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Two loci single particle trajectories 
analysis: constructing a first 
passage time statistics of local 
chromatin exploration
Ofir Shukron1, Michael Hauer2,3 & David Holcman1,4

Stochastic single particle trajectories are used to explore the local chromatin organization. We present 
here a statistical analysis of the first contact time distributions between two tagged loci recorded 
experimentally. First, we extract the association and dissociation times from data for various genomic 
distances between loci, and we show that the looping time occurs in confined nanometer regions. 
Second, we characterize the looping time distribution for two loci in the presence of multiple DNA 
damages. Finally, we construct a polymer model, that accounts for the local chromatin organization 
before and after a double-stranded DNA break (DSB), to estimate the level of chromatin decompaction. 
This novel passage time statistics method allows extracting transient dynamic at scales varying from 
one to few hundreds of nanometers, it predicts the local changes in the number of binding molecules 
following DSB and can be used to characterize the local dynamic of the chromatin.

Analysis of recent single particle trajectories (SPTs) of a tagged single locus revealed that chromatin dynamics is 
mostly driven by stochastic forces1, 2. The statistic of a locus motion has been characterized as sub-diffusive3–7 and 
confined into nano-domains. The confinement is probably due to an ensemble of local tethering forces generated 
either at the nuclear periphery8, or internally9 where binding molecules such as CTCF or cohesin play a key role10, 

11. Chromatin dynamics involves short-range loop formation in the sub-mbp scale and regulates processes such 
as gene regulation, where enhancers and promoters juxtapose12. However, the analysis of the chromatin dynamics 
at this scale is insufficient to describe processes involving long-range chromatin looping (above this mbp scale), 
such as in homologous dsDNA repair. When two neighboring loci, located on the same chromosome arm, are 
tracked simultaneously over time, their correlated position can be used to explore the local chromatin organiza-
tion13 in the range of tens to hundreds of nanometers (genomic distance between the loci).

Statistical parameters characterizing short-range chromatin motion have been studied in stochastic polymer 
models, starting with the Rouse polymer14, copolymers15, the beta polymer16, and polymer models with additional 
diffusing or fixed binding molecules17–20. The extracted statistical parameters are the diffusion coefficient, local 
tethering forces, the radius of gyration, radius of confinement1, 2, and the distribution of anomalous exponents 
of tagged loci along the chromatin, which characterizes the deviation of their dynamics from pure diffusion4, 20.

Here we analyze the transient statistics of two loci SPTs, and use it to explore the local chromatin reorganiza-
tion following DSB and its confining geometry. Thus, we further contribute to the understanding of the global 
chromatin reorganization explored in ref. 1. We adopt here the formalism of Brownian polymer dynamics, as 
we have already shown ref. 9 that the auto-correlation function of a single locus decays exponentially, but not 
as power laws, as would be predicted by the fractional Brownian motion description4. Specifically, we explore 
the chromatin state from the transient statistics of recurrent visits of two tagged loci. This approach is new and 
is not contained in other work involving two spots trajectories, which use equilibrium thermodynamic models 
for steady-state encounter frequency21 or specific chromatin arrangement22. We study the distributions of 1) the 
first encounter time (FET) and 2) the first dissociation time (FDT) of two tagged loci. The FET is defined as the 
first arrival time of one locus to the neighborhood of the second, while the FDT is the first time the two loci are 
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separated by a given distance. The statistics of FDT and FET is not contained in moments associated with each 
locus separately, but revealed by their correlated motion.

This article is organized as follows: in the first part, we introduce and estimate the FET and FDT distribution 
from SPTs of two loci (data from ref. 23). In the second part, we analyze empirical data of loci motion before and 
after the induction of DNA damages by Zeocin (data from ref. 1). The local effects of DSBs on the loci motion 
was not the goal in ref. 1, but multiple DSBs and single stand breaks (caused by the drug Zeocin), together with 
a strong DNA damage checkpoint response can trigger global chromatin changes. We shall study here the con-
sequences of multiple tether losses on the chromatin not just around the break site, but on the local loci motion. 
In the third part, we use a randomly cross-linked (RCL) polymer model18, 20 to simulate the trajectories of two 
loci following a DSB on the DNA strand between them and evaluate the number of binding molecules required 
to restrict their motion. We thus use the RCL polymer to explore the chromatin reorganization on the scale of 
a single DSB. In the last section, we estimate the number of binding molecules required to obtain SPTs with the 
same statistics as the measured ones. We conclude that the statistics of two correlated loci provide complementary 
information about local chromatin organization, not contained in the statistics of individual non-correlated loci. 
The present method is general and can be applied to any SPTs of any number of loci. It can further reveal charac-
teristic lengths, local chromatin dynamics, remodeling following DSB and estimate the changes in the number of 
molecular interactions.

Results
First passage time analysis.  The construction of the present statistical method is based on the first passage 
time for two loci entering and exiting a small ball of radius ε (that can vary continuously). We will thus estimate 
the FET and FDT (introduced above). The statistics of these times contain information about the local chromatin 
organization at a scale of one to few hundreds of nanometers, because the fluctuations in loci distance depend not 
only on their stochastic dynamics but also on the restricted geometry. We now briefly recall the published data 
we will used to construct the analysis. In the data of ref. 23, two fluorescently tagged loci are tracked over a course 
of 60–120 s. We only used recording for which the time interval did not exceed 1 s. The experiment is repeated 
for seven DNA strains of genomic length between the tagged loci between 25–100 kbp. We also use the dataset 
reported in ref. 1, which tracks two tagged loci located on yeast chromosome III, at a genomic distance of 50 kbp, 
at time intervals of 300 ms for a total of 60 s. The trajectories of two loci are tracked after the induction of DSB 
breaks uniformly over the genome by Zeocin 500 μg/ml.

We first analyze trajectories of two tagged loci of ref. 23, when they are separated by various genomic dis-
tances: Δ = 25.3; 42.3; 51.3; 71, and 100.8 kbp. The distance d(t) = dist(X(t), Y(t)) between the two trajectories X(t) 
and Y(t) fluctuates in time, thus we estimate the distribution of the FET τE and the FDT τD (Fig. 1A). The FET is 
the first time the distance between the two loci becomes less than ε, when the initial distance is larger. The FDT 
is defined as the first time that the distance between the two loci reaches ε, when they are initially inside a ball of 
radius ε. The FET (FDT) are collected between successive dissociation (association) events, after which we reset 
the time to t = 0: by definition:

τ ε ε= > ≤ >t d t dinf{ 0; ( ) (0) }, (1)E

and

τ ε ε= > ≥ < .t d t dinf{ 0; ( ) (0) } (2)D

In practice, we constructed the distributions of τE, τD for a continuum of encounter distances ε that varies in the 
range 150–500 nm.

We generated the distributions of the FET and FDT for seven various DNA strains of genomic length 
Δ = 25−108 kbp23 (Fig. 1B). We find that the FET and FDT distributions of all strain lengths can be well approx-
imated by a single exponential, with the exception of the strain 108 kb, for which two exponential terms could 
be used to account for the long FET values of the histogram. However, for that case, they are rare events showing 
multiple observations that are longer than 30 seconds that do not fall into a decreasing statistics. This could be due 
to under-sampling or it could be the sign of a non-Poissonian dynamics, due to a restricted geometrical condition 
leading to loop formation, known in other stochastic processes24. Another possibility for a long decay is a mem-
ory kernel for the underlying process, as developed in ref. 13. Based on the polymer looping theory in confined 
domains16, 25 (formula 5 of the Method), the distribution (Fig. 1C, red curves) follows a single exponential decay, 
with rate λ, which is the reciprocal of the mean FET (MFET) between the two loci. Using an exponential fit to 
the data for all strains of length Δ, we find that the MFET slightly decreases from 3.2 s for Δ = 25 kbp to 2 s for 
Δ = 108 kbp (Fig. 2A blue circles).

To estimate the effect of chromatin confinement on transient properties, we used the formula 6, derived for 
confined polymer, to fit the MFET of the two loci for all Δ. Because the two loci are located along the same chro-
mosome arm23, we model them as the two end monomers of a polymer chains with N monomers. To fit the MFET 
data using 6, we use ∆ ∈ [25, 108]kbp, b = 0.2 μm, the length of 1 bp to be 3 × 10−4 μm, the number of mono-
mers N = (3 × 10−4Δ/b) and the parameters D = 8 × 10−3 μm2/s, κ = 1.75 × 10−2 N/m and ε = 0.2 μm (see 
Table 1). We find the value for the confined parameters β = 2.4 μm−2, and substituting in 7, we finally obtain the 
radius of confinement of A = 0.5 μm, in agreement with data presented in ref. 23. Furthermore, the MFET in a 
confined environment does not exceed a limit of 2.65 s for all genomic distances between tagged loci (Fig. 2A 
dashed blue), suggesting that the dynamics has already reached the asymptotic limit, and thus the loci are con-
fined at all scales. We conclude that the motion of two loci located in the range 25–108 kbp is largely influenced 
by the local chromatin confinement.
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Figure 1.  Statistics of two loci trajectories. (A) Schematic representation of the first encounter time (FET) τE 
(upper) and the first dissociation time (FDT) τD (lower). The FET is computed when the two loci are within an 
encounter distance ε when they are initially apart. The FDT is computed when the distance between two loci is 
larger than ε when they initially encountered. The genomic distances are ∆ ∈ . .[25 3, 100 8]kbp between 
tagged loci. (B) Experimental setting for tagging seven chromatin strains by inserting lac and tet flanking 
operators at their ends on chromosome 4, 5 and 1423. (C) Distribution of the FET (left column) and the FDT 
(right column) with respect to Δ, fitted with a exp (−λt), with a a constant. The R2–values are computed from 
the matlab fitting toolbox and the number of events N for the FET and FDT are extracted from trajectories. For 
the strain 100.8 kbps, we also fitted a sum of two exponentials (dashed green) a exp (−λ1t) + b exp (−λ2t), with 
a = 2.3 b = 0.15 and λ1 = 0.75, λ2 = 0.1.

Figure 2.  Effect of the genomic separation distance Δ and the encounter distance ε. (A) The mean first 
encounter time (MFET) data (blue circles) are fitted using eq. 6 (blue dashed). The mean first dissociation time 
(MFDT) data (purple squares) is fitted using eq. 9 a2Δ exp (b2/Δ) (purple curve), where a2 = 0.01, b2 = 40.36. 
(B) The MFET 〈τE〉 for 6 strain lengths Δ kbp, shown in Fig. 1B, where the encounter distance ε varies in 0.2 
and 0.5 μm. (C) MFDT 〈τD〉 extracted from Fig. 1B and plotted for all Δ with respect to the encounter distance 
ε.
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The stochastic model for the FDT is the escape problem from a parabolic potential well26. The mean escape 
time is given by formula 9 (Methods), which shows that the dissociation time increases with the genomic length 
Δ. We thus fitted the mean FDT (MFET) data points using formula 9 (Fig. 2A, purple squares), confirming that 
the MFDT increases from 1.5 s to 2.5 s when Δ increases from 25 to 108 kbps (Fig. 2A) (Using a Matlab fit, we 
estimated the parameters of relation 9 to be a2 = 0.01, b2 = 40.36).

To evaluate the sensitivity of our approach to the choice of encounter distance ε, we estimated the FET and 
FDT when ε varied in the range 0.2–0.5 μm. For ε ∈ 0.2 − 0.25 μm, the MFET decreased from 2.7 s for ε = 0.2 μm 
to a 2.1 s when ε = 0.25 μm (Fig. 2B dashed). In the range ε µ∈ . .[0 25, 0 5] m, we find that the MFET is almost 
constant, independent of ε with an average of 2.1 s (Fig. 2B left). This result shows that it takes around 2 seconds 
for the two loci to meet and thus to explore a ball of radius of 0.25 μm. Indeed, the MFET is the time to meet when 
almost all points of the domain have been visited27.

We conclude that any loci explore constantly and recurrently the neighborhood of the chromatin with a time 
constant of 2 seconds in a tubular neighborhood of 0.25 μm and this spatial constraint does not depend on the 
position of the locus. We note that this result about the exploration and the recurrence exploration is not con-
tained in the statistics SPT of a single loci, because a reference point is needed for the comparison. Finally, we find 
that the MFDT increases with ε for all DNA strain of length Δ (Fig. 2C), from an average of 2 s for ε = 0.2 μm to 
5 s when ε = 0.5 μm.

Loci dynamics in the presence of double-strand DNA break.  To continue exploring how two loci 
trajectories provide information about local chromatin organization, we focus now on the consequences of 
double-strand DNA breaks (DSBs) on chromatin dynamic. For that purpose, we analyzed the transient statistics 
of two loci before and after treatment with the radiomimetic drug Zeocin (data presented in ref. 1). The Zeocin 
drug induces uniformly distributed DSBs on the chromatin, leading to chromatin expansion and enhanced chro-
matin flexibility1. Thus, we repeated the FET and FDT statistical analysis (Fig. 3A) as described in the previous 
subsection. As predicted by the polymer model theory, the FET and FDT follow a Poisson distribution and we 
fitted a single exponential (formula 5) to the empirical distributions (Fig. 3B). We then computed the MFET and 
MFDT for encounter distances ε in the range 0.1–0.5 μm.

For both the untreated and Zeocin treated data, the MFET graphs Fig. 3C show two phases: in the first, when 
ε µ∈ .[0, 0 2] m, the MFET decays with the radius ε, while in the second phase (ε µ∈ . .[0 2, 0 5] m), it is inde-
pendent (Fig. 3C). The boundary between the two phases at ε = 0.25 μm indicates that this length is a character-
istic of local chromatin folding and crowding. Interestingly, following Zeocin treatment, the MFET increases at a 
scale lower than 0.25 μm, compared to the untreated case, probably due to the local chromatin expansion around 
DSBs. Furthermore the increase of the confinement length Lc, when the chromatin is decompacted1 and the 
restriction of the loci dynamics can be due to repair molecules.

To further investigate how DSB affect the separation of two loci, we computed the MFDT for untreated and 
Zeocin treated cells (Fig. 3C) that shows an increase pattern with ε. The MFDT for the untreated case increased 
from 0.2 to 0.9 s, whereas the MFDT for Zeocin treated increased from 0.2 to 0.5 s as ε increased from 0.15 to 
0.5 μm. We conclude that it takes less time for the two loci to dissociate following DSB, probably due to the 
chromatin decompaction, enhanced mobility and the activity of repair proteins. This result suggests that repair 
molecules do not impair the local chromatin motion.

We conclude that uniformly distributed DSBs impair the MFET only at a scale below 0.25 μm, suggesting 
that this scale characterizes the local chromatin organization in which undamaged loci can freely move, but 
become restricted above it. These finding confirms the confinement found in ref. 1 (Supplementary Fig. 5b), 
which reported that a radius of confinement of 0.23 μm for Zeocin 500 μg/ml treatment. However, we show here 
that following DSBs, the local exploration of the chromatin remain characterized by recurrent motion and if 
repair molecules do affect the encounter time at a spatial scale below 0.25 μm, they do not prevent the dissociation 
time of the two loci.

Stochastic simulations of a DSB in randomly cross-linked (RCL) polymer.  To further investigate 
the difference between chromatin reorganization before and after DSBs, reported above for the two loci dynam-
ics, we now use a Randomly Cross-Linked (RCL) polymer, generalizing the Rouse polymer model (Methods), to 
evaluate the changes in the constraints of SPTs statistics following DSBs. The parameters of the RCL model are 
calibrated from experimental data1, in which two tagged monomers are tracked before and after DSB induction 
between the tagged loci. The tagged loci were tracked over 60 s at a time interval of 300 ms. The confinement 
length28 is defined as

Parameter Value Description

N 100 number of monomers

b 200 nm STD of adjacent monomers 
distance

D 8 × 10−3 μm2/s Diffusion coefficient16

ε 0.2 μm Encounter distance

κ 1.75 × 10−2 N/m Spring constant38

γ 3.1 × 10−4 Ns/m friction coefficient38

Table 1.  Values of simulation parameters.
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and we computed it before and after DSB induction, where Rc(t) is the vector position between the two tagged loci 
at time t. As reported in ref. 2, for an unbroken locus Lc = 0.13 μm, and Lc = 0.23 μm after DSB induction.

To identify the possible local chromatin reorganization underlying this difference in Lc, we simulate a RCL 
polymer (Methods) with N = 100 monomers, containing an additional Nc connectors between randomly cho-
sen non-nearest neighboring monomers14, 19, 20 (Fig. 4A). The added connectors reflects the compaction in the 
coarse-grained representation of the chromatin by molecules such as cohesin CTCF and condensin29. Randomly 
positioning connectors reflects the heterogeneity in chromatin architecture in a population of cells.

We first find the minimal number of random added connectors Nc by varying Nc in the range 10–150 for both 
unbroken loci and after DSB induction. We then computed Lc from simulations (1000 realizations for each Nc) 
and adjusted Nc to match the measured one. For each realization, we randomized the choice of monomer pairs to 
connect. We simulated each realization until the relaxation time τR = b2D/(3λ1), where b is the standard-deviation 
of the vector between adjacent monomers, and λ1 is the smallest non-vanishing eigenvalue of the polymer’s con-
nectivity matrix30, which we calculated numerically. We empirically found λ1 to vary between 0.15 when Nc = 10 
to 0.8 for Nc = 150, resulting in τR in the range of 20 minutes to 23 s until polymer relaxation. We then continued 
the simulations for an additional 200 steps at Δt = 300 ms for a total of 60 s, to match the experimental recorded 
time1. For DSB simulations, we induced a DSB between monomer 50 and 51 after the relaxation time τR and we 
then removed the spring connector between them. To account for the local chromatin decompaction, we further 
removed all random connectors to monomers 50 and 51. We discarded polymer configurations where the pol-
ymer chain was divided into two separated chains after the induction of DSB and removal random connector. 
Simulation parameters are summarized in Table 1, where Nc remains a free parameter.

Figure 3.  Two loci dynamics before and after Zeocin treatment. (A) Two tagged loci (a and b, circles) separated 
by a genomic distance Δab = 50 kbp. When the loci are within a distance ε μm (red circle), they are considered 
to encounter for computing the FET, and above ε (lower) for the FDT. We analyzed the untreated and Zeocin 
treated cases, where Zeocin induces DNA damages (red X) at random positions along the DNA. (B) The FET 
(left column) and FDT (right) empirical distributions in the untreated (upper) and Zeocin treated (lower) cases, 
fitted by a exp (−λt) (red curves), where the reciprocal of λ is the MFET and MFDT in their respective cases. 
R2 values from the fit are reported in each box. (C) The MFET (left) is plotted with respect to the encounter 
distance ε for the untreated (blue) and Zeocin treated (orange) cases. For the MFET (left), both curves are at a 
plateau of at 0.5 s (phase 2) above ε > 0.25 μm. The MFDT (right) increase with ε from 0.2 s at ε = 0.15 μm to 
0.5 s at ε = 0.5 μm for the untreated (blue) and Zeocin treated (orange) case.
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We computed the average values of Lc for monomers 50 and 51 over each realization and found a good agree-
ment between simulations and experimental data when Nc = 130 for both the unbroken (Lc = 0.13 μm) and bro-
ken loci (Lc = 0.23 μm). After DSB induction, we recover the value Lc = 0.23 μm for Nc = 125, where 5 connectors, 
on average are removed between monomer 50 and 51. Furthermore, the mean maximal distance between mon-
omers 50 and 51 (Fig. 4B) decayed from 0.4 to 0.3 μm when Nc varied between 10 and 150 for the unbroken loci 
simulation, while it changes from 1.3 μm for Nc = 10 to 0.75 μm for Nc = 150 in the DSB simulations. When 
Nc = 130 the mean maximum monomer distance was 0.33 μm and increased to 0.75 μm after DSB induction.

Using the mean radius of gyration 〈Rg〉 (Fig. 4C) computed for RCL polymer configuration, we show that 
compaction increases with Nc. Thus 〈Rg〉 decreased from 2 μm for Nc = 10 to 0.15 μm at Nc = 130. Note that a 
single DSB does not affect the radius of gyration 〈Rg〉 for all ∈N [10, 150]c  (Fig. 4C). In that figure, we further 
represented three polymer realizations for Nc = 10, 50, 150. For Nc = 130, the value of the gyration radius is 
〈Rg〉 = 150 nm for both the unbroken and DSB (numerical simulations). The average length 〈L〉 of loops of the 
RCL polymer can be computed using Eq. 20, with b = 200 nm, N = 100, and Nc = 130 (Table 1), we found (see 
Methods) that 〈L〉 = 4.8 μm. This length should be compared to the total contour length LRCL of the RCL polymer 
(expression 21), and obtained LRCL = 14 μm. Thus, the average length of loops is roughly a third of the total poly-
mer length. Looping occur in a confined cross-linked micro-environment, where the polymer is compacted in a 
ball of radius Rg = 0.15 μm (Fig. 4C) for Nc = 130. A length of 4.8 μm is converted with a compaction ratio of 
50 bp/nm to 240 kbp, falling in the middle part of the range 2–500 kbp of loops reported between enhancers and 
promoters. It would be interesting to compare this size with the one generated by the interaction of 
enhancer-promoter in high resolution simulations with b < 200 nm.

To further examine the relationship between the chromatin local architecture and transient properties of 
the chromatin, we computed the first passage time (FET) between monomer m50 and m51, before and after DSB 
induction (Fig. 4A). Each simulation realization was terminated when m50 and m51 enter for the first time within 
a distance less than ε, where we recorded the first encounter time τE. Terminating each simulation after the first 
encounter allowed us to randomize the position of connectors for any other simulation and thus better account 
for chromatin structural heterogeneity. The MFET for the unbroken loci simulations decreases from 1.1 s to 1 s 

Figure 4.  Local force destabilization following a double-strand DNA break (DSB). (A) Schematic 
representation of a randomly cross-linked (RCL) polymer, where Nc random connectors (red) are initially 
added to the linear backbone (green) of a Rouse chain. A DSB is induced between monomers m50 and m51, 
modeled by removing the spring connectors between them and all random connectors to these monomers. (B) 
Mean maximal distance 〈Max(d(m50, m51))〉 for both the unbroken loci (blue) and DSB (orange) simulations, 
where the shaded are the STD. The black rectangle indicates the value obtained for Nc = 130 matching Lc (eq. 3) 
measurements reported in ref. 2, where we obtain 0.37 μm for the unbroken and 0.86 μm for DSB simulation. 
(C) The mean radius of gyration (MRG), 〈Rg〉, obtained from simulations of 100 monomer RCL polymer (blue) 
and after DSB between monomers 50 and 51 (orange). Three sample polymer realizations are shown for Nc = 10, 
50, and 150. For Nc = 130 we obtain 〈Rg〉 = 0.15 μm for both cases. (D) The mean first encounter time (MFET) 
〈τE〉 for m50 and m51 plotted with respected to Nc for both the unbroken (blue) and DSB (orange) simulations. 
The MFET is displayed on a semi-log axes, where before DSB we obtained 〈τE〉 = 1 s and 2.8 s following DSB and 
the removal of 5 random connectors on average.
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when Nc increases from 10 to 150, while it decreases from 62 s for Nc = 10 to 2.6 s for Nc = 150 (Fig. 4D) following 
DSB. Interestingly, when Nc = 130, only 5 connectors were removed on average to account for a DSB, but before 
induction 〈τE〉 between m50 and m51 was 1 s and increased to 2.8 s after DSB induction. These time scales are con-
sistent with data used in Figs 1 and 2.

We conclude that the empirical confinement length can be accounted for in RCL polymer using a Nc = 130 
connectors. Following a DSB the average number of removed connectors was 5, which represents 4% of the total 
number of connectors Nc. Interestingly, the mean radius of gyration 〈Rg〉 ≈ 150 nm is mostly unchanged between 
the unbroken and DSB. However, the encounter time τE (Fig. 4D changed from 1 to 2.8 s, showing that removing 
the key connector could affect the local encounter time. The drastic effect of changing the number of connectors 
appears in the mean maximal distance between the two monomers, increasing from 0.33 μm in the unbroken case 
to 0.75 μm after DSB, leading to high increase in the local search time. This search in local restricted environment 
could be at the basis of the Non-Homologous end joining (see Discussion).

Discussion
We introduced here a transient analysis of loci trajectories based on computing the first encounter times between 
two simultaneously tagged chromatin loci to a small distance. Because the positions of the loci fluctuate in time, 
but return recurrently into close proximity, this dynamics generates enough statistical events. We showed here 
(Fig. 2) that this statistics revealed a characteristics length around 250 nm, that constraint the two loci dynam-
ics. This analysis cannot be obtained from the traditional parameters, extracted from SPTs such as the mean 
square displacement (MSD) or the anomalous exponent21, which characterize the dynamics of individual locus 
separately. Such parameters were used in the past to study the deviation from Brownian motion22. Further infor-
mation about chromatin organization is obtained from individual single loci trajectories23, such as the length of 
constraint characterizing confinement or the tethering force to account for the first statistical moment and the 
mean force responsible for confinement1, 2, 5, 8, 9, 31.

The statistics of the FET and FDT account for the correlated properties of two loci, and are directly related to 
the transient properties of the chromatin. The FET reveals that the recurrent visit time between the loci, depend-
ing on the genomic distance (Fig. 1), varies from 1.5 to 2.5 s. These MFETs are extracted from the Poissonian dis-
tributions of Fig. 1C, where we have shown that indeed a single exponential is enough to fit the histograms, except 
possibly for the strain 100.8 kbp, for which we added a second exponential term to better account for the long tails 
above 30 sec. We note that adding a second exponential term to fit the FET empirical distribution is compatible 
with the theory of looping for long polymers32.

We further confirm that altering the chromatin integrity by generating DNA damages using the Zeocin drug1 
affects the MFET at a distance lower than 250 nm (Fig. 2B), showing that this scale is certainly critical in chroma-
tin remodeling1. Above this distance, the MFET is constant, and we interpret this result as a consequence of the 
local crowding effect. These results further show that the recurrent visits between two loci can be modulated by 
chromatin remodeling. The confinement length of few hundreds of nanometers estimated here is compatible with 
the one extracted from 4C data of the order of 220 nm, using polymer looping in confined microdomains16. We 
have used here the relation (formula 6) between the mean first encounter times and the encounter probabilities, 
extracted from Hi-C data25 to recover an effective radius of confinement that represents the extension of a loop 
inside the chromosomal territory. Using formula Eq. 6, we have confirmed here the previous predictions men-
tioned in ref. 32 that the encounter distance ε should be of the order of 250 nm.

To further explore how chromatin re-organization affects recurrent loci encounters, we use the RCL polymer 
model20, which is a Rouse polymer with added random connectors. This approach consists in adding random 
connectors is more accurate in representing tethering force than the average computation that we introduced in 
ref. 9. Random cross-linking in the RCL model serves to simulate the confined environment33 and the heteroge-
neity in chromatin architecture in cell population. We used the changes in the length of constraint reported in ref. 
1 to calibrate the number of added random connectors and simulated trajectories of the RCL before and after the 
induction of DSB. Interestingly, the consequence of DSB damages on chromatin reorganization is equivalent of 
removing 4% of the connectors in the vicinity of the DSB, leading to an increase of distance between the two bro-
ken part from 0.4 to 0.9 μm, while the mean radius of gyration 〈Rg〉 was almost unchanged at 0.15 μm. However, 
the MFET increased from 1 to 2.8 s. The random cross-links in the RCL model thus play the role of the confining 
environment, which prevents the two ends from drifting apart (Fig. 4B,C), similarly to the crowding effect seen 
in ref. 33 for self-avoiding polymers. Bending elasticity and self-avoidance could not be simply accounted for by 
altering the number but would require additional terms in the Hamiltonian energy Φ.

The present model reveals that the local confined decompaction following DSB prevents the two ends 
to drift apart, which could have drastic consequences in dsDNA break repair processes, such as during 
non-homologous-end-joining (NHEJ), where the two ends should be re-ligated together. The possible role of 
stabilizing the broken ends by maintaining a large number of connectors is probably to avoid inappropriate 
NHEJ religations that can lead to translocations or telomere fusion. We remark that the MFET that we computed 
here cannot be used to study the other repair process called homologous recombination, which is based on a 
long-range spatio-temporal search for a homologous template5, 34. We conclude that the present first passage time 
statistics derived from polymer simulations can be used to analyze any temporal correlation between loci pairs. It 
would certainly be interesting to record three loci simultaneously at different distances and apply our method to 
it to obtain refine properties of chromatin reorganization.

Methods
Looping times in chromatin polymer models.  To analyze the statistics of two loci located on the same 
chromatin arm, we use the classical Rouse polymer model that describes a collection of beads Rn(n = 1 … N) 
connected by harmonic springs and driven by Brownian motion14. The energy of the polymer is given by
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∑φ κ… = −
=

−

+R R R R( , , ) 1
2

( ) ,
(4)
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j j1
1

1

1
2

where κ =
γ

k T

b

3 B
2  is the spring constant, b is the standard deviation of the connector between adjacent monomers, 

γ is the friction coefficient, kB the Boltzmann coefficient, and T the temperature.
The first encounter time (FET) between two loci is defined as the first time the two loci are positioned within 

a ball of radius ε. The distribution of FET between the two ends of a polymer chain, such as the Rouse, beta poly-
mer32 or the randomly cross-linked20, is well approximated by a Poissonnian process in free25 and confined 
domains16. In both cases, the distribution of the decay rate constant λE is the reciprocal of the mean first encoun-
ter time (MFET) τ =

λE
1

E
, and the probability density function is

≈ λ−p t e( ) , (5)tE

In a confined domain, the expression for the MFET is
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π
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4

2
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where

β =
+A b A

12
/ 2

,
(7)4 2 2

and A is the radius of a sphere confining the polymer16.

Dissociation times in a parabolic potential.  To characterize the dissociation time of two loci, we adopt 
the Kramer’s escape over a potential barrier26. The potential can be due to the average forces between local mon-
omers. We model it as an effective parabolic well truncated at a hight H. In the deep circular well approximation 
of size a0

26, the escape time for a process = −∇ +

X U D w2  is (in two dimensions)

τ
α

=
αDa e

4
, (8)D D

2

where α=U r( ) r
a

2

0
2
 and the energy is E = U(a) = α and U(0) = 0. The distribution of escape time is Poissonian with 

rate 
τ
1

D
.

For the effective problem of unlooping to a certain distance, we consider that this problem is equivalent to the 
escape of a particle from a well with diffusion coefficient ND, where N is the number of monomers. In the present 
case, N is proportional to Δ and we have used the empirical formula:

τ = a Te , (9)D

b
T2

2

where a2 and b2 are two constants.

Construction of the randomly cross-linked (RCL) polymer model.  The Rouse polymer14 describes 
chromatin below a scale of few mbp17, 35. Starting from a Rouse model14, the RCL is constructed by adding Nc 
spring connectors between non-adjacent monomer pairs (Fig. 4A red) chosen at random. The potential, φRand, of 
random connectors is

∑φ κ… = −
∈

R R R R( , , ) 1
2

( ) ,
(10)

Rand N
j k

j k1
,

2

N

where CN is an ensemble of indices from 1 to N. The chromatin is modeled as a polymer chain with a uniform 
variance b2 between adjacent monomers. The total energy of a polymer containing random connectors is the sum 
of two energies 4 and 10

φ φΦ … = … + …R R R R R R( , , ) ( , , ) ( , , ), (11)N Rand N Rouse N1 1 1

and the stochastic equation of motion for n = 1, …, N is

ω
= −∇ Φ … +

dR
dt

R R D d
dt

( , , ) 2 , (12)
n

R N
n

1n

where =
γ

D k TB  is the diffusion constant, γ is the friction coefficient, and ωn are independent 3-dimensional 
Gaussian noise with mean 0 and standard deviation 1. We use this construction to estimate the minimal number 
of connectors before and after a dsDNA-breaks.

Computing the average loop size from the randomly cross-linked (RCL) polymer model.  We 
summarize here our computations for the average length of loops in the RCL polymer. We define the length of the 
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loop between any two connected monomers, m and n, as their linear distance |m − n| along the backbone of the 
polymer. We do not compute here the average shortest possible loop length between monomer m and n, which 
might result from configurations of other connected monomers of the polymer.

Each realization of the RCL polymer is a (uniformly random) choice of Nc non-neighboring monomer pairs 
to connect from the ensemble of possible NL pairs, given by

=
− −N N N( 1) ( 2)

2
, (13)L

The ensemble of NL possible choices of monomer pairs contains the disjoint subsets {Lk} = {(m, n); |m − n| = k} of 
loops with length 2 ≤ k ≤ N − 2, where the size of each subset {Lk} is

= − .L N k (14)k

The fraction pk of each subset {Lk} out of the total NL possibilities is

= .p
L
N (15)k

k

L

Thus, the number of loops of length k monomers is

= = .E k N p N
L
N

( )
(16)c k c

k

L

The expected length (in non physical units) of a loop is obtained by averaging over all loops of size k of the RCL 
polymer,
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To obtain the physical length of the average loop size in μm units, we multiply the mean length (non-dimensional 
units, equation 17) by standard-deviation (STD) of the distance between adjacent monomers for the RCL poly-
mer. An analytical expression is available (Eq. 3036), and can be approximated by

σ ξ
ξ

ξ
=


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

− − 


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N b
b N

N
( , , )

(1 exp( ))
,

(18)

2
1
2

where

ξ =
N
N (19)

c

L

is the connectivity fraction and b has units of μm. By multiplying Eq. 17 by 18, we obtain an approximation for 
the average loop length
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We note that the total contour length LRCL of the RCL polymer is computed by multiplying the number of 
monomers, N, by expression 18

ξ
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Simulations of the RCL polymer.  Simulations of the RCL polymer were performed using codes written 
in Julia v0.5.137. Codes are available on the Bionewmetric website http://bionewmetrics.org/. We summarize in 
Table 1 the values of parameters used in simulations.
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