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Abstract

Background

Dengue, chikungunya, and Zika are arboviruses of major global health concern. Decisions

regarding the clinical management of suspected arboviral infection are challenging in

resource-limited settings, particularly when deciding on patient hospitalization. The objec-

tive of this study was to determine if hospitalization of individuals with suspected arboviral

infections could be predicted using subject intake data.

Methodology/Principal findings

Two prediction models were developed using data from a surveillance study in Machala, a

city in southern coastal Ecuador with a high burden of arboviral infections. Data were

obtained from subjects who presented at sentinel medical centers with suspected arboviral

infection (November 2013 to September 2017). The first prediction model—called the

Severity Index for Suspected Arbovirus (SISA)—used only demographic and symptom

data. The second prediction model—called the Severity Index for Suspected Arbovirus with

Laboratory (SISAL)—incorporated laboratory data. These models were selected by com-

paring the prediction ability of seven machine learning algorithms; the area under the

receiver operating characteristic curve from the prediction of a test dataset was used to
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select the final algorithm for each model. After eliminating those with missing data, the SISA

dataset had 534 subjects, and the SISAL dataset had 98 subjects. For SISA, the best pre-

diction algorithm was the generalized boosting model, with an AUC of 0.91. For SISAL, the

best prediction algorithm was the elastic net with an AUC of 0.94. A sensitivity analysis

revealed that SISA and SISAL are not directly comparable to one another.

Conclusions/Significance

Both SISA and SISAL were able to predict arbovirus hospitalization with a high degree of

accuracy in our dataset. These algorithms will need to be tested and validated on new data

from future patients. Machine learning is a powerful prediction tool and provides an excellent

option for new management tools and clinical assessment of arboviral infection.

Author summary

Patient triage is a critical decision for clinicians. Patients with suspected arbovirus infec-

tion are difficult to diagnose as symptoms can be vague and molecular testing can be

expensive or unavailable. Determining whether these patients should be hospitalized or

not can be challenging, especially in resource-limited settings. Our study included data

from 543 subjects with a diagnosis of suspected dengue, chikungunya, or Zika infection.

Using a machine learning approach, we tested the ability of seven algorithms to predict

hospitalization status based on the signs, symptoms, and laboratory data that would be

available to a clinician at patient intake. Using only signs and symptoms, we were able to

predict hospitalization with high accuracy (94%). Including laboratory data also resulted

in highly accurate prediction of hospitalization (92%). This tool should be tested in future

studies with new subject data. Upon further development, we envision a simple mobile

application to aid in the decision-making process for clinicians in areas with limited

resources.

Introduction

Undifferentiated febrile illness is a common clinical scenario in tropical medicine, with a long

list of potential pathogens sharing similar symptoms. Arthropod-borne viruses (arboviruses),

including dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV), share

common mosquito vectors (Aedes aegypti and Ae. albopictus) and often present with fever,

rash, myalgias, and arthralgias. Dengue virus is endemic in the tropical Americas, and the

emergence of CHIKV in 2013 in Saint Martin and ZIKV in 2015 in Brazil has brought these

arboviruses to the forefront of international attention [1–3]. There were over 400,000 cases of

dengue fever in Andean Latin America in 2013 [4], with transmission risk expected to increase

sharply over the next 50 years [5]. Ecuador in particular has a high burden of arboviral illness,

with 86,306 total cases of dengue from 2014–2018 [6–8]. There is also a high prevalence of

asymptomatic DENV infections and infections with other arboviruses in coastal Ecuador

[1,9]. In 2014, CHIKV was introduced to Ecuador, with 35,555 cases from 2014–2018, fol-

lowed by the introduction of ZIKV in 2016, with 5,304 cases from 2016–2018 [6–8].

Clinical decision-making in the context of arboviral infection is particularly challenging in

resource-limited settings such as Ecuador. For instance, there may be too few healthcare
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professionals relative to the high disease burden, which may impact the ability to provide opti-

mal subject care. Ecuador has 22 physicians for every 10,000 people, though this ranges by

province from 13 to 32 physicians per 10,000 people [10]. This is just above the 1 physician per

1,000 people benchmark of the World Health Organization (WHO) [11], and physicians are

likely concentrated in urban areas. Moreover, molecular diagnostics are often unavailable out-

side of large urban centers. Of Ecuador’s 4,168 healthcare establishments, 1,045 (25.1%) have a

clinical laboratory [10], leaving many healthcare providers in Ecuador without these crucial

diagnostic tools (i.e. PCR or ELISA). These infrastructural limitations create a challenging clin-

ical environment, especially as healthcare providers need to determine whether a patient with

suspected arboviral illness should be hospitalized or not. Efficient and effective triaging is

essential for good clinical care in resource-limited settings [12].

Patients with DENV, CHIKV, or ZIKV infections often present with similar symptoms.

Fever, lethargy, and arthralgia are common [1,13] and acute febrile illness is a typical manifes-

tation for many patients. In Latin America, DENV, CHIKV, and ZIKV are the three most

common infections among acute febrile illness patients [14]. Moreover, co-infection is com-

mon if multiple viruses are circulating [13]. Current practice in Ecuador is to hospitalize sub-

jects suspected of dengue infection when they exhibit any of the WHO 2009 dengue warning

signs, any signs of shock, or severe thrombocytopenia [15]. While treatment for dengue is sup-

portive, proper inpatient management of severe dengue can reduce mortality dramatically

[16,17]. Dengue has a wide spectrum of clinical presentations, with the majority of patients

recovering following a self-limited clinical course, and a small percentage progressing to severe

disease characterized by plasma leakage. In the latter cases, prompt intravenous rehydration

can reduce the case fatality rate to less than 1% [16]. Similarly, management of CHIKV and

ZIKV infections is largely supportive, but both infections may result in potentially serious

complications, such as adverse neonatal effects [18–21]. Deciding whether to hospitalize a sub-

ject with a suspected DENV, CHIKV, or ZIKV infection is thus an important clinical decision,

which often must be made before a clear diagnosis has been determined. This decision has

other non-clinical and indirect consequences, including the utilization of hospital resources

that could otherwise be used for other patients, as well as increasing the financial cost of the

case when compared to less costly outpatient care. Globally, an estimated 18% of dengue cases

are admitted to the hospital, with 48% managed as outpatients and 34% not seeking medical

attention [22]. The average cost to manage a case of dengue is tripled if the patient is hospital-

ized [16,22].

Machine learning is a tool that combines statistics with computer science to make efficient

use of massive data sets [23]. It differs from traditional statistical modeling (e.g. regression

models) in that there are fewer assumptions about the underlying distribution of the data and

the relationships between variables. While model interpretability is often a goal of traditional

statistical models, this is not important in machine learning. The only goal is to create highly

accurate predictions of an outcome of interest, often using as many variables as possible

[24,25]. In modeling relationships with a machine learning approach, the computer incorpo-

rates connections not obvious to human beings to successfully predict an outcome of interest.

Machine learning is applicable in many fields and has been previously used in medical applica-

tions, to estimate clinical risk, guide triage or diagnose disease [23,26–28]. Clinical applications

of machine learning for arboviral illnesses, specifically, have included analysis of patient

genomes for dengue prognosis [29], scanning of patient sera for DENV [30] or Zika diagnosis

[31], thermal image scanning for detection of hemodynamic shock [32], analysis of body tem-

perature patterns for diagnosis of undifferentiated fever etiology [33], and analysis of patient

data for dengue fever diagnosis [27]. No studies have yet attempted to use machine learning

for prediction of hospitalization among arboviral illness or undifferentiated fever patients,
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although it has been used to predict critical care and hospitalization outcomes based on emer-

gency department triage data in children and adults [34,35].

The objective of this study was to determine if the hospitalization of individuals with sus-

pected arboviral infections could be predicted using subject intake data. This information (i.e.
initial clinical details and no diagnostic testing data) replicates the information available to cli-

nicians making the decision whether to hospitalize a patient or not. In this study, we take a ret-

rospective view of arboviral infection management in a tropical city in southern coastal

Ecuador using data from an ongoing prospective surveillance study. Using actual clinical prac-

tice as a guide, we assessed the ability of seven machine learning algorithms to determine hos-

pitalization using basic symptom and demographic data that was collected via standard intake

of subjects with suspected DENV, CHIKV, or ZIKV infections. The machine learning

approach and algorithms developed here could potentially support physicians faced with com-

plex clinical management decisions in areas where multiple arboviruses co-circulate, such as

Ecuador.

Methods

Ethics statement

This study protocol was reviewed and approved by Institutional Review Boards at the State

University of New York (SUNY) Upstate Medical University, Cornell University, and the Luis

Vernaza Hospital in Guayaquil, Ecuador, the Human Research Protection Office of the U.S.

Department of Defense, and the Ecuadorean Ministry of Health (MoH). Clinical and demo-

graphic data from study subjects was obtained following written informed consent, and/or

assent (as applicable) as per the study protocol (described previously) [1]. For those subjects

unable to participate in the consent and/or assent process, an adult representative documented

consent. Parents signed a written informed consent for children aged 6 months to 17 years,

and children aged 7 to 17 additionally signed a written assent.

Study design and data source

We conducted a retrospective analysis of data from a prospective arbovirus surveillance study,

which included subjects (age�6 months) recruited from Ecuadorean MoH clinical sites from

November 2013 to September 2017 in the city of Machala, Ecuador. Subjects were identified as

a part of an ongoing, multi-year arbovirus surveillance project, a description of which has been

published previously [1]. Briefly, subjects were invited to enroll in the study if they presented

at the reference hospital or one of four outpatient clinics and were diagnosed with arboviral

infection by MoH physicians. In 2014 and 2015, we recruited subjects who were clinically diag-

nosed with dengue fever by MoH physicians based on their individual clinical suspicion for

DENV infection. We assume that diagnostic standards for each respective infection were simi-

lar across study sites, as all physicians receive the same training from MoH. Following the local

emergence of CHIKV (2015) and ZIKV (2016), the inclusion criterion in 2016 and 2017 was

expanded to include subjects clinically diagnosed with DENV, CHIKV or ZIKV infection. At

the time of enrollment, subject demographic information, clinical history, and symptoms pres-

ent during current illness were collected using a questionnaire administered by trained study

personnel. Subjects were asked about symptoms in the past 7 days, including the following:

headache, anorexia or nausea, muscle or joint pain, rash, bleeding (defined as bleeding from

respiratory, digestive, or genitourinary mucosa), rhinorrhea, vomiting, lethargy or drowsiness,

cough, abdominal pain, diarrhea, and retro-orbital pain. Conjunctivitis was later added to the

enrollment survey after the emergence of ZIKV but was not included in this analysis. Labora-

tory data (hematocrit, white blood cell count, neutrophils, lymphocytes, and platelet count)

Severity index for hospitalization of suspected arbovirus infections
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were collected at the time of enrollment if the subject had copies of recent laboratory evalua-

tion (for outpatients), or the first labs on admission to the hospital (for hospitalized subjects)

were used. Additional laboratory data were available for hospitalized subjects, but analysis was

limited to the aforementioned three parameters as these were consistently available among a

subset of the non-hospitalized subjects. Laboratory arboviral diagnostic data were not

included, as these data are often not available at the time that a physician decides whether or

not to hospitalize a patient, and we utilized only the data that would realistically be available.

Data from enrollment surveys was used for the analysis of the non-hospitalized outpatients in

the current study. Laboratory data on the hospitalized subjects was verified by review of medi-

cal records and managed using REDCap software [36] hosted at SUNY Upstate Medical

University.

Exclusion criteria

Hospitalized subjects whose physical medical records could not be located and subjects with

incomplete enrollment survey data (i.e. missing hospitalization status, symptom survey ques-

tions) were excluded. The subset of the non-hospitalized subjects who had available laboratory

data were included in a second analysis with the same hospitalized cohort, all of whom had

available laboratory data.

Statistical analysis

The outcome variable was hospitalization status. Variables of interest included demographic

data, presenting symptoms, past medical history, and laboratory data (hematocrit, white blood

cell count, neutrophils, lymphocytes, and platelet count). A prediction algorithm was devel-

oped using demographic and symptom data only (28 total predictors), called the Severity

Index for Suspected Arbovirus (SISA, in Spanish the Severidad de Infecciones Sospechosas por
Arbovirus). A second prediction algorithm was developed using demographic, symptom, and

laboratory data (33 total predictors), called the Severity Index for Suspected Arbovirus with

Laboratory (SISAL, in Spanish the Severidad de Infecciones Sospechosas por Arbovirus con
datos del Laboratorio). Characteristics for hospitalized and non-hospitalized subjects among

these subject groups were compared using a two-sample t-test (continuous) or Fisher’s exact

test (categorical).

In machine learning, 10-fold cross-validation with holdout data results in an unbiased esti-

mate of model validity and accuracy [24,37]. Thus, our datasets were divided by random sam-

pling into training and testing (holdout) data sets. For SISA, the training set was 85% of the

full dataset and the testing set was the remaining 15%. For SISAL, the training set was 70% of

the full dataset and the testing set was the remaining 30% (the SISAL dataset was allowed a

greater percentage to allow for sufficient sample size in the testing set). With the training data-

set, we used repeated 10-fold cross validation to estimate the ability of six algorithms with

diverse statistical approaches—bagged trees (bags) [38], k nearest neighbors regression (knn)

[39], random forest [40], elastic net regression [41], generalized boosting models (gbm) [42],

and neural networks [43]—to predict hospitalization. Because we have no prior assumptions

about the nature of the relationship between the available predictors and the outcome, we use

a variety of statistical approaches to improve the likelihood that we will find an algorithm that

works well with these data. Following a published criticism of machine learning prediction

compared to logistic regression [44], we added logistic regression to our list of algorithms to

test (seven total algorithms, model descriptions in S1 Table). For models with tuning parame-

ters (knn, random forest, elastic net, and gbm), tuning was performed using another layer of

repeated 10-fold cross-validation [45]. The final model for each algorithm was created based

Severity index for hospitalization of suspected arbovirus infections
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on all training data. Each algorithm was then used to predict hospitalization outcomes within

the holdout testing dataset, resulting in the final performance measure for the model. Model

predictions were probabilities that the given observation set was hospitalized or not, with 0.5

used as the probability cut-off for hospitalization classification. Measures of discrimination

[46], including accuracy, Cohen’s kappa, and area under the curve (AUC) for the receiver

operating characteristic (ROC) were calculated to determine the performance of each algo-

rithm. Each algorithm’s classification predictions were compared to the true outcomes of the

data used, such that the correct/incorrect ratings of the algorithm were compared to what hap-

pened. Accuracy is the percentage of correct classifications out of all classifications made;

Cohen’s kappa (potential values: 0–1) also calculates this percentage but compares each algo-

rithm’s performance to classifications made by random guessing [47]. The AUC (potential val-

ues: 0–1) considers both the true and false positive predictions, with higher AUC indicating a

high true positive prediction and a low false positive prediction (i.e. it is sensitive and specific)

[46]. For each fold of the cross-validation, performance measures were calculated and averaged

across all folds and repetitions (100 preliminary models for algorithms with no tuning parame-

ters), resulting in a mean cross-validation performance measure that estimates how the algo-

rithm will perform on a new dataset. The best algorithm for SISA/SISAL was chosen based on

the highest AUC as calculated from the holdout test set. A flow chart of the entire approach is

available in S1 Fig. Model residual plots were examined. The relative contribution of each vari-

able to the model (i.e. variable influence or influence on prediction) was calculated using

model- or non-model specific methods as appropriate (see caret [39] documentation for

details). Calibration plots provide a method to graphically evaluate the predictive ability of a

prediction model [48]. Subjects in the holdout test set were separated into deciles (SISA) or

quintiles (SISAL) and the mean predicted hospitalization probability and proportion of actual

hospitalizations were calculated for each decile/quintile. These values were plotted to create

calibration plots; the distance of the points from the diagonal (perfect prediction) shows

whether the prediction model is over- or under-predicting among certain risk groups [48].

Data analysis and visualization were performed using SAS version 9.2 (SAS Institute, Cary,

NC) and R version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria) in RStudio

(RStudio, Inc., Boston, MA) including packages haven [49], caret [39], MASS [43], ipred [38],

randomForest [40], elasticnet [41], gbm [42], nnet [43], mgcv [50,51], kernlab [52], glmnet

[53], and pROC [54]. Code for the machine learning analyses is available at https://github.

com/rsippy/SISASISAL.

We compared the prediction abilities of SISA versus SISAL to assess whether laboratory

data could improve our ability to predict subject hospitalization status. Because there may be

some selection bias for subjects with available laboratory data (e.g. more severe symptoms,

more similar subject data, or different socioeconomic status compared to typical patients with

clinical arboviral diagnosis), the subject groups in SISA and SISAL may not be exchangeable

[55]. We performed a sensitivity analysis to determine if the selected algorithm and prediction

ability of SISA is the same when using all SISA subjects or SISAL subjects (without laboratory

data) for the training and testing steps.

Results

General characteristics

Between November 20, 2013 to September 13, 2017, 592 subjects were recruited into the arbo-

viral surveillance study. After exclusions (Fig 1), 534 subjects were included in the dataset for

SISA, of which 59 were hospitalized and 475 were not hospitalized. The SISA training dataset

included 455 subjects and the holdout test dataset included 79 subjects. The SISAL dataset

Severity index for hospitalization of suspected arbovirus infections
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included 98 subjects, of which 59 were hospitalized and 39 were outpatients. The SISAL train-

ing dataset included 70 subjects and the holdout test dataset included 28 subjects. Demograph-

ics and symptoms for the two datasets are in Table 1. Presenting temperature was higher, and

presence of mucosal bleeding, vomiting, and abdominal pain were significantly more common

in hospitalized subjects in the SISA dataset.

Prediction of hospitalization status

Accuracy, Cohen’s kappa, and AUC for the training set (from repeated 10-fold cross-valida-

tion) and the holdout test set (final performance) are shown in Fig 2. For SISA, using only

symptoms and demographics, generalized boosting model, elastic net, neural networks, and

logistic regression performed well with the test set (accuracy: 89.8–96.2%, Cohen’s kappa:

0.00–0.77, AUC: 0.50–0.91). The generalized boosting model algorithm was found to have the

best final AUC (0.91) among the test dataset and was the second-best algorithm in the training

set. The sensitivity for this algorithm was 95.8%, and the specificity was 87.5% when predicting

hospitalization of subjects in the test dataset. The variables with the greatest influence on the

final SISA model were drowsiness, bleeding, vomiting, and temperature. The calibration plot

for this prediction is in Fig 3; the SISA model shows under-prediction of hospitalization risk

among low-risk groups and over-prediction among high-risk groups.

Fig 1. Flow diagram of subject selection. Subjects clinically diagnosed with arboviral (dengue, chikungunya, Zika) infections

were recruited from sentinel clinics in Machala, Ecuador. A subset of subjects were selected to test the Severity Index for Suspected

Arbovirus (SISA) and Severity Index for Suspected Arbovirus with Laboratory (SISAL) machine learning algorithms.

https://doi.org/10.1371/journal.pntd.0007969.g001
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Results for SISAL, where laboratory parameters were included as well as symptoms and

demographics, are shown in Fig 4. All models except neural networks and k nearest neighbors

performed well with the test set (accuracy: 64.3–92.6%, Cohen’s kappa: 0.25–0.85, AUC: 0.62–

Table 1. Overview of demographics, symptoms, and laboratory values for subjects enrolled in the study (n = 543). Numerical data are shown as means and were ana-

lyzed with Welch 2-Sample T-test. Categorical data shown as percentages and analyzed with Fisher’s Exact Test.

SISA (N = 543) SISAL (N = 98)

Hospitalized (n = 59) Outpatient (n = 484) p-value Hospitalized (n = 59) Outpatient (n = 39) p-value

Age (years) 23.3 25 0.38 23.3 22.3 0.75

Height (cm) 154.2 147.9 0.01 154.2 154.2 0.99

Weight (kg) 58.2A 56.5 0.61 58.2A 57 0.78

MUA Circumference (cm) 25.4 25.9 0.5 25.4 25.9 0.64

Waist Circumference (cm) 83.9 78.4 0.05 83.9 78 0.1

Temperature (oC) 37.7 37.4 0.01 37.7 37.2 0.02

Hematocrit (%) 37.6 39.8 0.02

WBC Count (cells/ML) 5435 6863 0.18

Neutrophils (%) 58.1 54.5 0.38

Lymphocytes (%) 30.6 33.5 0.38

Platelet Count 117627 203333 <0.01

Gender (% female) 63 54 0.27 63 51 0.30

Fever in past 7 days (%) 97 94C 0.56 97 97 1.00

Head pain (%) 64 79A 0.01 64 82 0.07

Nausea (%) 54 53A 0.09 54 59 0.68

Muscle or joint pain (%) 70 81A 0.04 70 82 0.24

Rash (%) 20 29A 0.22 20 15 0.60

Bleeding (%) 24 4A <0.01 24 5 0.02

Rhinorrhea (%) 19 26A 0.27 19 21 1.00

Vomiting (%) 56 27B <0.01 56 31 0.02

Drowsiness or lethargy (%) 80 84B 0.46 80 92 0.15

Coughing (%) 37 35B 0.77 37 26 0.27

Abdominal pain (%) 70 50B <0.01 70 56 0.20

Diarrhea (%) 29 22B 0.33 29 44 0.19

Retro-orbital pain (%) 56 66C 0.15 56 77 0.05

Positive tourniquet test (%) 17 3D <0.01 17 5 0.01

History of allergies (%) 20 20A 0.86 20 18 0.80

History of hypertension (%) 5 6A 1.00 5 10 0.43

History of asthma (%) 2 4A 0.71 2 3 1.00

History of cancer (%) 0 2A 0.61 0 0 1.00

History of diabetes (%) 2 3A 1.00 2 0 1.00

History of dengue in the household (%) 17 12A 0.30 17 5 0.12

History of dengue (%) 19 22A 0.74 19 18 1.00

Pregnancy (self-reported) (%) 19 2 <0.01 19 3 0.22

SISA = Severity Index for Suspected Arbovirus or Severidad de Infeccion Sospechosa de Arbovirus, SISAL = Severity Index for Suspected Arbovirus with Laboratory or

Severidad de Infeccion Sospechosa de Arbovirus con Laboratorio, cm = centimeters, kg = kilograms, MUA = mid-upper arm,˚C = degrees Celsius, WBC = white blood

cell, μL = microliters.
A Missing n = 1
B Missing n = 2
C Missing n = 3
D Missing n = 4, % Pregnant is taken from the total population (male and female)

https://doi.org/10.1371/journal.pntd.0007969.t001
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0.94). The elastic net algorithm had the best final AUC (0.94) among the test dataset and was

the third-best algorithm in the training set (model details available in S2 Table). The sensitivity

for SISAL was 100% and the specificity was 88.2% when predicting hospitalization of subjects

Fig 2. Results for SISA dataset. Accuracy (blue), Cohen’s kappa (red), and AUC (green) were calculated for the repeated 10-fold cross

validation (left) and the holdout test dataset (right) for prediction of hospitalization status in clinically diagnosed dengue, chikungunya or

Zika virus infections. bag = bagged trees, knn = k nearest neighbors, rf = random forest, gbm = generalized boosting models, enet = elastic

net, nnet = neural networks, log = logistic regression.

https://doi.org/10.1371/journal.pntd.0007969.g002
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in the test dataset. The variables with the greatest influence on the final SISAL model were

drowsiness, orbital pain, and platelet count. The calibration plot for this prediction is in Fig 5;

the SISAL model shows under-prediction of hospitalization risk among low-risk groups and

over-prediction among high-risk groups.

The results for SISA when trained with the SISAL subjects (without laboratory data) are

shown in S2 Fig. All models except k nearest neighbors and logistic regression performed well

(test set accuracy: 53.5–92.9%, Cohen’s kappa: 0.04–0.86, AUC: 0.51–0.94). The bagged trees,

random forest, generalized boosting models, and elastic net algorithm had identical final AUC

values (0.94). The sensitivity was 100% and the specificity was 88.2% when predicting hospital-

ization of subjects in the test dataset. If the SISA and SISAL subjects were exchangeable, we

would expect the SISAL subject group (without laboratory data) to produce the same results as

the SISA analysis. Because these results differ from those obtained in the SISA analysis, we con-

clude that the SISAL subjects are not exchangeable with the SISA subjects.

Discussion

Suspected arboviral infections impose large health and financial burdens on populations in

which the diseases are endemic. In 2013, the estimated global cost of dengue illness was US

$8–9 billion [22]. In many arbovirus endemic regions, DENV, CHIKV, and ZIKV infections

are diagnosed based on clinical presentation and basic laboratory results, which can be difficult

due to nonspecific symptoms and limited availability of definitive diagnostic tools [56]. In this

study, we demonstrate that our machine learning algorithms were able to predict hospitaliza-

tion status among our cohort of subjects with suspected arboviral illness with up to 96% accu-

racy using only symptom and demographic data. We thus describe the early development of a

new tool, SISA/SISAL, which in the future may be utilized by clinicians in resource-limited set-

tings when triaging subjects with suspected arboviral illness.

Fig 3. Calibration plot for SISA prediction. For the final SISA algorithm (generalized boosting model), the predicted

probability of hospitalization is compared to the proportion of actual hospitalization among deciles of subjects in the

holdout test set. Perfect predictive ability is represented by the dashed diagonal line.

https://doi.org/10.1371/journal.pntd.0007969.g003
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The final SISA model used the generalized boosting model. These models are also called

stochastic boosting gradients or gradient boosting machines and were developed by Jerome

Friedman [57,58]. This ensemble-type model is based on a sequentially built series of simple

Fig 4. Results for SISAL dataset. Accuracy (blue), Cohen’s kappa (red), and AUC (green) were calculated for the repeated 10-fold cross

validation (left) and the holdout test dataset (right) for prediction of hospitalization status in clinically diagnosed dengue, chikungunya or

Zika virus infections. bag = bagged trees, knn = k nearest neighbors, rf = random forest, gbm = generalized boosting models, enet = elastic

net, nnet = neural networks, log = logistic regression.

https://doi.org/10.1371/journal.pntd.0007969.g004
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classification trees and its final predictions are based on the collective ensemble of trees, with

some trees weighted more heavily than others [59]. Generalized boosting models are particu-

larly adept in solving hard-to-predict observations; the “boosting” component is the model

forcing itself to improve these predictions (i.e. reducing prediction error) by building addi-

tional trees until it is correct. The final SISA model makes predictions from a weighted set of

150 weak (single node) trees and included information from 23 of the original 28 predictors

(all except history of hypertension, history of asthma, history of diabetes, and history of den-

gue), with symptoms of drowsiness, bleeding, vomiting, and temperature providing most of

the predictive information (i.e. highest variable influence). Calibration plots showed that the

SISA model under-predicted hospitalization risk among low-risk groups, and over-predicted

hospitalization among high-risk groups. Because the holdout test set for SISA was relatively

small (n = 79), it is unclear if these prediction trends would hold in a larger validation set of

subjects.

The final SISAL model was an elastic net regression. This is a type of regression that applies

additional terms (alpha and lambda) to the regression coefficients, resulting in some terms

being set to zero (i.e. eliminating some coefficients) and “shrinking” some others (i.e. minimiz-

ing the magnitude of the coefficients), particularly coefficients from highly correlated predic-

tors [60]. The final SISAL model was an elastic net regression with an alpha of 0.5 and a

lambda of 0.25 and included information from three of the original 28 predictors (drowsiness,

retro-orbital pain, and platelet count). The SISAL model showed the same under- and over-

prediction trends as SISA, and like SISA, the holdout test set was small (n = 28). The prediction

trends of SISAL should be assessed with a larger validation set to determine if there are predic-

tion weaknesses for the model among specific patient groups.

In our cohort, we found that hospitalized cases had statistically significant–though clinically

insignificant–elevations in temperature at presentation in both SISA and SISAL. This demon-

strates an algorithm’s ability to make use of small differences in data. In the SISA dataset,

Fig 5. Calibration plot for SISAL prediction. For the final SISAL algorithm (elastic net regression), the predicted

probability of hospitalization is compared to the proportion of actual hospitalization among quintiles of subjects in the

holdout test set. Perfect predictive ability is represented by the dashed diagonal line.

https://doi.org/10.1371/journal.pntd.0007969.g005
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mucosal bleeding, vomiting, and abdominal pain were more common in hospitalized subjects

than in outpatients. In the SISAL dataset, while hospitalized subjects experienced more muco-

sal bleeding and vomiting than outpatients, the presence of abdominal pain did not differ

between groups. This could suggest that the outpatient subjects who were sent for laboratory

testing represented cases of serious concern, as abdominal pain may qualify those with sus-

pected or confirmed dengue for hospital admission [15,16]. For SISAL, hospitalized subjects

had lower hematocrit and platelet counts when compared to non-hospitalized subjects; lower

platelet counts are to be expected in hospitalized dengue cases.

Our sensitivity analysis revealed that SISA produced different results when its training/test-

ing dataset was restricted to those subjects with laboratory data available. This result is unsur-

prising, as we expect that selection bias is contributing to the subjects available for the SISA

and SISAL datasets. All hospitalized subjects had laboratory data available, and we would addi-

tionally expect that subjects with laboratory data had some signs or symptoms that would

prompt the attending physician to request laboratory diagnostics, setting them apart from sub-

jects without laboratory data. These signs and symptoms are also likely linked to whether sub-

jects were eventually hospitalized or not, meaning these groups of subjects are not directly

comparable to one another. When we used the SISA approach (symptoms and demographics

only) for a dataset comprised of the SISAL group of subjects (without laboratory data), we

found that the AUC was identical to the AUC from the SISAL approach. This would suggest

that we are unable to improve our prediction of hospitalization status by using subject labora-

tory data; though a study implementing the use of laboratory tests among a general population

could potentially find that laboratory tests provide an added benefit for prediction of hospitali-

zation status. In our dataset, the AUC was higher for the SISAL group of subjects, but these

improvements are likely due to fundamental differences between the SISA/SISAL groups of

subjects. These patient groups should continue to be analyzed with separate algorithms.

This is the first use of machine learning to predict hospitalization status of subjects with

clinically diagnosed arboviral infections. Our models exhibit high accuracy, sensitivity, and

specificity in a region with a high burden of co-circulating of DENV, CHIKV, and ZIKV.

These algorithms, particularly SISA, use information that could easily be obtained in resource-

limited settings, suggesting the potential to develop a useful tool for clinicians. Our model’s

accuracy is consistent with tools previously reported in the literature. Past predictive modeling

of disease with a machine learning approach had been efficacious in the diagnosis of pneumo-

nia (95% sensitivity, 96.5% specificity), dengue (70% sensitivity, 80% specificity), hepatitis

(96% accuracy), and tuberculosis (95% accuracy) using clinical and laboratory parameters

[27,61–63].

There has been criticism regarding the use of machine learning in prediction models. A

recent systematic review found that machine learning predictions had no advantage over logis-

tic regression predictions, on average [44]. Christodoulou et al. do an excellent job of outlining

some common missteps in the use of machine learning for prediction and the somewhat

alarming lack of transparency in many published machine learning prediction models. We

agree with many of the assertions made by the authors and strive to improve reporting and val-

idation in our own work, in accordance. However, in this specific study, we did not find that

logistic regression performed better than other algorithms. Our overall approach differs from

that of most machine learning papers in that we did not assume that one particular algorithm

would have superior prediction abilities for our data. We rigorously compared multiple algo-

rithms with the goal of finding an algorithm that functions well with our predictors and out-

come of interest, to be further validated with a new dataset in future research. We have no

illusions about the potential lack of generalizability of our data and caution against any strong

conclusions about the future utility SISA/SISAL in predicting hospitalization status for future
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patients. In the current study, we present preliminary yet promising results in the development

of a future tool that will need additional, vigorous validation using additional future sets of

subject data before use in the real world.

Numerous studies have looked at clinical and laboratory findings specific to certain

arbovirus diagnoses, yet few have proposed tools that can aid in management of uncon-

firmed febrile illness [64–67]. A study in Puerto Rico of acute febrile illness emergency

room cases found the tourniquet test and leukopenia to be predictive of dengue diagnosis,

yet dengue was confirmed in only 11% of their total 284 cases [68]. In Thailand, fever, posi-

tive tourniquet test and leukopenia differentiated confirmed dengue from other febrile ill-

ness initially suspected as dengue [69]. Also in Thailand, among a sample of 172 children

with acute fever without obvious cause, those with dengue had several laboratory parame-

ters that differentiated them from the other febrile illness [56]. While these studies were

able to distinguish dengue from other acute febrile illness, they highlight the large propor-

tion of cases that do not get a confirmed diagnosis, and most studies have not moved

beyond initial reports to demonstrate predictive abilities. With SISA/SISAL, the approach is

more empirical. Clinical diagnosis of DENV, CHIKV, or ZIKV infection was a starting

point for the machine learning used here. Given that timely laboratory diagnostics may not

be available, grouping these suspected subjects reflects the reality that physicians face in the

clinic in arbovirus-endemic regions. That such a model can accurately predict hospitaliza-

tion outcome suggests that SISA/SISAL could be expanded to undifferentiated febrile ill-

ness. The ability of machine learning models to predict hospital admission outcomes using

only emergency department triage data lends support to expanding our approach to undif-

ferentiated fever [34,35]. Of the suspected arboviral cases analyzed here, approximately 54%

were confirmed as acute or recent DENV infection, 17% had acute CHIKV infection, and

29% were negative for DENV, CHIKV or ZIKV (based on analysis of subjects in 2014 and

2015) [1]. Results of the 2016 and 2017 subject samples are pending, but preliminary PCR

testing suggests predominance of CHIKV in 2016 and ZIKV in 2017.

Clinicians rely on tools to help make decisions about patient management, and simple tools

can benefit physicians in limited-resource settings [70,71]. Smart phones are commonly used

in Ecuador and mobile health tools are a great option for physicians, with several popular apps

that include various triage rules and scores, such as MDCalc [72]. After further development

and validation of our algorithmic approach, and evaluation of its potential benefit in the clinic,

we conceive of its inclusion in a user-friendly mobile application to aid in the decision to hos-

pitalize patients with undifferentiated fever.

Limitations

The variables with the greatest influence on the final SISA model were drowsiness, tempera-

ture, and nausea; for the SISAL model they were drowsiness, orbital pain, and platelet count.

An important caveat inherent to the nature of machine learning is that the exact weight of

each variable in the final prediction model is difficult to assess and interpret, thus we cannot

propose a causal relationship or correlation between these variables and our outcome of

hospitalization.

The SISA/SISAL models are presented here in the first iteration of their use. They have not

yet been validated beyond the current datasets, but the use of holdout data and 10-fold cross-

validation provides us with an unbiased estimate of model validity as well as prediction accu-

racy. An external validation of these algorithms with a new dataset is ongoing, as well as the

testing of fewer prediction variables with the eventual goal of an easy-to-use online or mobile

app for use in the clinic.
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In this study, we used the outcome of subject hospitalization for both prediction models.

The sensitivity and specificity of SISA/SISAL relies on the assumption that the subjects in this

dataset were correctly hospitalized. It is possible that some subjects were treated as outpatients

when they should have been hospitalized, or that some subjects were hospitalized unnecessar-

ily. For subjects that were incorrectly treated as outpatients, it is likely that the subject would

return to a clinic to receive care, as their symptoms would likely drive them to do so. Because

our collection of medical records was retrospective, we were able to capture subject hospitali-

zation at any point, even if they were initially treated as outpatients. Hospital Teofilo Davila is

the reference MoH hospital in the province, and it is unlikely that these subjects would have

sought care at a hospital elsewhere. It is possible for some subjects to have been hospitalized

unnecessarily; we have no way of identifying these subjects or truly knowing if it was safe for

these subjects to have been treated as outpatients. As a result, our algorithms could thus rec-

ommend hospitalization unnecessarily. Although hospitalization could place undue financial

burden on some patients and the health system, failure to hospitalize a serious case could

results in grave consequences and we would prefer to take a cautious approach in hospitaliza-

tion decision-making. Moreover, these algorithms are merely intended as a tool to inform clin-

ical judgement, not to replace important clinical triage decisions [73].

The time period during which our data were collected (2014–2017) included the emergence

of two important new arboviruses—CHIKV and ZIKV. The MoH provided training to its per-

sonnel (including those working at the hospital and clinics in this study) to identify and diag-

nose these patients. For patients, the potential severity of these infections and their novelty

may have increased the number of patients willing to be hospitalized or to seek healthcare in

the first place. With ZIKV infection, physicians may have been more likely to hospitalize preg-

nant women. This may limit the generalizability of SISA/SISAL in future subject datasets,

though as viral diseases continue to emerge globally, it is important to test the ability of deci-

sion-making tools to function under these dynamic scenarios. For new diseases with clear

warning signs for potentially severe disease, we would expect SISA/SISAL to work well.

Conclusions

Clinicians in resource-limited settings commonly encounter subjects with a suspected diagno-

sis of DENV, CHIKV, or ZIKV infection and often have limited tools at their disposal. A sub-

ject may be unable or unwilling to provide a laboratory specimen, and diagnostic testing may

not always be available. The SISA/SISAL models are promising clinical tools, given the high

sensitivity and specificity for both models. Machine learning, if used thoughtfully, can be a

powerful method for building such prediction models, making the best use of real-world avail-

able clinical data.

Supporting information

S1 Table. Classification algorithms used for prediction. Predictors and outcomes are the
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hospitalized based on the predictor variable values. These final predictions are compared to
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an alpha value of 0.5, a lambda value of 0.25, and three coefficients (all other coefficients were

Severity index for hospitalization of suspected arbovirus infections

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007969 February 14, 2020 15 / 20

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007969.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007969.s002
https://doi.org/10.1371/journal.pntd.0007969


reduced to zero).

(DOCX)

S1 Fig. Flow chart of approach. This chart shows the algorithm development, training and

testing processes and the flow of data, using an example algorithm with no tuning parameters
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algorithm.
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S2 Fig. SISA analysis of SISAL dataset. Accuracy (blue), Cohen’s kappa (red), and AUC

(green) were calculated for the repeated 10-fold cross validation (left) and the holdout test

dataset (right) for prediction of hospitalization status in clinically diagnosed DENV, CHIKV

or ZIKV infections. bag = bagged trees, knn = k nearest neighbors, rf = random forest,
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regression, DENV = dengue virus, CHIKV = chikungunya virus, ZIKV = Zika virus

(DOCX)

Acknowledgments

Many thanks to the Ministry of Health of Ecuador and SUNY Upstate’s Institute for Global

Health and Translational Science, as well as the Upstate team in Machala.

Author Contributions

Conceptualization: Rachel Sippy, Daniel F. Farrell, Julio Barzallo Aguilar, Christina D.

Lupone, Timothy Endy, Anna M. Stewart Ibarra.

Data curation: Daniel F. Farrell, Daniel A. Lichtenstein, Ryan Nightingale, Megan A. Harris,

Joseph Toth, Paris Hantztidiamantis, Cinthya Cueva Aponte, Julio Barzallo Aguilar,

Anthony Puthumana.

Formal analysis: Rachel Sippy, Nicholas Usher.

Funding acquisition: Daniel F. Farrell, Timothy Endy, Sadie J. Ryan, Anna M. Stewart Ibarra.

Investigation: Anthony Puthumana, Timothy Endy, Anna M. Stewart Ibarra.

Methodology: Rachel Sippy, Timothy Endy, Anna M. Stewart Ibarra.

Project administration: Daniel F. Farrell, Julio Barzallo Aguilar, Christina D. Lupone.

Resources: Julio Barzallo Aguilar.

Software: Rachel Sippy.

Supervision: Rachel Sippy, Timothy Endy, Anna M. Stewart Ibarra.

Visualization: Rachel Sippy.

Writing – original draft: Rachel Sippy, Daniel F. Farrell, Daniel A. Lichtenstein, Ryan Night-

ingale, Megan A. Harris, Joseph Toth, Paris Hantztidiamantis, Nicholas Usher.

Writing – review & editing: Rachel Sippy, Daniel F. Farrell, Daniel A. Lichtenstein, Ryan

Nightingale, Megan A. Harris, Joseph Toth, Paris Hantztidiamantis, Nicholas Usher, Julio

Barzallo Aguilar, Anthony Puthumana, Christina D. Lupone, Timothy Endy, Sadie J. Ryan,

Anna M. Stewart Ibarra.

Severity index for hospitalization of suspected arbovirus infections

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007969 February 14, 2020 16 / 20

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007969.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007969.s004
https://doi.org/10.1371/journal.pntd.0007969


References
1. Stewart-Ibarra AM, Ryan SJ, Kenneson A, King CA, Abbott M, Barbachano-Guerrero A, et al. The Bur-

den of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presenta-

tion, and Phylogenetics from the First Two Years of a Prospective Study. Am J Trop Med Hyg. 2018;

98: 1444–1459. https://doi.org/10.4269/ajtmh.17-0762 PMID: 29512482

2. Staples JE, Fischer M. Chikungunya Virus in the Americas—What a Vectorborne Pathogen Can Do. N

Engl J Med. 2014; 371: 887–889. https://doi.org/10.1056/NEJMp1407698 PMID: 25184860

3. Zanluca C, de Melo VCA, Mosimann ALP, dos Santos GIV, dos Santos CND, Luz K. First report of

autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz. 2015; 110: 569–572.

https://doi.org/10.1590/0074-02760150192 PMID: 26061233

4. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden

of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016; 16:

712–723. https://doi.org/10.1016/S1473-3099(16)00026-8 PMID: 26874619

5. Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne

virus transmission risk with climate change. PLoS Negl Trop Dis. 2019; 13: e0007213. https://doi.org/

10.1371/journal.pntd.0007213 PMID: 30921321

6. Ministerio de Salud Publica, Dirección Nacional de Vigilancia Epidemiológica. Enfermedades Trasmiti-

das por Vectores 1994–2017. Dirección Nacional de Vigilancia Epidemiológica, Ministerio de Salud

Publica.; Available: https://public.tableau.com/profile/vvicentee80#!/vizhome/

EnfermeddaesTropicales_vectoriales-2014/ANUARIO

7. Ministerio de Salud Publica, Dirección Nacional de Vigilancia Epidemiológica. Enfermedades Trasmiti-

das por Vectores SE 52/2018. Available: https://www.salud.gob.ec/wp-content/uploads/2019/01/

GACETA-VECTORES-SE-52.pdf

8. Ministerio de Salud Publica, Dirección Nacional de Vigilancia Epidemiológica. Enfermedades Trasmiti-

das por Vectores SE 52/2017. Available: https://www.salud.gob.ec/wp-content/uploads/2017/07/

Gaceta-Vectorial-SE52.pdf

9. Farrell DF, Lupone CD, Kenneson A, Cueva C, Heydari N, Barzallo Aguilera JH, et al. Case Report: An

Acute Chikungunya Infection and a Recent Secondary Dengue Infection in a Peripartum Case in Ecua-

dor. Am J Trop Med Hyg. 2018; 98: 838–840. https://doi.org/10.4269/ajtmh.17-0781 PMID: 29363451

10. Censos IN de E y. Actividades y Recursos de Salud. In: Instituto Nacional de Estadı́stica y Censos

[Internet]. [cited 28 Mar 2019]. Available: http://www.ecuadorencifras.gob.ec/actividades-y-recursos-

de-salud/

11. WHO | Density of physicians (total number per 1000 population, latest available year). [cited 11 Apr

2019]. Available: https://www.who.int/gho/health_workforce/physicians_density/en/

12. Agyeman-Duah JNA, Theurer A, Munthali C, Alide N, Neuhann F. Understanding the barriers to setting

up a healthcare quality improvement process in resource-limited settings: a situational analysis at the

Medical Department of Kamuzu Central Hospital in Lilongwe, Malawi. BMC Health Serv Res. 2014; 14:

1. https://doi.org/10.1186/1472-6963-14-1 PMID: 24382312

13. Azeredo EL, Dos Santos FB, Barbosa LS, Souza TMA, Badolato-Corrêa J, Sánchez-Arcila JC, et al.

Clinical and laboratory profile of Zika and dengue infected patients: lessons learned from the co-circula-

tion of dengue, Zika, and chikungunya in Brazil. PLoS Curr. 2018; 10. https://doi.org/10.1371/currents.

outbreaks.0bf6aeb4d30824de63c4d5d745b217f5 PMID: 29588874

14. Moreira J, Bressan CS, Brasil P, Siqueira AM. Epidemiology of acute febrile illness in Latin America.

Clin Microbiol Infect. 2018; 24: 827–35. https://doi.org/10.1016/j.cmi.2018.05.001 PMID: 29777926

15. Dengue, Guı́as de atención para enfermos en la región de las Américas–Ministerio de Salud Pública.

[cited 3 Apr 2019]. Available: https://www.salud.gob.ec/dengue-guias-de-atencion-para-enfermos-en-

la-region-de-las-americas/

16. WHO | Dengue guidelines for diagnosis, treatment, prevention and control: new edition. In: WHO [Inter-

net]. [cited 8 Jul 2017]. Available: http://www.who.int/rpc/guidelines/9789241547871/en/

17. Dengue and severe dengue. [cited 28 Mar 2019]. Available: https://www.who.int/news-room/fact-

sheets/detail/dengue-and-severe-dengue

18. Gérardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, et al. Multidisciplinary Prospec-

tive Study of Mother-to-Child Chikungunya Virus Infections on the Island of La Réunion. PLOS Med.

2008; 5: e60. https://doi.org/10.1371/journal.pmed.0050060 PMID: 18351797

19. Hoz JM de la, Bayona B, Viloria S, Accini JL, Juan-Vergara HS, Viasus D. Fatal cases of Chikungunya

virus infection in Colombia: Diagnostic and treatment challenges. J Clin Virol. 2015; 69: 27–29. https://

doi.org/10.1016/j.jcv.2015.05.021 PMID: 26209372

Severity index for hospitalization of suspected arbovirus infections

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007969 February 14, 2020 17 / 20

https://doi.org/10.4269/ajtmh.17-0762
http://www.ncbi.nlm.nih.gov/pubmed/29512482
https://doi.org/10.1056/NEJMp1407698
http://www.ncbi.nlm.nih.gov/pubmed/25184860
https://doi.org/10.1590/0074-02760150192
http://www.ncbi.nlm.nih.gov/pubmed/26061233
https://doi.org/10.1016/S1473-3099(16)00026-8
http://www.ncbi.nlm.nih.gov/pubmed/26874619
https://doi.org/10.1371/journal.pntd.0007213
https://doi.org/10.1371/journal.pntd.0007213
http://www.ncbi.nlm.nih.gov/pubmed/30921321
https://public.tableau.com/profile/vvicentee80#!/vizhome/EnfermeddaesTropicales_vectoriales-2014/ANUARIO
https://public.tableau.com/profile/vvicentee80#!/vizhome/EnfermeddaesTropicales_vectoriales-2014/ANUARIO
https://www.salud.gob.ec/wp-content/uploads/2019/01/GACETA-VECTORES-SE-52.pdf
https://www.salud.gob.ec/wp-content/uploads/2019/01/GACETA-VECTORES-SE-52.pdf
https://www.salud.gob.ec/wp-content/uploads/2017/07/Gaceta-Vectorial-SE52.pdf
https://www.salud.gob.ec/wp-content/uploads/2017/07/Gaceta-Vectorial-SE52.pdf
https://doi.org/10.4269/ajtmh.17-0781
http://www.ncbi.nlm.nih.gov/pubmed/29363451
http://www.ecuadorencifras.gob.ec/actividades-y-recursos-de-salud/
http://www.ecuadorencifras.gob.ec/actividades-y-recursos-de-salud/
https://www.who.int/gho/health_workforce/physicians_density/en/
https://doi.org/10.1186/1472-6963-14-1
http://www.ncbi.nlm.nih.gov/pubmed/24382312
https://doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5
https://doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5
http://www.ncbi.nlm.nih.gov/pubmed/29588874
https://doi.org/10.1016/j.cmi.2018.05.001
http://www.ncbi.nlm.nih.gov/pubmed/29777926
https://www.salud.gob.ec/dengue-guias-de-atencion-para-enfermos-en-la-region-de-las-americas/
https://www.salud.gob.ec/dengue-guias-de-atencion-para-enfermos-en-la-region-de-las-americas/
http://www.who.int/rpc/guidelines/9789241547871/en/
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://doi.org/10.1371/journal.pmed.0050060
http://www.ncbi.nlm.nih.gov/pubmed/18351797
https://doi.org/10.1016/j.jcv.2015.05.021
https://doi.org/10.1016/j.jcv.2015.05.021
http://www.ncbi.nlm.nih.gov/pubmed/26209372
https://doi.org/10.1371/journal.pntd.0007969


20. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB da, et al. Characterizing the

Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr. 2017; 171:

288–295. https://doi.org/10.1001/jamapediatrics.2016.3982 PMID: 27812690

21. Barbeito-Andrés J, Schuler-Faccini L, Garcez PP. Why is congenital Zika syndrome asymmetrically dis-

tributed among human populations? PLOS Biol. 2018; 16: e2006592. https://doi.org/10.1371/journal.

pbio.2006592 PMID: 30142150

22. Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a sys-

tematic analysis. Lancet Infect Dis. 2016; 16: 935–941. https://doi.org/10.1016/S1473-3099(16)00146-

8 PMID: 27091092

23. Deo RC. Machine Learning in Medicine. Circulation. 2015; 132: 1920–1930. https://doi.org/10.1161/

CIRCULATIONAHA.115.001593 PMID: 26572668

24. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, Second Edition. 2nd ed. New York: Springer-Verlag; 2009. Available: //www.springer.com/

us/book/9780387848570

25. Breiman L. Statistical Modeling: The Two Cultures. Stat Sci. 2001; 16: 199–215.

26. Margolin AA, Bilal E, Huang E, Norman TC, Ottestad L, Mecham BH, et al. Systematic analysis of chal-

lenge-driven improvements in molecular prognostic models for breast cancer. Sci Transl Med. 2013; 5:

181re1. https://doi.org/10.1126/scitranslmed.3006112 PMID: 23596205

27. Sa-ngamuang C, Haddawy P, Luvira V, Piyaphanee W, Iamsirithaworn S, Lawpoolsri S. Accuracy of

dengue clinical diagnosis with and without NS1 antigen rapid test: Comparison between human and

Bayesian network model decision. PLoS Negl Trop Dis. 2018; 12. https://doi.org/10.1371/journal.pntd.

0006573 PMID: 29912875

28. Haddawy P, Kasantikul R, Hasan AHMI, Rattanabumrung C, Rungrun P, Suksopee N, et al. Spatiotem-

poral Bayesian Networks for Malaria Prediction: Case Study of Northern Thailand. Stud Health Technol

Inform. 2016; 228: 773–777. PMID: 27577491

29. Davi CCM, Pastor A, Oliveira T, Lima Neto FB, Braga-Neto U, Bigham A, et al. Severe Dengue Progno-

sis Using Human Genome Data and Machine Learning. IEEE Trans Biomed Eng. 2019. https://doi.org/

10.1109/TBME.2019.2897285 PMID: 30716030

30. Khan S, Ullah R, Khan A, Wahab N, Bilal M, Ahmed M. Analysis of dengue infection based on Raman

spectroscopy and support vector machine (SVM). Biomed Opt Express. 2016; 7: 2249–2256. https://

doi.org/10.1364/BOE.7.002249 PMID: 27375941

31. Melo CFOR, Navarro LC, de Oliveira DN, Guerreiro TM, Lima E de O, Delafiori J, et al. A Machine

Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic

Data: A Simple Screening Method for Patients With Zika Virus. Front Bioeng Biotechnol. 2018; 6.

https://doi.org/10.3389/fbioe.2018.00031 PMID: 29696139

32. Nagori A, Dhingra LS, Bhatnagar A, Lodha R, Sethi T. Predicting Hemodynamic Shock from Thermal

Images using Machine Learning. Sci Rep. 2019; 9: 91. https://doi.org/10.1038/s41598-018-36586-8

PMID: 30643187

33. Dakappa PH, Prasad K, Rao SB, Bolumbu G, Bhat GK, Mahabala C. A Predictive Model to Classify

Undifferentiated Fever Cases Based on Twenty-Four-Hour Continuous Tympanic Temperature

Recording. In: Journal of Healthcare Engineering [Internet]. 2017 [cited 9 Apr 2019]. https://doi.org/10.

1155/2017/5707162 PMID: 29359037

34. Goto T, Camargo CA, Faridi MK, Freishtat RJ, Hasegawa K. Machine Learning-Based Prediction of

Clinical Outcomes for Children During Emergency Department Triage. JAMA Netw Open. 2019; 2:

e186937. https://doi.org/10.1001/jamanetworkopen.2018.6937 PMID: 30646206

35. Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA, Hasegawa K. Emergency department triage pre-

diction of clinical outcomes using machine learning models. Crit Care. 2019; 23. https://doi.org/10.1186/

s13054-019-2351-7 PMID: 30795786

36. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture

(REDCap)–A metadata-driven methodology and workflow process for providing translational research

informatics support. J Biomed Inf. 2009; 42: 377–381.

37. Boulesteix A-L, Schmid M. Machine learning versus statistical modeling. Biom J Biom Z. 2014; 56: 588–

593. https://doi.org/10.1002/bimj.201300226 PMID: 24615669

38. Peters A. ipred: Improved Predictors. 2017.

39. Kuhn M. caret: Classification and Regression Training. 2017.

40. Liaw A, Wiener M. Classification and Regression by RandomForest. Forest. 2001; 23.

41. Zou H, Hastie T. elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA. 2012.

42. Ridgeway G. gbm: Generalized Boosted Regression Models. 2017.

Severity index for hospitalization of suspected arbovirus infections

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007969 February 14, 2020 18 / 20

https://doi.org/10.1001/jamapediatrics.2016.3982
http://www.ncbi.nlm.nih.gov/pubmed/27812690
https://doi.org/10.1371/journal.pbio.2006592
https://doi.org/10.1371/journal.pbio.2006592
http://www.ncbi.nlm.nih.gov/pubmed/30142150
https://doi.org/10.1016/S1473-3099(16)00146-8
https://doi.org/10.1016/S1473-3099(16)00146-8
http://www.ncbi.nlm.nih.gov/pubmed/27091092
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
http://www.ncbi.nlm.nih.gov/pubmed/26572668
http://www.springer.com/us/book/9780387848570
http://www.springer.com/us/book/9780387848570
https://doi.org/10.1126/scitranslmed.3006112
http://www.ncbi.nlm.nih.gov/pubmed/23596205
https://doi.org/10.1371/journal.pntd.0006573
https://doi.org/10.1371/journal.pntd.0006573
http://www.ncbi.nlm.nih.gov/pubmed/29912875
http://www.ncbi.nlm.nih.gov/pubmed/27577491
https://doi.org/10.1109/TBME.2019.2897285
https://doi.org/10.1109/TBME.2019.2897285
http://www.ncbi.nlm.nih.gov/pubmed/30716030
https://doi.org/10.1364/BOE.7.002249
https://doi.org/10.1364/BOE.7.002249
http://www.ncbi.nlm.nih.gov/pubmed/27375941
https://doi.org/10.3389/fbioe.2018.00031
http://www.ncbi.nlm.nih.gov/pubmed/29696139
https://doi.org/10.1038/s41598-018-36586-8
http://www.ncbi.nlm.nih.gov/pubmed/30643187
https://doi.org/10.1155/2017/5707162
https://doi.org/10.1155/2017/5707162
http://www.ncbi.nlm.nih.gov/pubmed/29359037
https://doi.org/10.1001/jamanetworkopen.2018.6937
http://www.ncbi.nlm.nih.gov/pubmed/30646206
https://doi.org/10.1186/s13054-019-2351-7
https://doi.org/10.1186/s13054-019-2351-7
http://www.ncbi.nlm.nih.gov/pubmed/30795786
https://doi.org/10.1002/bimj.201300226
http://www.ncbi.nlm.nih.gov/pubmed/24615669
https://doi.org/10.1371/journal.pntd.0007969


43. Venables W, Ripley B. Modern Applied Statistics with S. 4th ed. New York: Springer-Verlag; 2002.

44. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review

shows no performance benefit of machine learning over logistic regression for clinical prediction mod-

els. J Clin Epidemiol. 2019; 110: 12–22. https://doi.org/10.1016/j.jclinepi.2019.02.004 PMID: 30763612

45. Kuhn M. Building Predictive Models in R Using the caret Package. J Stat Softw. 2008; 28: 1–26. https://

doi.org/10.18637/jss.v028.i07

46. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the Perfor-

mance of Prediction Models: A Framework for Traditional and Novel Measures. Epidemiology. 2010;

21: 128–138. https://doi.org/10.1097/EDE.0b013e3181c30fb2 PMID: 20010215

47. Banerjee M, Capozzoli M, McSweeney L, Sinha D. Beyond kappa: A review of interrater agreement

measures. Can J Stat. 1999; 27: 3–23.

48. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development

and an ABCD for validation. Eur Heart J. 2014; 35: 1925–31. https://doi.org/10.1093/eurheartj/ehu207

PMID: 24898551

49. Wickham H, Miller E. haven: Import and Export “SPSS”, “Stata” and “SAS” Files. R package version

1.1.0 ed2017.

50. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semipara-

metric generalized linear models. J R Stat Soc Ser B Stat Methodol. 2011; 73: 3–36. https://doi.org/10.

1111/j.1467-9868.2010.00749.x

51. Wood S N. Thin Plate Regression Splines. J R Stat Soc Ser B. 2003; 65: 95–114. https://doi.org/10.

1111/1467-9868.00374

52. Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab—An S4 Package for Kernel Methods in R. J Stat

Softw. 2004; 11: 1–20. https://doi.org/10.18637/jss.v011.i09

53. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate

Descent. J Stat Softw. 2010; 33: 1–22. PMID: 20808728

54. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J, et al. pROC: and open-source package

for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011; 12: 77. https://doi.org/

10.1186/1471-2105-12-77 PMID: 21414208

55. Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epide-

miol. 1986; 15: 413–419. https://doi.org/10.1093/ije/15.3.413 PMID: 3771081

56. Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N, et al. Early clini-

cal and laboratory indicators of acute dengue illness. J Infect Dis. 1997; 176: 313–321. https://doi.org/

10.1086/514047 PMID: 9237695

57. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001; 29: 1189–

1232.

58. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002; 38: 367–378.

59. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. Second Edition. New York: Springer-Verlag; 2009.

60. Hastie T, Tibshirani R, Wainwright M. Statistical Learning with Sparsity: The Lasso and Generalizations.

Chapman & Hall/CRC; 2015.

61. Aronsky D, Haug PJ. Diagnosing community-acquired pneumonia with a Bayesian network. Proc AMIA

Symp. 1998; 632–636. PMID: 9929296

62. Sartakhti JS, Zangooei MH, Mozafari K. Hepatitis disease diagnosis using a novel hybrid method based

on support vector machine and simulated annealing (SVM-SA). Comput Methods Programs Biomed.

2012; 108: 570–579. https://doi.org/10.1016/j.cmpb.2011.08.003 PMID: 21968203
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