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Topological Superfluid and 
Majorana Zero Modes in Synthetic 
Dimension
Zhongbo Yan1,2, Shaolong Wan2 & Zhong Wang1,3

Recently it has been shown that multicomponent spin-orbit-coupled fermions in one-dimensional 
optical lattices can be viewed as spinless fermions moving in two-dimensional synthetic lattices 
with synthetic magnetic flux. The quantum Hall edge states in these systems have been observed in 
recent experiments. In this paper we study the effect of an attractive Hubbard interaction. Since the 
Hubbard interaction is long-range in the synthetic dimension, it is able to efficiently induce Cooper 
pairing between the counterpropagating chiral edge states. The topological class of the resultant 
one-dimensional superfluid is determined by the parity (even/odd) of the Chern number in the two-
dimensional synthetic lattice. We also show the presence of a chiral symmetry in our model, which 
implies Z classification and the robustness of multiple zero modes when this symmetry is unbroken.

Topological superconductors and topological superfluids hosting Majorana zero modes1–7 have been 
among the central themes of both condensed matter and cold atom physics recently. (“Topological super-
conductor” refers to charged particles, while “topological superfluid” refers to neutral particles, otherwise 
their physics is essentially the same. The result of our paper is equally applicable to topological supercon-
ductors and topological superfluids.) Apart from being novel phases of matter, they have potential appli-
cations in quantum computation8,9. It is therefore highly desirable to search for various routes towards 
realization of topological superconductivity/superfluidity and Majorana zero modes. There have been 
several proposals to realize them in either condensed matter10–19 or cold atom systems20–23. The latter 
systems have the advantage of high controllability. Experimental study on topological superconductors 
and Majorana zero modes is also extremely active24–28.

In this paper we study the Cooper pairing between chiral edge modes of quantum Hall strips as a pos-
sible route toward one-dimensional (1D) topological superconductors and topological superfluids. This is 
stimulated by the idea of “synthetic dimension”29,30 emerging from optical lattice with atoms with large 
spin31–42. In this visualization, internal degrees of freedom (“spin”) form an additional spatial dimension. 
This picture is especially convenient when the internal states are coupled sequentially, as can be readily 
done by two Raman beams29. Synthetic magnetic flux naturally exists inside the two-dimensional (one 
physical dimension plus one synthetic dimension) lattice, and the quantum Hall states (Chern insula-
tor) can be simulated. The chiral edge modes have been observed in recent experiments43,44. The two 
counterpropagating chiral modes are separated in the synthetic dimension, therefore they are immune 
to backscattering if the scatters are short-range.

The interaction effect in this system is an important issue29,45–47, both experimentally and theoretically. 
With the motivation of realizing topological superfluidity, in this paper we study the effect of an attractive 
Hubbard interaction, which is long-range in the synthetic dimension, though short-range in the physical 
dimension. As a consequence, the two counterpropagating chiral edge modes can be Cooper-paired effi-
ciently. We find that topological superfluidity naturally arises. We also study the existence of topological 
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Majorana zero modes. Interestingly, multiple zero modes are stable if a chiral symmetry of our model 
is unbroken.

Results
The model and main picture. The system in consideration is illustrated in Fig. 1. The one-dimen-
sional optical lattice extends in the x direction, and the Raman-induced hopping couples ≡ +M F2 1 
spin states at each site x in a sequential manner (F =  5/2 is shown in Fig.  1). Therefore, the system 
acquires a “synthetic dimension”29. The Hamiltonian is = +H H H I0 , in which the free part is
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where Ω = Ω = Ω ( + ) − ( + ),g F F m m1 1m F m
29, with Ω  depending on the strength of Raman tran-

sitions. Generally, the value of Ω m can be controlled by tuning Raman beams. Our results will be insen-
sitive to details of Ω m. The above Hamiltonian is readily realizable in experiment43,44. The presence of 
γ−e i n indicates that there is a flux γ in each plaquette, which is responsible for the emergence of the chiral 

edge states in this model(see Fig. (1)). After a gauge transformation → γ
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in which the hopping gains a spin-dependent phase factor.
In this paper we take the simple yet realistic SU(M)-invariant Hubbard interaction:

∑= ( − )
( )

H U N N
2
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3I

n
n n

where = ∑ , ,
†N c cn m n m n m and <U 0. This interaction is apparently long-range in the synthetic dimension, 

thus it is quite capable of pairing the counterpropagating modes at the opposite edges (near =m F  and 
= −m F , respectively) in the synthetic dimension.
Before proceeding to a quantitative study of HI, we would like to discuss the physical picture of pos-

sible topological superfluidity in this model. Since the hopping lacks translational symmetry along the 
synthetic dimension, the bulk Chern number as an integral of Berry curvature in the two-dimensional 
Brillouin zone cannot be defined, however, its manifestation as the number of chiral edge modes is 
well-defined. Suppose that the “bulk Chern number” C =  1, i.e. there is a single pair of chiral edge modes 
in the bulk gap [see Fig. 2, in which the purple dotted lines intersect with the chiral modes]. If there is 
a small Cooper pairing between these two edge modes, the system is a one-dimensional topological 
superfluid. This can be inferred using Kitaev’s Z2 topological invariant2, which essentially counts the 
parity (even/odd) of the number of Fermi points within π, /a[0 ] in the absence of pairing. In the case 
=C 2, i.e. there are two pairs of chiral edge modes, as illustrated by the curves intersecting with the blue 

dotted line in Fig.  (2b), the superfluid resulting from pairing the edge states is topologically trivial. 
Provided that the pairing is small, the superfluid (or superconductor) is nontrivial(trivial) when the bulk 
Chern number is odd(even), namely,

Figure 1. Sketch of the system. The spin states are coupled sequentially by Raman-induced hopping, which 
generates a synthetic dimension, in addition to the physical dimension x.
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( − ) = ( − ) , ( )ν1 1 4C

where ν = ,0 1 (mod 2) is the Z2 topological number of 1D superconductor or superfluid2. In the rest 
part of this paper we shall present a quantitative study of the picture outlined above.

Cooper pairing in self-consistent mean-field. At the mean-field level the Hubbard interaction can 
be decomposed as
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where we have defined ∆ = < >, ′ ′U c cn mm nm nm , which satisfies ∆ = −∆, ′ , ′n mm n m m because of Fermi 
statistics. The mean field BdG Hamiltonian becomes

( )∑= + ∆ + ∆ .
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Since the basic physics is the pairing of chiral edge modes with opposite momenta, it is natural to 
consider Cooper pairing with zero total momentum, namely that ∆ ≡ ∆, ′ ′n mm mm  is independent of n. 
We determine these ∆ ′mm  self-consistently. Whenever there are several sets of self-consistent solutions of 
∆ ′{ }mm , we compare their mean-field energies and pick up the ground state. This calculation can be 

carried out for all possible values of F. Hereafter we take F =  7/2 as an example.
The pairings as functions of Hubbard U are shown in Fig. (3) for two values of chemical potential μ. 

In Fig. (3a) we take µ = − .1 81 , which corresponds to bulk Chern number C =  1 [see the purple dotted 
line in Fig. (2b)]. For small U , as U  increases, ∆ ′mm  grows exponentially. For U not too large, ∆ / ,− /7 2 7 2 
dominates other pairings, which is consistent with the picture of pairing between chiral edge modes. At 
a critical U  slightly below 2.5, the system undergoes a first-order transition to a phase in which ∆ / ,− /1 2 1 2, 

Figure 2. The spectrum of free Hamiltonian H0 for (a) F = 5/2, t = 1, Ω = 0.1, γ = π/3. The dotted line is 
located at µ = − .1 6; and (b) = /F 7 2, t =  1, Ω  =  0.1, γ π= /3. The purple dotted line is located at 
µ = − .1 81 , and the blue dotted line is located at µ = − .0 952 .

Figure 3. The self-consistent solutions of Cooper pairing ∆ ′mm  as functions of U for (a) μ1 = −1.8;  
(b) μ2 = −0.95. The parameters are t =  1, Ω  =  0.1, and γ =  π/3, which are the same as used in Fig. (2b).
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which should be regarded as a “bulk pairing”, becomes comparable to the edge pairing. Thus the 
edge-pairing picture becomes inaccurate at large U . In Fig. (3b) a different chemical potential µ = − .0 952  
is taken, and the edge-state pairings again dominate at small U .

To illustrate the robustness of the present picture, we study a set of quite different parameters, shown 
in Fig. (4). The behavior of pairings is qualitatively the same as that for the previous parameters.

A few remarks are in order. First, although we have taken the strength of hopping along the synthetic 
dimension as Ω ,g F m, we have also checked that the result is qualitatively the same when it is m-independent. 
Second, when the 2D bulk is metallic, topological superfluidity can still emerge, though there is no clear 
criteria using Chern number. We shall not focus on details about this.

Majorana zero modes. The hallmark of 1D topological superconductor or superfluid is the emer-
gence of topological zero modes localized near the two ends of an open chain.

We have solved the BdG mean-field Hamiltonian Eq.(6) for the wavefunction 
ψ ( , ) = ( , ), ( , )x m u x m v x m[ ]T , in which ( , )u x m  and ( , )v x m  denote the particle and hole  
component respectively. Below we present our solutions in a chain with sharp boundary, for the  
parameters t =  1, Ω = .0 1, γ π= /3, at both µ = − .1 81  and µ = − .0 952 . The Cooper pairings  
are taken to be the mean-field values at = − .U 1 3, which we obtained in the previous section. The  
case µ = − .1 81  is shown in Fig. 5. There is one zero mode localized at each end of the open chain, and 
a tiny finite-size coupling mixes them slightly, though the energy splitting due to finite-size effect is too 
small to be discernable. The existence of a single Majorana zero modes at each end of an open chain is 
consistent with Eq.(4), the bulk Chern number being C =  1 (odd number) at µ = − .1 81 . The superfluid 
is topologically nontrivial in this case.

Figure 4. (a) The spectrum without interaction for t =  1, Ω = .0 025, and γ π= /6. The dashed line marks 
µ = − .1 94. (b) The Cooper pairings as functions of U.

Figure 5. (a) The wavefunction of a zero mode in an open chain with length N =  150. The  
parameters are γ π= ,Ω = . , = /t 1 0 1 3 and µ = − .1 8. The Cooper pairings are taken as 
∆ = . , ∆/ ,− / / ,− /0 097 2 7 2 7 2 5 2 = − . , ∆ = ./ ,− /0 019 0 035 2 5 2 ,  ∆ = − . , ∆ = . ,/ ,− / / ,− /0 007 0 015 2 3 2 3 2 3 2
∆ = − . , ∆ = ./ ,− / / ,− /0 002 0 0023 2 1 2 1 2 1 2 , which are the mean-field pairing obtained at = .U 1 3 ( see also 
Fig. (3a)). Other ∆ ′mm ’s are much smaller and thus neglected. The two zero modes have the same profile of 
ψ ψ( ) ≡ ∑ ( , )x x mm

2 2, thus only one is shown here. The inset shows a few energies near E =  0. (b) The 
zero mode solution with m resolution.
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As a comparison, we also present the zero mode solutions at µ = − .0 952 , for which the free 
Hamiltonian have two pairs of chiral edge modes (C =  2), indicating that the superfluid phase at small 
U  should be Z2 topologically trivial (see Eq.(4)). In the numerical calculation with open boundary con-
dition, we find two Majorana zero modes at each end (see Fig. 6), which means that the superfluid is Z2 
trivial. Therefore we see again that (− 1)C determines the Z2 topological classification of the 1D superfluid 
in synthetic dimension.

One may wonder why there is no hybridization between the two zero modes, which may open a gap 
for them. We shall explain the reason as follows. In fact, the BdG Hamiltonian has a time-reversal sym-
metry and a particle-hole symmetry, which can be combined into a chiral symmetry48. If the Cooper 
pairing ∆ ′mm  are real, then we can check that the Hamiltonian satisfies

( ) = − ( ) ( )−CH k C H k 7MF
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† †c c c ck F k F k F k F
T. Due to these symme-

tries, the BdG Hamiltonian can be classified as BDI48,49, whose classification in 1D is Z. The Z2 topolog-
ically trivial phase is nontrivial according to the Z classification of BDI class, which is the reason why 
zero modes appear at the edge of Z2 trivial states. We have checked that, if we break the symmetries, e.g. 
by giving a phase factor to ∆ / ,− /7 2 7 2 (with other ∆ ′mm s unchanged), then these zero modes will be shifted 
to nonzero energies.

According to Fidkowski and Kitaev’s work50, in the presence of interaction, the classification of 
BDI-class topological superconductors in 1D is Z8 instead of Z. Because of the flexible tunability to 
topological superconductors with large topological number (say 8) in our system, the Z8 classifica-
tion can be tested experimentally. If we tune the bulk Chern number of our system to 8, the eight 
nominally-zero-modes will be shifted away from zero energy due to the (beyond-mean-field) interaction 
effects of the Hubbard term. If observed, this will be an experimental test of Fidkowski and Kitaev’s Z8 
classification.

To make a closer connection to experiment, we also study the existence of Majorana zero modes in 
a system with soft boundary created by a harmonic trap V(x). In the presence of V(x), the chemical 
potential becomes µ µ( ) = − ( )x V x0 . We take µ = − .1 70  and ( ) = . ( / )V x x a0 00025 2, such that the 
center of the system is topologically nontrivial. Since µ ( )x  is not constant, ∆ ′mm  should also be 
x-dependent. To incorporate this effect, we numerically calculate the functions µ∆ ( )′mm  at = − .U 1 3, 
which is then used to produce the mean-field BdG Hamiltonian in harmonic trap. In the solution to this 
BdG Hamiltonian, the zero modes can be clearly seen, as shown in Fig.  (7), though the quantitative 
details are different from the case of hard boundary.

Conclusions and Discussions
We have studied the pairing between counterpropagating chiral edge modes in the quantum Hall strip in 
synthetic dimension. This picture has several merits. Creation of magnetic flux in the synthetic dimen-
sion by Raman beans is easier than in physical dimensions. The spatial separation of left and right 

Figure 6. The wavefunction of zero modes in an open chain with length N = 200. The parameters are 
γ π= ,Ω = . , = /t 1 0 1 3 and µ = − .0 95, which is the same as Fig. 5 except for the chemical potential. The 

pairings are ∆ = . , ∆ = − . , ∆ = . , ∆ = . , ∆ = ./ ,− / / ,− / / ,− / / ,− / / ,− /0 067 0 005 0 052 0 028 0 0097 2 7 2 7 2 5 2 5 2 5 2 3 2 3 2 1 2 1 2  
(the mean-field pairing at = − . )U 1 3 , and other pairing terms are much smaller and thus neglected. The 
spatial profile of ψ ( )x 2 of two of the four zero modes are shown in (a,b), while the profile with m 
resolution is shown in (c,d). The other two zero modes with the same profiles are not shown repeatedly. The 
inset of (a) shows several energies close to E =  0.
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moving chiral edge states in the synthetic dimension effectively prevents the backscattering between 
them, which implies their robustness. Meanwhile, the Hubbard interaction is not suppressed by this spa-
tial separation: It is infinite-range in the synthetic dimension, therefore, it can pair the two edge modes 
quite efficiently. As we have shown, the resultant states are topological superfluid carrying Majorana zero 
modes. If the chiral symmetry of our model is unbroken, the classification is Z and multiple zero modes 
are stable; on the other hand, if this symmetry is broken, the classification is Z2.

Finally, we remark that quantum fluctuations of the phase factor of pairing in 1D is generally strong. 
One can put the 1D system in proximity to a 3D supefluid to suppress these fluctuations20. Moreover, it 
has been shown51,52 that long-range superconducting order is not a necessary condition for the existence 
of Majorana zero modes. The zero modes persist even when the long-range superconducting order is 
replaced by algebraic order (i.e. the correlations of pairings decay by power-law). In our system this 
conclusion applies.

Methods
Mean-field calculations. The mean-field calculation is carried out by the standard procedure of 
decomposing the Hubbard interaction as fermion bilinear terms, leading to Eq.(6). The Cooper pairing 
is calculated from Eq.(6) in a self-consistent manner. All self-consistent solutions for the Cooper pair-
ing are obtained. In the case that there are more than one self-consistent solutions, the one with lowest 
mean-field energy is selected.
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