loci for each GWAS Catalog disease17.”  How were the loci combined?

“The mode author reported gene for each loci was selected as primary.” – what is a mode?

Page 3 and 4 – in the “Types of interactions” section, all sub-sections should include the number of
interactions e.g. how many gene-tissue interactions are there?

P5 – what is a metagraph?

P5 – “spike” -> “spoke”?
 
P5 – “Using standard Cytoscape procedures, we further filtered this network to obtain only the protein
interactome associated with more than one autoimmune disease (Figure 3B)” – the Cytoscape
procedures should be detailed to make it easier for users to replicate the results in the manuscript.

Figure 1 – the tissues circle of nodes is covered by edges from other circles – can it be moved out a bit to
show how it connects to other circles?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 I am a PI on the Cytoscape project, thus benefit somewhat when new apps areCompeting Interests:
published.

Author Response 19 Sep 2015
, University of California San Francisco, USASergio Baranzini

Thank you for your comments!

Page 13 of 16

F1000Research 2015, 4:485 Last updated: 07 JAN 2016



F1000Research

Thank you for your comments!
Please see a point-by point answer below

Major points:
P5 “Next, a case study is presented starting with the network from disease nodes as an
example.” It would be useful to describe the full workflow, including the scientific
question, rationale and end goal.

This has been added to the revised manuscript

There is a “Create similarity network” feature present in the App menu, but this is not
described in the manuscript. It would be useful to add a section describing the feature
and a use case.
 
We have expanded the manuscript to describe this feature in detail and have modified Figure 3 to
include an example of this feature. 

If the user loads too much data, the app will take a long time to respond and the process can’t
easily be canceled. The user should be warned in the manuscript or via the app that large queries
may take a long time.
 
We have introduced a warning message for large networks. Specifically, the message will be
shown if: 
(1) the size of query diseases > 50 and PPI depth>0; or the size of 
query diseases > 100;
(2) the size of query genes >500 and PPI depth >0; or the size of query 
genes > 1000;
(3) the size of query drugs > 100 and PPI depth >0; or the size of query 
drugs > 200;

Search starting points can be gene, disease or drug. Why can’t users search by other
starting points e.g. tissue?
 
Technically, this should be possible. however, with the three provided starting points, all other
searches are technically possible using basic Cytoscape functions. 

The last update date of the ICT database and the date and version used for each resource
should be clearly communicated to the user e.g. via the manuscript, app and/or ICT
website.
 
Table 1 has been updated.

Minor points:
Page 2: clarify “stacked onto”.
 
done
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P2: “ids” -> identifiers
 
done

P3: “The CTD (12)” – what does ‘(12)’ mean?
 
removed (12)

P3 – drugs paragraph. This section is a bit unclear. CTD provides references to drugbank
identifiers? Should it be that CTD provides references to drugbank records?  How is the
‘function’ of drugs defined – is this just the drug target?  Drugbank contains fewer entries
compared to what?
 
This paragraph has been re-written

P3 – “phenotype-gene” section.  “To convert from SNP to gene associations, we combined
overlapping loci for each GWAS Catalog disease17.”  How were the loci combined?

We have provided a reference detailing how this was done. Basically, we proceeded as follows:
Lead-SNPs were assigned windows—regions wherein the causal SNPs are assumed to
lie—retrieved from the DAPPLE server. Windows were calculated for each lead-SNP by finding the
furthest upstream and downstream SNPs where 2 > 0.5 and extending outwards to the nextr
recombination hotspot. Associations were ordered by confidence, sorting on following criteria:
high/low confidence, p-value (low to high), and recency. In order of confidence, associations were
overlapped by their windows into disease-specific loci. By organizing associations into loci,
associations from multiple studies tagging the same underlying signal were condensed.

“The mode author reported gene for each loci was selected as primary.” – what is a
mode?

Corrected

Page 3 and 4 – in the “Types of interactions” section, all sub-sections should include the
number of interactions e.g. how many gene-tissue interactions are there?

The numbers of interactions are now specified.

P5 – what is a metagraph?

We refer to a metagraph as the graph describing the interactions among the different node types.

P5 – “spike” -> “spoke”?
 
done

P5 – “Using standard Cytoscape procedures, we further filtered this network to obtain
only the protein interactome associated with more than one autoimmune disease (Figure
3B)” – the Cytoscape procedures should be detailed to make it easier for users to

replicate the results in the manuscript.
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replicate the results in the manuscript.

Done

Figure 1 – the tissues circle of nodes is covered by edges from other circles – can it be
moved out a bit to show how it connects to other circles?

Done 

 I am the senior author of this manuscript.Competing Interests:

 24 August 2015Referee Report

doi:10.5256/f1000research.7350.r9869

 Amitabh Sharma
Department of Medicine, Harvard Medical Center, Boston, MA, USA

Baranzini updated the iCTNet database from the data collected from public repositories to facilitateet al. 
the building, visualization and analysis of heterogeneous biological networks in a comprehensive fashion
via the Cytoscape platform. I like the manuscript and source developed by Baranzini group. The resource
update is important and timely, and is well-done and clearly described. It is freely available and provides a
good resource for the community to understand the connections between different omics or the big data
in disease medicine.

A few minor comments would improve the manuscript:
Add some text in the conclusion about how version 2 is better than version 1.
 
The Phentoypes/diseases vocabulary sources do not overlap much, did this result in a lot of data
loss while integrating?
 
Add some description regarding the edges in the Figure 2 legend. What are different node colors?
GWAS network is much sparse because of the incompleteness of the interactome and also we
have literature bias for the OMIM data.
 
In figure 3, is the network PPI only or aggregated network of all sources? Also, Figure 3C should
include only those terms that are below specific thresholds, like p<0.05.

Overall, an excellent work.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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