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Abstract: Elevated levels of bradykinin (BK) and fibroblast growth factor-2 (FGF-2) have been
implicated in the pathogenesis of inflammatory and angiogenic disorders. In angiogenesis, both stimuli
induce a pro-inflammatory signature in endothelial cells, activating an autocrine/paracrine
amplification loop that sustains the neovascularization process. Here we investigated the contribution
of the FGF-2 pathway in the BK-mediated human endothelial cell permeability and migration,
and the role of the B2 receptor (B2R) of BK in this cross-talk. BK (1 µM) upregulated the FGF-2
expression and promoted the FGF-2 signaling, both in human umbilical vein endothelial cells
(HUVEC) and in retinal capillary endothelial cells (HREC) by the activation of Fibroblast growth
factor receptor-1 (FGFR-1) and its downstream signaling (fibroblast growth factor receptor substrate:
FRSα, extracellular signal–regulated kinases1/2: ERK1/2, and signal transducer and activator
of transcription 3: STAT3 phosphorylation). FGFR-1 phosphorylation triggered by BK was c-Src
mediated and independent from FGF-2 upregulation. Either HUVEC and HREC exposed to BK
showed increased permeability, disassembly of adherens and tight-junction, and increased cell
migration. B2R blockade by the selective antagonist, fasitibant, significantly inhibited FGF-2/FGFR-1
signaling, and in turn, BK-mediated endothelial cell permeability and migration. Similarly, the FGFR-1
inhibitor, SU5402, and the knock-down of the receptor prevented the BK/B2R inflammatory response
in endothelial cells. In conclusion, this work demonstrates the existence of a BK/B2R/FGFR-1/FGF-2
axis in endothelial cells that might be implicated in propagation of angiogenic/inflammatory
responses. A B2R blockade, by abolishing the initial BK stimulus, strongly attenuated FGFR-1-driven
cell permeability and migration.
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1. Introduction

Inflammation and angiogenesis are closely integrated processes regulating a number of physiological
and pathological settings, including wound healing, rheumatoid arthritis, diabetic retinopathy,
arteriosclerosis, and cancer [1–3]. Fibroblast growth factor-2 (FGF-2) exerts a key role in the cross-talk
between angiogenesis and inflammation by interacting with various surface molecules, including
tyrosine kinase receptors Fibroblast growth factor receptor 1 to 4 (FGFR-1 to FGFR-4), heparan-sulfate
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proteoglycans, integrins and syndecans [4]. In endothelial cells (EC), through the FGFR-1 activation,
FGF-2 promotes the inflammatory response during the angiogenic process by inducing vasoactive
effects, such as vasodilation and vascular permeability [5–7]. Further, the FGF-2/FGFR-1 signaling
pathway promotes the expression of a wide variety of inflammation-related genes in EC, which have
a pivotal role in the neovascularization [8,9], and, in turn, several inflammatory mediators trigger
FGF-2 release from EC [10,11]. In a previous report, we showed that prostaglandin E2 (PGE2) induces
angiogenesis by an autocrine FGF-2 mobilization from the EC extracellular matrix, resulting in FGFR-1
signaling activation [12,13]. Of note, FGF-2 itself also upregulates its expression in EC, and that of
other growth factors, including vascular endothelial growth factor (VEGF) [14–16]. Thus, the EC
activation by FGF-2 appears to be a concerted action between an autocrine loop and that of other
factors originating in a paracrine modality from inflammatory cells, including prostanoids, cytokines,
and other chemokines [17,18].

Two G-protein-coupled receptors, BK receptor 1 and 2 (B1R and B2R) transduce BK signals to
the effector molecules mentioned above [19]. Activation of these receptors elicits pro-angiogenic
responses in EC, as well as important changes of their tone (vasodilatation), permeability, and the
enhanced recruitment of inflammatory cells [17,20,21]. Recently, in the oxygen induced retinopathy
(OIR) model, in mice, we demonstrated that the BK/B2R signaling plays a pathogenic role in retinal
neovascularization, and that its effects correlate with FGF-2 upregulation in retinal vessels [22]. Here we
investigated the contribution of the FGF-2/FGFR-1 pathway to BK/B2R-mediated human endothelial
cell permeability and migration in two EC lines, human umbilical vein endothelial cells (HUVEC) and
human retinal capillary endothelial cells (HREC). Our data demonstrates that BK transactivated the
FGF-2/FGFR-1 signaling in both HUVEC and HREC cells, which was implicated in cell permeability
and migration. B2R blockade, by abolishing the initial BK stimulus, strongly attenuated FGFR-1-driven
inflammatory responses.

2. Results

2.1. BK/B2R System Transactivates FGFR-1 and Drives Its Downstream Signaling in EC

In order to investigate whether the BK/B2R promotes the FGF-2/FGFR-1 signaling activation,
we determined the FGF-2 expression in HUVEC exposed to BK. BK increased the FGF-2 expression
time-dependently (max at 24 h) (Figure 1A), whereas pre-treatment of HUVEC with fasitibant (fas),
a B2R selective antagonist, produced a consistent reduction of the FGF-2 expression (Figure 1B).
Further, we examined whether BK might stimulate FGFR-1 phosphorylation in EC. FGFR-1, and less
frequently FGFR-2, are expressed by EC, while FGFR-3 and FGFR-4 are not [23]. The treatment with
BK (0.1–1000 nM) induced rapid FGFR-1 phosphorylation with a maximal activity observed at 1 µM
(Figure 1C). A concentration of 1 µM BK also induced FGFR-2 phosphorylation (3-fold increase over
basal, Figure 1D). Inversely, pre-treatment of HUVEC with fasitibant (fas) produced a significant
decrement of FGFR-1 phosphorylation (without affecting FGFR-2 activity) (Figure 1D,E). These results
indicate the specificity of the BK/B2R signaling pathway in the activation of the FGF2/FGFR-1 system
(Figure 1B–E).

We also studied the perinuclear translocation of FGFR-1 in response to BK, a known mechanism
linked to tyrosine kinase receptor activation [12].

In agreement with the FGFR-1 phosphorylation, Figure 1F shows a different pattern of FGFR-1
staining in ECs exposed for 10 min to BK (upper panel, on the right) suggesting that BK may promote
the FGFR-1 translocation from the membrane/cytoplasm to the perinuclear area, while fasitibant
blocked the receptor internalization (Figure 1F, bottom panel, on the right).
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Figure 1. BK/B2R transactivates FGFR-1 and mediates its internalization. (A) HUVEC were treated 
with BK (1 µM) for 8, 18, and 24 h, and FGF-2 expression was evaluated using western blot analysis. 
Results were normalized to actin. Quantification was expressed as an arbitrary density unit (ADU). 
The results presented are representative of three independent experiments (n = 3) with similar results. 
(B) HUVEC were treated with fasitibant (fas, 1 µM, 30 min), then stimulated with BK (1 µM) for 24 h, 
and FGF-2 expression was evaluated using western blot analysis. Results were normalized to actin. 
(C) HUVEC were treated with BK (0.1–1000 nM, 10 min), FGFR-1 was immunoprecipitated (IP), and 
its activation was investigated by anti-pTYR antibody. Results were normalized to FGFR-1. (D,E) 
HUVEC were treated with fasitibant (fas, 1 µM, 30 min), then stimulated with 1 µM BK (10 min), 
FGFR-2 and FGFR-1 were immunoprecipitated (IP), and its activation was investigated by anti-pTYR 
antibody. Results were normalized to FGFR-2 and FGFR-1, respectively. *** p < 0.001 vs. Ctr; ### p < 
0.001 vs. BK treated cells. Ctr (control, 0.1% FBS). (F) Immunofluorescence analysis of FGFR-1 
localization in endothelial cells in the control condition (Ctr, 0.1% FBS) and in the presence of BK (1 
µM, 10 min) alone or in combination with fasitibant (1 µM). Magnification, 100×, scale bar = 100 µm. 

Next, we investigated the effect of BK/B2R signaling on the second messengers downstream to 
FGFR-1. BK (1 µM, 15 min) induced the phosphorylation of fibroblast growth factor receptor 
substrate (FRSα), extracellular signal–regulated kinases1/2 (ERK1/2), Protein Kinase B (AKT), and 
signal transducer and activator of transcription 3 (STAT3) (Figure 2A–D) in HUVEC. Similar results 
were obtained in HREC (Figure 2E–G). Fasitibant (fas) inhibited the phosphorylation of all the above 
second messengers, except AKT (Figure 2A–G). 

Figure 1. BK/B2R transactivates FGFR-1 and mediates its internalization. (A) HUVEC were treated
with BK (1 µM) for 8, 18, and 24 h, and FGF-2 expression was evaluated using western blot analysis.
Results were normalized to actin. Quantification was expressed as an arbitrary density unit (ADU).
The results presented are representative of three independent experiments (n = 3) with similar results.
(B) HUVEC were treated with fasitibant (fas, 1 µM, 30 min), then stimulated with BK (1 µM) for
24 h, and FGF-2 expression was evaluated using western blot analysis. Results were normalized to
actin. (C) HUVEC were treated with BK (0.1–1000 nM, 10 min), FGFR-1 was immunoprecipitated
(IP), and its activation was investigated by anti-pTYR antibody. Results were normalized to FGFR-1.
(D,E) HUVEC were treated with fasitibant (fas, 1 µM, 30 min), then stimulated with 1 µM BK (10 min),
FGFR-2 and FGFR-1 were immunoprecipitated (IP), and its activation was investigated by anti-pTYR
antibody. Results were normalized to FGFR-2 and FGFR-1, respectively. *** p < 0.001 vs. Ctr; ### p < 0.001
vs. BK treated cells. Ctr (control, 0.1% FBS). (F) Immunofluorescence analysis of FGFR-1 localization in
endothelial cells in the control condition (Ctr, 0.1% FBS) and in the presence of BK (1 µM, 10 min) alone
or in combination with fasitibant (1 µM). Magnification, 100×, scale bar = 100 µm.

Next, we investigated the effect of BK/B2R signaling on the second messengers downstream to
FGFR-1. BK (1 µM, 15 min) induced the phosphorylation of fibroblast growth factor receptor substrate
(FRSα), extracellular signal–regulated kinases1/2 (ERK1/2), Protein Kinase B (AKT), and signal
transducer and activator of transcription 3 (STAT3) (Figure 2A–D) in HUVEC. Similar results were
obtained in HREC (Figure 2E–G). Fasitibant (fas) inhibited the phosphorylation of all the above second
messengers, except AKT (Figure 2A–G).



Int. J. Mol. Sci. 2018, 19, 2638 4 of 16Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 16 

 

 
(A) (B) 

 
(C) (D) 

 
(E) (F) 

 
(G) 

Figure 2. BK/B2R activates FGFR-1 signaling. (A) FRSα, (B) ERK1/2, (C) AKT, and (D) STAT3 
phosphorylation were evaluated using western blot analysis in HUVEC treated with fasitibant (fas, 1 
µM, 30 min), then stimulated with BK (1 µM) for 15 min. (E) FRSα, (F) ERK1/2, and (G) STAT3 
phosphorylation were evaluated using western blot analysis in HREC treated with fasitibant (fas, 1 
µM, 30 min), then stimulated with BK (1 µM) for 15 min. Results were normalized to FRSα, ERK1/2, 
AKT, and STAT3, respectively. The results presented are representative of three independent 
experiments (n = 3) with similar results. Quantification was expressed as an arbitrary density unit 
(ADU). ** p < 0.01; *** p < 0.001 vs. Ctr; # p < 0.05; ### p < 0.001 vs. BK treated cells. 

BK/B2R signaling is reported to directly promote ERK1/2 and STAT3 activation [24,25]. 
However, we found that exposure to SU5402, a FGFR-1 inhibitor, before the BK challenge, strongly 
reduced the ERK1/2 and STAT3 activation, suggesting that FGFR-1 lay downstream to BK in 
promoting EC activation (Figure 3A,B). Similarly, knocking-down FGFR-1 in HUVEC inhibited BK 
activation of ERK1/2 and STAT3 (Figure 3C–E). Also, a STAT3 inhibitor pretreatment reduced the 
BK-induced FGF-2 expression, indicating that the FGF-2 upregulation occurred downstream through 
the FGFR-1/STAT3 signaling pathway activation (Figure 3F). 

Figure 2. BK/B2R activates FGFR-1 signaling. (A) FRSα, (B) ERK1/2, (C) AKT, and
(D) STAT3 phosphorylation were evaluated using western blot analysis in HUVEC treated with
fasitibant (fas, 1 µM, 30 min), then stimulated with BK (1 µM) for 15 min. (E) FRSα, (F) ERK1/2,
and (G) STAT3 phosphorylation were evaluated using western blot analysis in HREC treated with
fasitibant (fas, 1 µM, 30 min), then stimulated with BK (1 µM) for 15 min. Results were normalized
to FRSα, ERK1/2, AKT, and STAT3, respectively. The results presented are representative of three
independent experiments (n = 3) with similar results. Quantification was expressed as an arbitrary
density unit (ADU). ** p < 0.01; *** p < 0.001 vs. Ctr; # p < 0.05; ### p < 0.001 vs. BK treated cells.

BK/B2R signaling is reported to directly promote ERK1/2 and STAT3 activation [24,25].
However, we found that exposure to SU5402, a FGFR-1 inhibitor, before the BK challenge,
strongly reduced the ERK1/2 and STAT3 activation, suggesting that FGFR-1 lay downstream to
BK in promoting EC activation (Figure 3A,B). Similarly, knocking-down FGFR-1 in HUVEC inhibited
BK activation of ERK1/2 and STAT3 (Figure 3C–E). Also, a STAT3 inhibitor pretreatment reduced the
BK-induced FGF-2 expression, indicating that the FGF-2 upregulation occurred downstream through
the FGFR-1/STAT3 signaling pathway activation (Figure 3F).
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Figure 3. BK-mediated ERK1/2-STAT3/FGF-2 signaling activation requires FGFR-1. (A) ERK1/2 and 
(B) STAT3 phosphorylation were evaluated using western blot analysis in HUVEC treated with 
SU5402 (1 µM, 30 min), then stimulated with BK (1 µM) for 15 min. Results were normalized to 
ERK1/2 and STAT3, respectively. (C) FGFR-1 expression evaluated using western blot analysis in 
HUVEC transfected with two different shRNA for FGFR-1 knock-down (Sh#1 and Sh#2). EV = empty 
vector. (D,E) Western blot analysis for ERK1/2 and STAT3 phosphorylation in HUVEC transfected 
with Sh#1 and Sh#2 and stimulated with BK (1 μM) for 15 min. (F) FGF-2 expression was evaluated 
in HUVEC treated with STAT3 inhibitor (10 µM, 30 min) and then stimulated with BK (1 µM) for 24 
h. Actin was used as a loading control. The results presented are representative of three independent 
experiments (n = 3) with similar results. Quantification was expressed as an arbitrary density unit 
(ADU). ** p < 0.01; *** p < 0.001 vs. Ctr; ### p < 0.001 vs. BK treated cells. 

2.2. Phosphorylation of FGFR-1 by BK Requires the Activation of c-Src 

To investigate the mechanism whereby BK stimulated the phosphorylation of FGFR-1, we 
designed experiments in which FGF-2 was either ablated (knockout) or its signal transduction was 
impaired through the application of a non-permeant specific neutralizing antibody to EC. Both 
maneuvers failed to influence the FGFR-1 phosphorylation elicited by the BK exposure (Figure 4A,B), 
leading to the conclusion that BK activates the FGFR-1 pathway independently from the extant FGF-
2. 

Figure 3. BK-mediated ERK1/2-STAT3/FGF-2 signaling activation requires FGFR-1. (A) ERK1/2 and
(B) STAT3 phosphorylation were evaluated using western blot analysis in HUVEC treated with SU5402
(1 µM, 30 min), then stimulated with BK (1 µM) for 15 min. Results were normalized to ERK1/2
and STAT3, respectively. (C) FGFR-1 expression evaluated using western blot analysis in HUVEC
transfected with two different shRNA for FGFR-1 knock-down (Sh#1 and Sh#2). EV = empty vector.
(D,E) Western blot analysis for ERK1/2 and STAT3 phosphorylation in HUVEC transfected with Sh#1
and Sh#2 and stimulated with BK (1 µM) for 15 min. (F) FGF-2 expression was evaluated in HUVEC
treated with STAT3 inhibitor (10 µM, 30 min) and then stimulated with BK (1 µM) for 24 h. Actin was
used as a loading control. The results presented are representative of three independent experiments
(n = 3) with similar results. Quantification was expressed as an arbitrary density unit (ADU). ** p < 0.01;
*** p < 0.001 vs. Ctr; ### p < 0.001 vs. BK treated cells.

2.2. Phosphorylation of FGFR-1 by BK Requires the Activation of c-Src

To investigate the mechanism whereby BK stimulated the phosphorylation of FGFR-1,
we designed experiments in which FGF-2 was either ablated (knockout) or its signal transduction
was impaired through the application of a non-permeant specific neutralizing antibody to EC.
Both maneuvers failed to influence the FGFR-1 phosphorylation elicited by the BK exposure
(Figure 4A,B), leading to the conclusion that BK activates the FGFR-1 pathway independently from the
extant FGF-2.
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Figure 4. BK phosphorylates FGFR-1 despite the absence of FGF-2. (A,B) HUVEC were treated with 
anti-FGF-2 neutralizing antibody (6 µg/mL), then stimulated with FGF-2 (20 ng/mL), as a positive 
control or BK (1 µM) for 10 min. FGFR-1 was immunoprecipitated (IP), and its activation was 
investigated by anti-pTYR antibody. Results were normalized to FGFR-1. *** p < 0.001 vs. Ctr (control, 
0.1% FBS). (C) Murine EC was isolated from FGF-2−/− mice were stimulated with BK (1 µM) for 10 
min. FGFR-1 was immunoprecipitated (IP), and its activation was investigated by an anti-pTYR 
antibody. Results were normalized to FGFR-1. The results presented are representative of three 
independent experiments (n = 3) with similar results. *** p < 0.001 vs. Ctr (control, 0.1% FBS). 

Given the observed irrelevancy of the extracellular FGFR-1 domain in the downstream signal 
propagation activated by BK/B2R system, we focused on the cell cytosol, particularly on c-Src, a 
kinase recently shown to serve as a signaling mediator both downstream and upstream of the 
epidermal growth factor receptor activation [26]. BK application to EC (HUVEC and HREC) 
promoted a robust increase over basal in c-Src phosphorylation via B2R, an effect sensitive to fas 
blockade (5-fold decrease over BK treated cells; Figure 5A,B). Inhibition of FGFR-1 and FRSα 
phosphorylation mediated by BK through the known c-Src inhibitors PP1 and SU566, provided 
evidence that FGFR-1 lay upstream of c-Src (Figure 5C–E). We conclude that BK activated FGFR-1 
through a c-Src-dependent mechanism that appeared to be independent to the FGF-2-mediated 
receptor activation. 
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Figure 4. BK phosphorylates FGFR-1 despite the absence of FGF-2. (A,B) HUVEC were treated
with anti-FGF-2 neutralizing antibody (6 µg/mL), then stimulated with FGF-2 (20 ng/mL), as a
positive control or BK (1 µM) for 10 min. FGFR-1 was immunoprecipitated (IP), and its activation
was investigated by anti-pTYR antibody. Results were normalized to FGFR-1. *** p < 0.001 vs. Ctr
(control, 0.1% FBS). (C) Murine EC was isolated from FGF-2−/− mice were stimulated with BK (1 µM)
for 10 min. FGFR-1 was immunoprecipitated (IP), and its activation was investigated by an anti-pTYR
antibody. Results were normalized to FGFR-1. The results presented are representative of three
independent experiments (n = 3) with similar results. *** p < 0.001 vs. Ctr (control, 0.1% FBS).

Given the observed irrelevancy of the extracellular FGFR-1 domain in the downstream signal
propagation activated by BK/B2R system, we focused on the cell cytosol, particularly on c-Src, a kinase
recently shown to serve as a signaling mediator both downstream and upstream of the epidermal
growth factor receptor activation [26]. BK application to EC (HUVEC and HREC) promoted a robust
increase over basal in c-Src phosphorylation via B2R, an effect sensitive to fas blockade (5-fold decrease
over BK treated cells; Figure 5A,B). Inhibition of FGFR-1 and FRSα phosphorylation mediated by BK
through the known c-Src inhibitors PP1 and SU566, provided evidence that FGFR-1 lay upstream of
c-Src (Figure 5C–E). We conclude that BK activated FGFR-1 through a c-Src-dependent mechanism
that appeared to be independent to the FGF-2-mediated receptor activation.
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Figure 5. c-Src mediates FGFR-1 phosphorylation induced by BK/B2R system. (A) HUVEC and (B) 
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phosphorylation was measured using western blot analysis. Results were normalized to SRC. FRSα 
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(10 µM) as above, and then stimulated with BK (1 µM) for 10 min. FGFR-1 was immunoprecipitated 
(IP), and its activation was investigated by an anti-pTYR antibody. Results were normalized to FGFR-
1. The gels shown are representative of three experiments obtained with similar results. ** p < 0.01, *** 
p < 0.001 vs. Ctr (control, 0.1% FBS). ## p < 0.01, ### p < 0.001 vs. BK treated cells. 

2.2. BK Induces Endothelial Permeability and Migration through FGFR-1 Activation 

As previously demonstrated, BK produces a significant increase of endothelial permeability, a 
common histopathological marker of inflammation, measured as paracellular flux of fluorescent 
conjugated dextran [17]. In EC, BK increased paracellular flux. Co-treatment of EC with fasitibant (1 
µM) or SU5402 (1 µM) abolished the BK-induced paracellular flux increase, restoring the flux to the 
control level (Figure 6A,B). 

In a condition of in vitro confluence, cells regulate permeability through the expression of cell-
type-specific transmembrane adhesion proteins, such as vascular endothelial-cadherin (VEC), at 
adherens junctions, and zonula occludens-1 (ZO-1), at tight junctions. Consistent with its 
permeability effects, BK drastically reduced the typical pattern of fluorescence localization of either 
VEC (Figures 6C,E panel b vs. panel a) or ZO-1 (Figure 6D,G panel b vs. panel a) at the cell–cell 
contacts. Fasitibant and SU5402 prevented the cytoskeletal organization disruption of both adhesion 
proteins (Figure 6C,D, panels c vs. panel b; Figure 6E–H panel c or d vs. panel b). We previously 
demonstrated that fasitibant recovers the cytoskeletal organization of either VEC and ZO-1 in 
HUVEC [17]. These observations clearly indicate that activation of FGFR-1 signaling mediates BK-
induced permeability. 
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Figure 5. c-Src mediates FGFR-1 phosphorylation induced by BK/B2R system. (A) HUVEC and
(B) HREC were treated with fasitibant (fas, 1 µM), then stimulated with BK (1 µM) for 15 min,
and c-SRC phosphorylation was measured using western blot analysis. Results were normalized to SRC.
FRSα phosphorylation was measured using western blot analysis in (C) HUVEC and (D) HREC treated
with PP1 (500 nM), or SU566 (10 µM) (Src inhibitors) for 30 min, and then stimulated with BK (1 µM)
for 15 min. Results were normalized to FRSα. (E) HUVEC were treated with PP1 (500 nM), or SU566
(10 µM) as above, and then stimulated with BK (1 µM) for 10 min. FGFR-1 was immunoprecipitated
(IP), and its activation was investigated by an anti-pTYR antibody. Results were normalized to FGFR-1.
The gels shown are representative of three experiments obtained with similar results. ** p < 0.01,
*** p < 0.001 vs. Ctr (control, 0.1% FBS). ## p < 0.01, ### p < 0.001 vs. BK treated cells.

2.3. BK Induces Endothelial Permeability and Migration through FGFR-1 Activation

As previously demonstrated, BK produces a significant increase of endothelial permeability,
a common histopathological marker of inflammation, measured as paracellular flux of fluorescent
conjugated dextran [17]. In EC, BK increased paracellular flux. Co-treatment of EC with fasitibant
(1 µM) or SU5402 (1 µM) abolished the BK-induced paracellular flux increase, restoring the flux to the
control level (Figure 6A,B).

In a condition of in vitro confluence, cells regulate permeability through the expression of
cell-type-specific transmembrane adhesion proteins, such as vascular endothelial-cadherin (VEC),
at adherens junctions, and zonula occludens-1 (ZO-1), at tight junctions. Consistent with its
permeability effects, BK drastically reduced the typical pattern of fluorescence localization of either
VEC (Figures 6C,E panel b vs. panel a) or ZO-1 (Figure 6D,G panel b vs. panel a) at the cell–cell
contacts. Fasitibant and SU5402 prevented the cytoskeletal organization disruption of both adhesion
proteins (Figure 6C,D, panels c vs. panel b; Figure 6E–H panel c or d vs. panel b). We previously
demonstrated that fasitibant recovers the cytoskeletal organization of either VEC and ZO-1 in
HUVEC [17]. These observations clearly indicate that activation of FGFR-1 signaling mediates
BK-induced permeability.
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Figure 6. BK/B2R system promotes changes of permeability, endothelial junctions and migration
via FGFR-1. (A) Permeability in HUVEC and (B) HREC monolayers were detected as a passage of
fluorescence-conjugated FITC-Dextran from upper to lower compartments (numbers represent mean
6 ± SEM of three experiments run in triplicate; n = 3). Fasitibant (1 µM) and SU5402 (1 µM) prevent
the enhanced permeability, *** p < 0.001 vs. Ctr cells, ## p < 0.01 ### p < 0.001 vs. BK-treated cells. (C,D)
Confocal analysis of VEC and ZO-1 expression (magnification 63×) evaluated by immunofluorescence
analysis in HUVEC treated with 0.1% FBS in panel a, BK (1 µM) in panel b, and SU5402 + BK in
panel c. (E,F) Confocal analysis of VEC and (G,H) ZO-1 expression (magnification 63×) evaluated
by immunofluorescence analysis in HREC treated with 0.1% FBS in panel a, BK (1 µM) in panel b,
BK + fasitibant (10 µM) in panel c, and SU5402 + BK in panel d. Bar = 20 µm. VEC and ZO-1 were
stained in green and DAPI (blue) was used to counterstain the nuclei. Boxed areas are shown in detail
in the inset.
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We also evaluated the contribution of FGFR-1 activation in the pro-angiogenic effect of BK by
studying endothelial cell migration. In EC, BK induced migration while SU5402 co-incubated with BK,
and the knock-down of FGFR-1 reduced its effects (Figure 7A,C and Figure 7B,D for quantification),
indicating that FGFR-1 was involved in the pro-angiogenic effect of BK in EC.
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Figure 7. (A,C) Scratch wound healing assay on HUVEC treated with: in (A), 0.1% FBS (Basal, Ctr),
BK (1 µM) (BK, Ctr), SU5402 (1 µM), SU5402 + BK; in (C), 0.1% FBS (EV), BK (1 µM) (BK, EV),
FGFR-1 knock down (0.1% FBS, Sh#1 and Sh#2), FGFR-1 knock-down + BK (BK, Sh#1 and Sh#2).
(B,D) Quantification of cell migration was reported as the area of migrated cells. Figure B is the
quantification of figure A and figure D is the quantification of figure C. ** p < 0.01 vs. Ctr cells;
### p < 0.001 vs. BK-treated cells. Numbers represent mean 3 ± SEM of three experiments run in
triplicate. Bar = 100 µm.
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3. Discussion

In this study, we demonstrate that stimulation of FGF-2/FGFR-1 signaling in endothelial cells
contributes to BK/B2R-induced permeability changes and migration. These findings suggest that
FGF-2 and BK signaling might orchestrate the pathogenesis of vascular disorders through induction of
inflammatory and proangiogenic changes in the vascular endothelium.

The half-life of BK is regulated locally and is propagated through stimulation of other local
signaling [27]. Recently, in a model of OIR, in mice, we demonstrated that BK/B2R is involved in the
pathological retinal neovascularization and that this effect correlated with upregulation of FGF-2 in
retinal vessels [22]. A limited number of studies suggest the existence of a functional link between
the two systems in several inflammatory/angiogenic disorders [28–30]. Although FGF-2 can trigger
neovessel formation per se, the major finding of this study concerns the BK ability to transactivate
FGFR-1 signaling in endothelial cells, as evidenced by its phosphorylation and translocation from the
plasma membrane to cytosol, and, in turn, by the phosphorylation of second messengers downstream
to FGFR-1, as FRSα, ERK1/2, and STAT3. All events occur within minutes from BK addition to
EC, suggesting that the peptide functions as an initial trigger for a robust pro-angiogenic response.
Further, the delayed upregulation of FGF-2 observed in EC challenged with BK indicate that the
B2R signaling also functions as a trigger for an amplified pro-angiogenic/inflammatory response
mediated by FGF-2 signaling. Fasitibant application to EC, a selective full antagonist of B2R,
halted the FGFR-1 activation, therefore inhibiting the functional downstream sequelae of its activation.
Of note, from several of our findings, in absence of BK, the antagonist appeared to affect the B2R
signaling per se. Further experiments are needed to investigate this point. Interfering with the
FGF-2/FGFR-1 system by a FGFR-1 blockade (inhibition of the receptor through the low selective
SU5402 [31], or its knocking-down through shRNA) also inhibited BK activity on ERK1/2 and
STAT3, and similarly, STAT3 inhibition suppressed BK activity on FGF-2 expression, indicating hat
the FGF-2/FGFR-1 system plays a functional role in the proangiogenic/proinflammatory effects of
BK. It is notable that STAT3 is a key player in inflammation. The interactions of growth factors
and cytokines with their membrane-bound receptors frequently trigger STAT activation [32–34].
FGFR-1 influences the STAT3 pathway, and in turn, impacts on pro-inflammatory and proangiogenic
responses [32–34]. In EC exposed to BK, STAT3 appears instrumental for FGF-2 upregulation.
Further, the endothelium, activated through B2R stimulation and by the FGFR-1 cascade products,
exhibits the typical inflammatory/angiogenic phenotype, as shown by enhanced permeability and
motility of endothelial cells.

In light of these results, we propose a model for the angiogenic/inflammatory switch in
EC based on the FGFR-1 signaling stimulation and FGF-2 upregulation by BK (see Figure 8).
Previously, we reported that FGFR-1 acts as a master switch in neovascularization induced by
inflammatory mediators by initiating a positive autocrine/paracrine loop of FGF-2 synthesis and
FGFR-1 activation [13]. In EC, BK appears to act as a primer of this switch by directly transactivating
FGFR-1 signaling and FGF-2 expression. In conclusion, the functional mechanistic association between
the BK and FGF-2 signaling pathways here described provides the basis for a defined targeting of
molecules involved in microvascular disease initiation and progression. The blockade of the B2R by a
selective antagonist might restrict the pathological angiogenesis, reducing the acute inflammatory and
angiogenic responses of the vascular endothelium and the following amplification and propagation
through the FGFR-1/FGF-2 pathway.
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4. Materials and Methods

4.1. Cell Culture

Human retinal endothelial cells (HREC, passages 3–7) were from Innoprot, (Basque Country,
Spain) and certified for expression of CD31/105, von WFVIII. Cells were grown in endothelial cell
medium (ECM) (Innoprot, Basque Country) supplemented with 10% FBS and antibiotics (100 U/mL
penicillin, 100 µg/mL streptomycin) on fibronectin-coated dishes. Cells between passage 3 to 7 were
used in these experiments.

HUVEC were purchased from Lonza (Basel, Switzerland), grown in endothelial growth
medium (EGM-2) (EBM-2, plus VEGF, R3-IGF-1, hEGF, hFGF, hydrocortisone, ascorbic acid, heparin,
and GA-1000) (Clonetics, Cambrex Bio Science, Walkersville, MD, USA) and supplemented with 10%
FBS antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin) on gelatin-coated dishes. Cells were
split 1:3 twice a week, and used until they reached passage 8. Both endothelial cell lines were
cultured at 37 ◦C in 5% CO2. HUVEC FGFR-1 knockdown (Sh FGFR-1 #1 or Sh#2) and non-target
shRNA (EV, empty vector) were cultured in presence of 10 µg/mL puromicin. A HUVEC cell line was
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transfected with shRNA plasmids by using Lipofectamine 3000 (Life Technologies, Monza, MB, Italy).
Stably transfected clones were isolated with puromycine (10 µg/mL). Murine EC isolated from
FGF-2−/− mice were kindly provided by Paolo. Mignatti (NYU, New York, USA) and cultured as
described [35].

4.2. FGFR-1 shRNA Transfection

Plasmids for FGFR1 knock-down were MISSIONTM shRNA pLKO.1-puro plasmids (with
TCRN0000312516 (Sh#1) insert with sequence: 5’-CCGGGATGGCACCCGAGGCATTATTCTCGAGA
ATAATGCCTCGGGTGCCATCTTTTTG-3’ or with TRCN0000327645 (Sh#2) insert with sequence
5’-CCGGAGTGGCTTATTAATTCCGATACTCGAGTATCGGAATTAATAAGCCACTTTTTTG-3′) were
obtained from Sigma Aldrich (Milan, MI, Italy). psPA × 2 packaging plasmid (12260) and pMDG.2
envelope plasmid (12259) were obtained from Addgene (Cambridge, MA, USA). All the plasmids
were sequence verified.

To generate FGFR-1 knock-down cells (Sh#1 or Sh#2 cells), 1× 106 HEK293 cells (Life Technologies)
were transfected with 2.25µg of PA × 2 packaging plasmid, 0.75µg of PMD2G envelope plasmid,
and 3µg of pLKO.1 hairpin vector utilizing 12µL of Lipofectamine 2000 on 10 cm plates.
Polyclonal populations of transduced cells were generated by infection with 1 MOI (multiplicity of
infectious units) of lentiviral particles. At 3 days post infection, cells were selected with 10 µg/mL
puromicin (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) for 1 week.

4.3. Immunofluorescence Analysis

3 × 104 cells were seeded on 1-cm-round glass coverslips. After 24 h, cells were washed and
treated with the indicated stimuli. Cells were fixed in 4% paraformaldehyde/PBS with Ca2+ and
Mg2+. Unspecific binding sites were blocked in 3% bovine serum albumin (BSA) with FGFR-1 without
previous cell permeabilization in 0.25% Tween 20 in PBS for 10 min. Then, cells were incubated
with a monoclonal mouse anti-FGFR-1 antibody (Merk Millipore, Darmstadt, Germany) diluted 1:25,
a rabbit monoclonal anti-VE-cadherin (Cell Signaling, Milan, Italy) diluted 1:400, and a polyclonal
rabbit anti-ZO-1 (ThermoFisher Scientific, Paisley, UK) diluted 1:50 in 0.5% BSA in PBS for 18 h at 4 ◦C.
Cells were then washed and incubated with Alexafluor 555 or 488 anti-rabbit (ThermoFisher Scientific,
Paisley, UK) diluted 1:200 in PBS with 0.5% BSA for 1 h. The cells were counterstained with DAPI for
20 min (Sigma Aldrich). Coverslips were mounted in fluoromount (Sigma Aldrich) and pictures of
stained cells were taken using a confocal microscope, Leica SP5 confocal (Leica Microsystems, Milan,
MI, Italy), at 63×magnification.

4.4. Western Blot Assay

Cells (3 × 105/6 cm plate) were treated with BK (1 µM) with or without the pre-treatment
with fasitibant (1 µM), SU5402 (1 µM), PP1 (500 nM) or SU566 (Src inhibitors) (10 µM), or STAT3
inhibitor VII (10 µM) for 30 min. pFRSα (Tyr196, #3864 Cell Signaling), FRSα (#MAB4069
R&D system), pERK1/2 (#4370 Cell Signaling), ERK1/2 (#9102 Cell Signaling), pSTAT3 (#9134
Cell Signaling), STAT3 (#9139 Cell Signaling), pAKT (#9271 Cell Signaling), AKT (#2920 Cell
Signaling), pTYR (#9411 Cell Signaling), p-SRC (#6943 Cell Signaling), SRC (#2108 Cell Signaling),
FGFR-1 (#9740 Cell Signaling), FGFR-2 (#3116 Cell Signaling), and FGF-2 (#05–118 Merk Millipore)
expression were evaluated using western blot analysis [17]. Proteins (50 µg) from cell extracts
were electrophoresed in SDS/4–12% polyacrylamide gels (Life Technologies). Proteins were then
blotted onto activated nitrocellulose membranes, blocked with non-fat milk (Bio-Rad, Milan, MI,
Italy), incubated overnight with the indicated antibodies, and antigen-antibody complexes were
detected with enhanced chemiluminescence kit (Bio-Rad). Band intensity was measured using
scanning densitometry.
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4.5. Immunoprecipitation

Cells were stimulated with BK (0.1, 1, 10, 100, or 1000 nM) or with FGF-2 (20 ng/mL, R&D system)
for 10 min. Where indicated, cells were pretreated with the anti-FGF-2 neutralizing antibody (6 µg/mL),
PP1 (500 nM), or SU566 (Src inhibitors) (10 µM) or fasitibant (1 µM) for 30 min. Anti-FGFR-1 (#05-149
Merk Millipore) or FGFR-2 (#3116 Cell Signaling) were added to the precleared lysates (250 µg).
Western blot was performed as previously described [17].

4.6. Wound Assay

Cells (1 × 105 cells/well) were seeded into 24-well plates to reach confluence and then scraped
to create a wound of ±1 mm width. SU5402 (1 µM) in the presence/absence of BK (1 µM, 12 h),
where indicated, was added with the antimitotic ARA-C (2.5 µg/mL, Sigma Aldrich). Images of the
wound in each well were acquired from 0 to 12 h under a phase contrast microscope, Nikon Eclipse TE
300 (Nikon, Tokyo, Japan), at 20×magnification. Results are expressed as the area of migrated cells,
12 h vs. time 0. After 12 h, the cells were stained with Hoechst 33342 (Life Technologies), and images
were obtained as described above [17].

4.7. Permeability

Cells were seeded at 1 × 105 on fibronectin-coated or gelatin-coated insert membranes
(Corning, New York, NY, USA) with 0.4 µM diameter pores, and the inserts were placed in 12 multiwell
plates. After 48 h, confluent monolayers were treated with SU5402 (1 µM) in the presence/absence
of BK (10 µM) for 10 h. Then 3 kDa FITC-Dextran (10 µM) was added on top of cells, allowing the
fluorescent molecules to pass through the cell monolayer toward the lower compartment. The extent
of permeability was determined after 10 min by measuring the fluorescence in the medium present
in the bottom of the well in a multiplate reader (SpectraFluor, Tecan, MI, Italy), at 485/535 nm,
excitation/emission, respectively. Results are reported as relative fluorescence units (RFU) [17].

4.8. Materials and Reagents

Cell culture reagents—BK, SU566, ARA-C, DAPI, anti-β-Actin—were purchased from Sigma
Aldrich (Merk Millipore). Fetal Bovine Serum (FBS) was from Innoprot (Basque Country).
Anti-FGF-2 neutralizing antibody, STAT3 inhibitor VII, PP1, and SU5402 were purchased from
Calbiochem (Merk Millipore, Darmstadt, Germany). FGF-2 was from R&D system. Fasitibant was
kindly provided by Menarini Ricerche (Florence Italy). Anti-pTYR, anti-FGFR-1, anti-FGFR-2,
anti-pFRSα, anti-pERK1/2, anti-ERK1/2, anti-pSTAT3, anti-STAT3, anti-pAKT, anti-AKT, anti-pSRC,
and anti-SRC antibodies were from Cell Signaling (Milan, Italy). Anti-FRSαwas from R&D system.
Anti-FGF-2 was from Merk Millipore (Darmstadt, Germany).

4.9. Data Analysis and Statistical Procedures

Results are either representative or the average of at least three independent experiments done in
triplicate. Statistical analysis was performed using a two way ANOVA test followed by a Bonferroni
test (GraphPad). p < 0.05 was considered statistically significant.
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Abbreviations

ADU Arbitrary Density Unit
BK Bradykinin
BSA Bovine serum albumin
B2R BK receptor 2
fas Fasitibant
FGF-2 Fibroblast growth factor-2
FGFR-1 FGF-receptor-1
HREC Human retinal endothelial cells
NV Neovessels
OIR Oxygen induced retinopathy
PBS Phosphate buffer saline
TYR Tyrosine
VEC Vascular endothelial cadherin
VEGF Vascular endothelial growth factor
ZO-1 Zona occludens 1
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