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Abstract

We develop a new stochastic programming methodology for determining optimal vaccina-

tion policies for a multi-community heterogeneous population. An optimal policy provides

the minimum number of vaccinations required to drive post-vaccination reproduction num-

ber to below one at a desired reliability level. To generate a vaccination policy, the new

method considers the uncertainty in COVID-19 related parameters such as efficacy of vac-

cines, age-related variation in susceptibility and infectivity to SARS-CoV-2, distribution of

household composition in a community, and variation in human interactions. We report on a

computational study of the new methodology on a set of neighboring U.S. counties to gener-

ate vaccination policies based on vaccine availability. The results show that to control out-

breaks at least a certain percentage of the population should be vaccinated in each

community based on pre-determined reliability levels. The study also reveals the vaccine

sharing capability of the proposed approach among counties under limited vaccine availabil-

ity. This work contributes a decision-making tool to aid public health agencies worldwide in

the allocation of limited vaccines under uncertainty towards controlling epidemics through

vaccinations.

Introduction

COVID-19 caused by the Severe Acute Respiratory Syndrome CoronaVirus (SARS-CoV-2)

was declared a global pandemic by the World Health Organization in early 2020. The first

reported outbreak occurred in Wuhan, China in December, 2019 and has spread to every

region of the world [1]. To control the spread of COVID-19, governments have introduced

vaccines and implemented a variety of non-pharmaceutical interventions such as social dis-

tancing, restrictions on gatherings, mask mandates, closures of businesses, religious institu-

tions, and schools, travel restrictions and border closures, quarantining, and contact tracing

[2–4]. In this paper, we consider a stochastic optimization methodology to determine optimal

vaccination policies for a multi-community heterogeneous population to control the spread of

the disease. The basic reproduction number, R0, is used to measure infectious disease
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community transmission and is defined as the average number of secondary infections caused

by a primary case within a completely susceptible population [5, 6]. Under the impact of miti-

gation measures, the change in transmissibility of the disease over time is evaluated using the

effective reproduction number Rt. It is the average number of secondary infections caused by a

primary case at a given time t [7, 8]. Rt suggests that an outbreak will continue if it is greater

than one and end if it has a value less than one.

In addition to the use of non-pharmaceutical mitigation measures, an effective vaccine can

slow down the spread of the disease [9]. Mass vaccination campaigns reduce the susceptible

population in a community and can be used to end an outbreak and mitigate any future out-

breaks [10]. The reduction in a community’s susceptible population decreases the number of

interactions between infectious and susceptible persons, which in turn reduces Rt and will

eventually drive Rt to be less than one [10]. Due to the limited availability of vaccines in certain

parts of the world, developing an optimized vaccine allocation plan is critical. An optimal allo-

cation would minimize the number of vaccinations required to ensure that Rt� 1. We believe

this to be imperative under the following situations: 1) when vaccines are not widely available

during the initial stages of distribution [11, 12]; 2) when governments want to reduce the

implementation of non-vaccination type mitigation strategies which have a negative impact

on socioeconomic activities [13, 14]; 3) when health authorities want to quickly reduce the

mortality and morbidity due to COVID-19 in relatively susceptible age groups; 4) when there

is vaccine hesitancy, i.e., when a portion of the population is reluctant to receive vaccines [15–

17]; and 5) when the emergence of SARS-CoV-2 variants may reduce the efficacy of currently

available vaccines.

Mathematical models have been developed to attempt to define an optimal vaccine alloca-

tion strategy and these can broadly be categorized as deterministic or stochastic. Deterministic

models [18–21, e.g.] include dynamic and optimal control models and do not consider param-

eter uncertainty. These model are generally sensitive to the vaccine and epidemiological char-

acteristics of the virus. COVID-19 disease characteristics are uncertain at best and studies

report values that vary significantly [22, 23]. Thus, it is advantageous to use stochastic model-

ing approach [24] that account for the uncertainty. Estimating these parameter values, how-

ever, is challenging due to the complex nature of human interactions, emerging variants of the

virus, as well as the cultural and demographic variability among different communities.

In this work, we build on the stochastic programming (SP) [25, 26] optimal vaccine alloca-

tion methodology proposed by [24], which extends the deterministic epidemiology model by

[27]. That model was developed to find optimal vaccination policies for a community of

households and we extend it to a multi-community framework that considers uncertainties in

parameters related to the COVID-19 virus and its vaccines. The SP framework we take

accounts for the uncertainty in the model parameters and provides solutions that hedge

against unforeseen future scenarios. Unlike solutions obtained from deterministic models

using point estimates for the parameters, SP solutions are in fact policies, i.e., decisions pre-

scribed for a given state and/or level of reliability. We implement this multi-community model

on a set of neighboring counties, i.e., a population center and its surrounding communities

with a sparse population. Generally, the epidemic has a higher likelihood of occurring in a

densely populated area due to the average person’s higher number of social contacts [28].

Then the epidemic will eventually propagate to the surrounding communities as a result of

inter-community social contacts [29]. The multi-community stochastic model informs a vac-

cine allocation policy that considers a set of communities together rather than as isolated

entities.

The main contribution of this work is an SP based methodology for determining the mini-

mum number of vaccines required to control COVID-19 outbreaks (Rt� 1) through a
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vaccination campaign in a multi-community setting. At the core of this new methodology is a

stochastic disease spread model for an age-based heterogeneous population that considers

uncertainty in parameters related to vaccine efficacy, disease transmission characteristics, and

human interactions. The model also takes into account demographic variations such as house-

hold types and age distribution of the communities to decide optimal allocation of vaccines. In

addition to determining optimal vaccine policies, the new methodology addresses potential

vaccine shortages and the benefits of vaccine resource sharing among neighboring communi-

ties. Another contribution of this work is a computational study based on a real setting that

illustrates how the results of this can be used to guide health officials in mitigating epidemics.

The rest of this paper is organized as follows: We derive SP models for vaccine allocation

for multiple communities in the next section. We then present population datasets and the

uncertain parameters used in the model. Next, we report and discuss the results for two cases:

unlimited and limited vaccine availability. We end the paper with concluding remarks and

directions for future work.

Materials and methods

We consider a model of disease transmission in a community based on the work of Becker and

Starczak [27] and Tanner et al. [24]. The former work derive a deterministic model of disease

transmission which the latter extends to the stochastic setting, where disease transmission

parameters are uncertain. Both models consider a single community of households. However,

this work extends this approach to multiple communities in a stochastic setting with age-based

heterogeneous populations. The aim of a vaccination strategy is to prevent epidemics by

immunizing a sufficiently large number of members of a community to force Rt to be less than

one. The proportion of individuals in each household that must be vaccinated to prevent an

epidemic depends on, among other things, the distribution of household sizes and how the

vaccines are allocated to households. In this work, we are interested in determining an optimal

strategy for vaccinating members of the community based on household size, given a finite

amount of vaccine doses. A vaccination policy or strategy provides critical vaccination coverage
that reduces Rt to one or less. The term “vaccination coverage” refers to the proportion of indi-

viduals who are vaccinated. Our objective is to identify the minimal vaccination coverage.

The critical vaccination coverage for a given vaccination strategy is typically based on the

effective reproduction number for infected individuals, which is the average number of second-

ary cases generated by an infected person. We consider the effective reproduction number for

infected households in a community under vaccination, which is denoted RHVc and called the

post-vaccination reproduction number, as defined by [27]. The aim of a vaccination strategy is

to keep RHVc� 1 to ensure that introductions of the disease do not lead to an epidemic. There-

fore, we want to compute the vaccine coverage required so that the vaccine induced herd

immunity is at a sufficiently high level to prevent epidemics. We define the nomenclature we

use in our mathematical model in Table 1.

Assuming a homogeneous population model in which we assume there are no significant

age-related differences in susceptibility and infectivity of individuals within the communities,

Becker and Starczak’s [27] define the expression for RHVc for a deterministic model of disease

spread as follows: Given xnvc and the proportion of n-sized households in which vaccination

policy v has been implemented, RHVc for a community c is expressed as

RHVc ¼
X

n2N

X

v2V

anvcxnvc: ð1Þ
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The parameter anvc for a homogeneous population of communities is defined as given by

anvc ¼
mchnc
mc
½ð1 � bÞðpðnÞ � f ðvÞ�Þ þ bðpðnÞ � f ðvÞ�Þ2 þ bf ðvÞ�ð1 � �Þ�; ð2Þ

where b is the transmission proportion within a household. When b = 0 it means that there is

no transmission within a household, whereas when b = 1 it means that there is complete trans-

mission in an infected household. Defining b in this manner allows us to capture the contin-

uum of transmission rates within households. Next, we give a derivation of the model and

provide an extension to the stochastic setting.

The reproduction number for infected households, RH, is given by

RH ¼ mcvc; ð3Þ

Table 1. Notation used in defining the models.

Sets and Indices

C Set of communities, element c 2 C.

N Set of household types, element n 2 N.

K Set of person groups, element k 2 K.

V Set of vaccination policies, element v 2 V.

Oc Set of outcomes (scenarios) for community c 2 C, element ωc 2 Oc.
Parameters

RHVcð~ocÞ Uncertainty post-vaccination reproduction number for community c 2 C.

~oc Multivariate random variable whose outcome is ωc 2 Oc with probability of occurrence poc ; describes the

uncertain parameters for RHVc.
anvcð~ocÞ Uncertain RHVc parameter that captures the impact of vaccination policy v 2 V in a type n household in

community c 2 C.

mcð~ocÞ Uncertain number of close contacts that an infective makes on average with persons from other

household in the course of his/her infectious period in a community c 2 C.

Hc Number of households in community c 2 C.

p(n) Number of persons in a household of type n.

f(v) Number of persons vaccinated in a household when vaccination policy v 2 V is implemented.

hnc Proportion of type n households in community c 2 C.

μc Average household size in a community, mc ¼
P

n2NpðnÞhnc.

πkc Proportion of group k 2 K persons in community c 2 C.

bð~ocÞ Uncertain transmission rate within a household.

bkcð~ocÞ Uncertain susceptibility for type k 2 K person in community c 2 C.

lkcð~ocÞ Uncertain infectivity for type k 2 K person in community c 2 C.

�ð~ocÞ Uncertain vaccine efficacy.

V Total number of available vaccines.

αc User-set model reliability level for community c 2 C.

�aec Excess allowed on model reliability level for community c 2 C.

�asc Deficit allowed on model reliability level for community c 2 C.

Me, Ms Sufficiently large numbers.

Decision Variables

xnvc Proportion of n sized households with vaccination policy v 2 V implemented in community c 2 C.

aec Excess amount above reliability level αc level for community c 2 C.

asc Deficit amount below reliability level αc level for community c 2 C.

https://doi.org/10.1371/journal.pone.0270524.t001
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where vc is the mean size of the household outbreak in community c when a randomly selected

previously uninfected individual has a close contact with an infective. This model can be traced

back to Bartoszyński [6]. Let �hnsc denote the mean size of an outbreak in household of size n
with s susceptible members when the disease is introduced by one of the susceptible being

infected from outside the household. Then the probability that the individual contacted is one

the susceptibles of the households is s/n.

Now let πnc denote the proportion of individuals who belong to a house of size n. Also, let

ηnsc be the proportion of households of size n of whom exactly s are initially susceptible. Then

we have that

vc ¼
X

n

pnc

Xn

s¼1

s
n
Znsc

�hnsc: ð4Þ

Furthermore, πnc = nhnc/μNc, where μNc is the mean household size. The reproduction number

for infected households is

RH ¼
mc

mNc

X

n

hnc
Xn

s¼1

sZnsc�hnsc: ð5Þ

When there is no immunity s = n and the basic reproduction number, RHO, is given as

RHO ¼
mc

mNc

X

n

nhncvnnc:

To prevent epidemics without vaccinations RHO� 1. In this study, we assume that RHO> 1

and we want to use vaccinations to bring RHO below one. Each vaccination, however, provides

immunity with probability �, which is the vaccine efficacy. Letting xnvc be the proportion of n
sized households with vaccination policy v (vmembers vaccinated) implemented in commu-

nity c, then we have that

Znsc ¼
Xn

v¼n� s

v
n � s

� �
�n� sð1 � �Þ

v� ðn� sÞxnvc: ð6Þ

Now consider Eqs 5 and 6, and define

anvc ¼
mchnc
mNc

Xn

s¼n� v

s
v

n � s

� �
�n� sð1 � �Þ

v� ðn� sÞ�hnsc: ð7Þ

Then

RH ¼
X

n

Xn

v¼0

anvcxnvc: ð8Þ

Assuming that �hnsc ¼ 1 � bþ bs; b 2 ½0; 1�, where b = 0 corresponds to no disease transmis-

sion within households and b = 1 corresponds to total infection, the expression for anvc can be

PLOS ONE COVID-19 vaccination policies under uncertain transmission characteristics using stochastic programming

PLOS ONE | https://doi.org/10.1371/journal.pone.0270524 July 22, 2022 5 / 21

https://doi.org/10.1371/journal.pone.0270524


written as follows:

anvc ¼
mchnc
mNc

Xn

s¼n� v

s
v

n � s

� �
�n� sð1 � �Þ

v� ðn� sÞ
ð1 � bþ bsÞ

¼
mchnc
mNc
½ð1 � bÞ

Xn

s¼n� v

s
v

n � s

� �
�n� sð1 � �Þ

v� ðn� sÞ
þ

b
Xn

s¼n� v

s2
v

n � s

� �
�n� sð1 � �Þ

v� ðn� sÞ
�

¼
mchnc
mNc

ð1 � bÞðn � v�Þ þ bðn � v�Þ2 þ bv�ð1 � �Þ
� �

;

ð9Þ

where the last expression comes from applying the binomial theorem.

In this study, we extend the expression for anvc in Becker and Starczak’s model [27] to the

heterogeneous and stochastic setting, i.e., where disease spread affects specific age groups differ-

ently and the disease spread and vaccine parameters are assumed to be unknown. Therefore,

we model anvc as a random variable, anvcð~ocÞ, in which an outcome (scenario) ωc of ~oc is given

by the triple, ωc≔ {mc(ωc), b(ωc), �(ωc)}, with probability of occurrence poc . Consequently, we

have that

anvcð~ocÞ ¼
mcð~ocÞhnc

mc
½ð1 � bð~ocÞÞðpðnÞ � f ðvÞ�ð~ocÞÞ þ bð~ocÞðpðnÞ � f ðvÞ�ð~ocÞÞ

2

þbð~ocÞf ðvÞ�ð~ocÞð1 � �ð~ocÞÞ�:

ð10Þ

Therefore, RHVc is also a random variable and is denoted RHVcð~ocÞ and is expressed as

RHVcð~ocÞ ¼
X

n2N

X

v2V

anvcð~ocÞxnvc: ð11Þ

Heterogeneous population model

In the heterogeneous populationmodel, we assume that there are significant age-related differ-

ences in the susceptibility and infectivity of individuals in all the communities involved. To

capture these differences, we define a set of groups of peopleK in which susceptibility and

infectivity are differentiated by age. We denote the susceptibility and infectivity of group k in

community c, respectively, by bkcð~ocÞ and lkcð~ocÞ. We define three age groups, A, B, and C, as

follows: A = (age� 19), B = (20� age� 64), and C = (age� 65). The number of age groups

can be increased based on the real setting. For each household of type n with p(n) members,

we must specify the number of persons, pk(n) belonging to each of the three age groups A, B
and C. The possible vaccination policies for a type n household are represented by (fA(v), fB(v),
fC(v)), the number of household members vaccinated in group A, B, and C, respectively. An

example illustration of p(n) values of 1 and 2 is shown in Table 2.

The heterogeneous model requires know the number of members in a household and to

what age group each one belongs. The second column p(n) in Table 2 gives the household size.

For example, for p(n) = 2 household type n = 4, 5, 6, 7, 8, 9. Notice that each household type

has different age compositions. For instance, for household type n = 4 household composition

is (2, 0, 0). This means that there are two individuals in age group A and zero individuals in

age groups B and C. For a household type n = 3, the household composition is (0, 2, 0), i.e.,

there are no individuals in age group A, two in age group B, and none in age group C.
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Given the proportion of type n household with v vaccinated members, xnvc, the post-vacci-

nation reproduction number RHVcð~ocÞ for some community c is given by Eq (11). Under the

assumption of heterogeneity, the explicit expression for RHVcð~ocÞ considers the age-stratified

groups. Consequently, the uncertain parameter anvcð~ocÞ for a heterogeneous population of

communities can be defined as follows:

anvcð~ocÞ ¼

mcð~ocÞhnc
mc

�
X

k2K

bkcð~ocÞlkð~ocÞ½ð1 � bð~ocÞÞðpkðnÞ � fkðvÞ�ð~ocÞÞ þ

bð~ocÞfkðvÞ�ð~ocÞð1 � �ð~ocÞÞ þ

bð~ocÞ
X

k2K

X

r2K

bkcð~ocÞlrcð~ocÞðpkðnÞ � fkðvÞ�ð~ocÞÞðprðnÞ � frðvÞ�ð~ocÞÞ

�

;

ð12Þ

where
P

k2Kbkcð~ocÞpkc ¼ 1 and
P

k2Klkcð~ocÞpkc ¼ 1 for each community c, which restricts the

scale of susceptibility and infectivity.

The impact on vaccine policies caused by different age compositions is captured in Eq 12.

The interaction among members of the same age group is calculated using

X

k2K

bkcð~ocÞlkð~ocÞ½ð1 � bð~ocÞÞðpkðnÞ � fkðvÞ�ð~ocÞÞbð~ocÞfkðvÞ�ð~ocÞð1 � �ð~ocÞÞ�;

whereas the interactions of different age groups is captured calculated using

X

k2K

X

r2K

bkcð~ocÞlrcð~ocÞðpkðnÞ � fkðvÞ�ð~ocÞÞðprðnÞ � frðvÞ�ð~ocÞÞ:

We should point out that under the homogeneity assumption in population, i.e, bkcð~ocÞ ¼ 1

and lkcð~ocÞ ¼ 1 for all k, the parameter anvcð~ocÞ reduces to:

anvcð~ocÞ ¼
mcð~ocÞhnc

mc
½ð1 � bð~ocÞÞðpðnÞ � f ðvÞ�ð~ocÞÞ þ bð~ocÞðpðnÞ � f ðvÞ�ð~ocÞÞ

2

þbð~ocÞf ðvÞ�ð~ocÞð1 � �ð~ocÞÞ�;

ð13Þ

which was derived earlier in Eq (2). The scenario ωc 2 Oc of ~oc specifies the quintuple, ωc≔
{mc(ωc), b(ωc), �(ωc), βkc(ωc), λkc(ωc)}, with probability poc .

Table 2. Example household types and vaccination policies under heterogeneous population for p(n) = 1 and p(n) = 2.

Household Type Household Size Household Composition Total vaccination policies Possible vaccination policies for a type n Household

n p(n) (pA(n), pB(n), pC(n)) (pA(n) + 1)� (pB(n) + 1)� (pC(n) + 1) (n, fA(v), fB(v), fC(v))
1 1 (1, 0, 0) 2 (1, 0, 0, 0), (1, 1, 0, 0)

2 1 (0, 1, 0) 2 (2, 0, 0, 0), (2, 0, 1, 0)

3 1 (0, 0, 1) 2 (3, 0, 0, 0), (3, 0, 0, 1)

4 2 (2, 0, 0) 3 (4, 0, 0, 0), (4, 1, 0, 0), (4, 2, 0, 0)

5 2 (0, 2, 0) 3 (5, 0, 0, 0), (5, 0, 1, 0), (5, 0, 2, 0)

6 2 (0, 0, 2) 3 (6, 0, 0, 0), (6, 0, 0, 1), (6, 0, 0, 2)

7 2 (1, 1, 0) 4 (7, 0, 0, 0), (7, 0, 1, 0), (7, 1, 0, 0), (7, 1, 1, 0)

8 2 (0, 1, 1) 4 (8, 0, 0, 0), (8, 0, 0, 1), (8, 0, 1, 0), (8, 0, 1, 1)

9 2 (1, 0, 1) 4 (9, 0, 0, 0), (9, 0, 0, 1), (9, 1, 0, 0), (9, 1, 0, 1)

https://doi.org/10.1371/journal.pone.0270524.t002
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Computing the post-vaccination reproduction number RHVcð~ocÞ requires several parame-

ters. Due to the uncertainty in the parameters, not all vaccination coverage choices will neces-

sarily bring RHVc below one. To accommodate the fact that in reality RHVc will often exceed

one under certain scenarios, we use the chance (probabilistic) constraints SP [30, 31] approach

to impose a chance constraint on RHVc� 1 for each community. A chance constraint requires

specifying a reliability level α 2 (0.5, 1), which sets the minimum total probability of scenarios

that must be satisfied to achieve RHVc� 1. Mathematically, this is expressed as

PfRHVc � 1g � a;

meaning that RHVc� 1 holds at least α × 100% amount of the time, but not necessarily for

every scenario. In other words, the constraint can be violated at most (1 − α) × 100% of the

time, such as when a certain vaccination policy is ineffective and results in an epidemic.

We are now ready to define the minimum coverage problem using chance constraints SP.

We start with a basic formulation in which we assume there is an unlimited number of vac-

cines available. For some specified reliability level αc 2 (0.5, 1), the basic optimal vaccine allo-

cation problem for a heterogeneous population can be formally stated as follows:

Min
X

c2C

X

n2N

X

v2V

f ðvÞhncxnvc ð14aÞ

P
�
X

n2N

X

v2V

anvcð~ocÞxnvc � 1

�

� ac; 8c 2 C ð14bÞ

X

v2V

xnvc ¼ 1; 8n 2 N; 8c 2 C ð14cÞ

xnvc � 0; 8n 2 N; 8v 2 V; 8c 2 C: ð14dÞ

The objective function (14a) determines the minimum vaccination coverage across communi-

ties. Constraints (14b) are comprised of the chance constraints requiring that RHVcð~ocÞ � 1 to

prevent an epidemic for each community at least αc amount of the time. This reliability level

corresponds to the decision-maker’s risk in the sense that this constraint cannot be violated

more than 1 − αc of the time; for αc proportion of scenarios, epidemics will be prevented. This

violation is inevitable if, for example, the vaccine efficacy is not sufficiently large. The outcome

(scenario) ωc that determines the value anvc(ωc) of the random parameter anvcð~ocÞ will depend

on the distribution of ~oc. This problem, then, is generally a nonconvex problem and difficult

to solve. However, if ~oc is discretely distributed with a finite number of outcomes, the problem

can be reformulated as a deterministic equivalent problem using mixed-integer programming

(MIP) and then solved using MIP techniques. Furthermore, this basic model is separable,

which allows each problem to be solved for each community separately. Constraints (14c)

determine the proportion of persons to vaccinate for each household size in each community.

Finally, constraints (14d) are non-negativity restrictions.
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We extend heterogeneous model (14) to the case with limited vaccine availability V and

allowing for deviations from the specified αc level for each community as follows:

Min
X

c2C

X

n2N

X

v2V

f ðvÞhncxnvc �
X

c2C

Mea
e
c þ
X

c2C

Msa
s
c ð15aÞ

P
�
X

n2N

X

v2V

anvcð~ocÞxnvc � 1

�

� aec þ a
s
c � ac; 8c 2 C ð15bÞ

X

v2V

xnvc ¼ 1; 8n 2 N; 8c 2 C ð15cÞ

X

c2C

X

n2N

X

v2V

Hcf ðvÞhncxnvc � V ð15dÞ

aec � 1 � ac; 8c 2 C ð15eÞ

aec � �aec; 8c 2 C ð15fÞ

asc � �asc; 8c 2 C ð15gÞ

xnvc; a
e
c; a

s
c � 0; 8n 2 N; 8v 2 V; 8c 2 C: ð15hÞ

The objective function (15a) determines the minimum vaccination coverage while adjust-

ing for the deviation above and below the specified reliability levels for each community.

The chance constraints (15b) now include deviation variables aec and asc to adjust the

reliability level for each community. The decision-maker’s risk is such that the constraint

RHVc ¼
PN

n¼1

P
v2Vanvcð~ocÞxnvc � 1 can be violated in no more than 1 � ðac þ a

e
c � a

s
cÞ propor-

tion of scenarios. Constraints (15c) remain as defined before, while constraint (15d) is added

to ensure that the total number of vaccines allocated does not exceed the total number of vac-

cines available for all communities. This constraint links all the communities and is therefore a

complicating constraint, which means that the problem is no longer separable. Constraints

(15e) ensure that the deviation above αc does not exceed the allowable amount 1 − αc for each

community. Constraints (15g) and (15f) limit the deviations based on the user-specified

bounds aec and asc, respectively. Finally, constraints (15h) are non-negativity restrictions on all

the decision variables.

Model parameters

We are now ready to describe the parameters used in the two models. The communities are

characterized by the distribution of household types within the community, while the stochas-

tic parameters are represented by discrete probability distributions. For the rest of the model

parameters, we created discrete distributions based on the information available for COVID-

19 transmission characteristics, historical values for the effective reproduction number, and

the advertised efficacy of approved vaccines.

Demographic data. We implemented the SP models using data for a multi-community

setting comprising seven neighboring counties in the state of Texas, namely; Travis, William-

son, Bastrop, Caldwell, Hays, Burnet, and Blanco. In the model, communities are defined by a

multivariate discrete distribution of different household types, which is defined by the size of
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the household and the number of household members in each age group A, B, and C. We con-

sider household sizes of one to seven and three age groups: A: age� 19yrs., B: 20�

age� 64yrs., and C: age� 65yrs. These age groups are defined on the basis of variation in the

effect of COVID-19 on different age groups and can be expanded to include more refined age

groups as more information on susceptibility and infectivity for different age groups becomes

available. The household size distribution for each of the seven counties was downloaded from

5-year American Survey data (ACS) from (https://data.census.gov/cedsci/) for years 2014–

2018 [32]. The household type distribution data was downloaded from https://usa.ipums.org/

usa/ [33]. For each county, IPUMS provides a down sampled data along with the weights for

each data points. Using the weights, the household type data is scaled up to represent the com-

plete household type distribution for each county. The IPUMS database contains the house-

hold data for Travis, Williamson, and Hays counties; for the remaining counties, we assume

that the household distribution is similar to that of Hays County. The demographic distribu-

tion data utilized in the model is available in S1 File. Fig 1 shows the heat map of the U.S. cen-

sus demographics data for the different household sizes and age groups.

Household transmission rate bð~ocÞ. This parameter captures the transmissibility of a

contagion within a household in a communuty c, where 0 � bð~ocÞ � 1. The extreme value

bð~ocÞ ¼ 0 is equivalent to no disease transmission within a household, and bð~ocÞ ¼ 1 would

Fig 1. This figure shows the demographic distribution for each county. Fig a) shows the heatmap of household sizes in which a particular age group

resides. We observe that the majority of the younger population, Group A, tends to belong to larger households along with members of Groups B and

C, whereas higher proportion of Group B and C population occupy smaller household of size of one and two. Fig b) shows the heatmap of age groups

residing in each household size. We observe that smaller households are comprised predominantly of members of Group B population followed by

Group C population, and larger households tend to include members of Groups A and B.

https://doi.org/10.1371/journal.pone.0270524.g001
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mean that all members of the household become infected [27]. This parameter is analogous to

household Secondary Attack Rate (SAR), which is defined as the probability that an infected

individual will transmit the disease to a susceptible individual [34]. According to various stud-

ies, the estimated household SAR varies from 3.9% to 36.4%; when pooled the estimate is

17.1% with a confidence interval (CI) of [13.7%, 21.2%] [35]. Another review estimates that

the household SAR value ranges from 4.6% to 49.56% [36]. Based on these values, we gener-

ated a discrete distribution (see Table 3) for the within-household transmission rate, bð~ocÞ.

Vaccine efficacy �ð~ocÞ. Beginning in December 2020, multiple vaccines were approved

for emergency use, and additional vaccines are undergoing vaccine trials and approval. Two of

the vaccines approved by the FDA were Pfizer-BioNTech and Moderna, with efficacies of

around 95% in clinical trials, and the others vaccines were AstraZeneca-University of Oxford,

Johnson & Johnson, and Novavax, which have reported efficacies that range from 60% to 85%

[37]. The vaccine efficacy also varies as a result of variability in real-world conditions, such as

how the vaccine is transported, how the vaccine is administered, and the medical condition of

vaccinated person. Other important factors that may affect the effectiveness of these vaccines

include the emergence of new and evasive variants of SARS-CoV-2 and age of the person

receiving the vaccine. To complete mass vaccination campaigns, we will need to use multiple

vaccine candidates which have different reported and actual efficacies. Under such consider-

ation, a discrete distribution representing vaccine efficacy (see Table 4) is used in the model.

Relative susceptibility bð~ocÞ. The heterogeneous model assumes age-related differences

in susceptibility to COVID-19. Relative susceptibility quantifies the variation in susceptibility

due to biological susceptibility and social mixing between individuals in different age groups.

There is age-dependent variation in susceptibility to COVID-19; studies showed elevated sus-

ceptibility in adults over 65 years old and generally lower in the younger population [38, 39].

For each county, we generated three levels of relative susceptibility with associated probabili-

ties (see S1 File). The data for Travis county is shown in Table 5.

Relative infectivity lð~ocÞ. Variation in infectiousness between infected individuals due

to differences is biological infectivity and in social mixing between individuals in different age

Table 3. The discrete probability distribution represents the within-household transmission rate (b) used in this

study.

Within-household transmission rate bð~ocÞ 0.40 0.30 0.20 0.10

Probability 0.10 0.40 0.40 0.10

https://doi.org/10.1371/journal.pone.0270524.t003

Table 4. The discrete probability distribution represents vaccine efficacy (bð~ocÞ) used in this study.

Vaccine efficacy �ð~ocÞ 0.95 0.90 0.80 0.60

Probability 0.20 0.30 0.35 0.15

https://doi.org/10.1371/journal.pone.0270524.t004

Table 5. Discrete probability distribution of relative susceptibility bð~ocÞ used in this study for Travis county.

Travis county Age group A Age group B Age group C Scale constraints

Population proportion πk 0.26 0.64 0.10 ∑k2K πk = 1.00

Probability βA βB βC ∑k2K βkπk
0.50 0.66 1.00 1.91 1.00

0.50 0.80 1.00 1.52 1.00

https://doi.org/10.1371/journal.pone.0270524.t005
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groups is characterized by relative infectivity. Goldstein et al. [39] surveyed multiple studies

and suggest that there is little evidence that relative infectivity of older age groups is slightly

higher than younger population. For infectivity, we assume two cases: Case 1. The younger

population has lower infectivity compared to the older population (the older population’s bio-

logical infectivity outweighs the higher social mixing of the younger population); and Case 2.

The younger population has higher infectivity compared to the older population (the higher

social mixing of the younger population outweighs the older population’s biological infectiv-

ity). This nuance is important to the transmission of COVID-19, because the younger popula-

tion generally has more human interactions [40] and do not develop severe symptoms as

compared to older populations. A member of the younger population, then, is more likely to

infect a susceptible person. For each county, we generated two levels of relative infectivity with

associated probabilities (see S1 File). The data for Travis county is given in Table 6.

Outside household close contact mð~ocÞ. An important parameter in the model ismð~ocÞ,

it is defined as the number of close contacts that an infective makes with persons of other

households and close contact being sufficient for transmitting the disease when the contact is

with a susceptible person. We should point out thatmð~ocÞ is variable due to differences in

human interactions under the impact of various mitigation measures and demographics of a

community. To estimate the distribution ofmð~ocÞ, we collected historical time series data for

effective reproduction number Rt for Travis county from University of Austin, Texas, COVID-

19 dashboard [41]. Using the value of Rt and anvcð~ocÞ in Eq 1 we estimate the value ofmð~ocÞ.

Note that in Eq 1, RHVc is analogous to Rt, anvcð~ocÞ is calculated for homogeneous population,

under no vaccination, i.e, vaccine efficacy, �ð~ocÞ ¼ 0, and point estimate of within household

transmission rate, bð~ocÞ ¼ 0:3. Probability associated with the estimated value ofm is the pro-

portion of time period the value of Rt was observed. Rt values observed in Travis County for

the region of Austin metropolitan area varied from 0.5 to 3.5 and for remaining counties from

their respective historically observed effective reproduction number, Rt. The discrete distribu-

tion formð~ocÞ is available in S1 File.

Reliability level α. Typically health officials prescribe acceptable reliability levels based on

the historical severity of the epidemic. For this study, we use three levels for reliability: Low,

Medium andHigh (see Table 7). Note that at the highest level of reliability, Travis county has

the largest reliability number of 0.990 while the surrounding counties have lower reliability

Table 6. Discrete probability distribution of relative infectivity lð~ocÞ used in this study for Travis county.

Travis county Age group A Age group B Age group C Scale constraints

Population proportion πk 0.26 0.64 0.10 ∑k2K πk = 1.00

Probability (Case 1) λA λB λC ∑k2K λkπk
0.50 0.95 1.00 1.13 1.00

0.50 0.90 1.00 1.26 1.00

Probability (Case 2) λA λB λC ∑k2K λkπk
0.50 1.10 1.00 0.74 1.00

0.50 1.15 1.00 0.61 1.00

https://doi.org/10.1371/journal.pone.0270524.t006

Table 7. Reliability levels for each community used in this study.

Reliability Level α Travis Williamson Hays Bastrop Caldwell Burnet Blanco

High 0.990 0.980 0.970 0.970 0.955 0.955 0.955

Medium 0.985 0.975 0.965 0.965 0.950 0.950 0.950

Low 0.980 0.970 0.960 0.960 0.945 0.945 0.945

https://doi.org/10.1371/journal.pone.0270524.t007
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numbers with lowest being 0.955 for Burnet and Blanco counties. These values are set assum-

ing that the epidemic outbreak is more severe at the population centers than in the sparsely

populated counties.

Results

The stochastic models were implemented in the CPLEX 12.9 Callable Library [42] using

C++ and solved using a set of predetermined levels of reliability α along with discrete distribu-

tions for the model parameters vaccine efficacy, within-household transmission rate, county

level household size distribution, and outside-household close contact rate. We solved several

instances of the model to generate vaccination policies for the seven Texas counties (Travis,

Williamson, Bastrop, Caldwell, Hays, Burnet, and Blanco) based on the all those uncertain

parameters. Travis County is the most densely populated of all the seven counties, includes the

city of Austin, and is surrounded by the other counties. Due to a lack of extensive studies on

age-related differences in infectivity of COVID-19 at the time of this study, we investigated

two cases: Case 1—Group A has lower relative infectivity than Group C, and Case 2—Group C

has lower relative infectivity than Group A. We present results for two cases: unlimited vaccine
availability and limited vaccine availability.

Unlimited vaccine availability

We show the results the three levels of reliability α, the two cases of relative infectivity, and the

assumption of unlimited vaccine availability. The results are summarized in Table 8. For reli-

ability levelHigh and infectivity Case 1, the proportions of the population to be vaccinated to

control the epidemic for Travis, Williamson, Hays, Bastrop, Caldwell, Burnet and Blanco

counties are 0.94, 0.81, 0.75, 0.71, 0.65, 0.67 and 0.65, respectively. The average proportion of

the population across all counties to be vaccinated is 0.87. Observe that when the reliability

level is decreased, the proportion of the population to be vaccinated decreases. We observe a

similar trend for infectivity Case 2. The vaccination policies prescribed under the assumption

of heterogeneous model for unlimited vaccine availability, under infectivity Case 1 and the

High reliability level are plotted in Fig 2. Those for infectivity Case 2 are plotted in Fig 3.

Limited vaccine availability

We also considered the situation in which vaccines are available in limited quantity. The

results are provided for the two infectivity scenarios and vaccine shortages of 2.5%, 5.0%, 7.5%.

Fig 4 shows and describes the reliability adjustment and vaccine sharing capability prescribed

by the heterogeneous model under infectivity Case 1, limited vaccine availability andHigh

Table 8. The minimum number of vaccinations required to bring RHVc� 1 under unlimited vaccine availability for heterogeneous populations. The proportion of

the population to be vaccinated is in parentheses.

Reliability Level α

Case 1 Travis Williamson Hays Bastrop Caldwell Burnet Blanco

High 831153 (0.94) 297649 (0.81) 106120 (0.75) 34837 (0.71) 16694 (0.65) 22394 (0.67) 5383 (0.65)

Medium 776772 (0.88) 283034 (0.77) 106451 (0.75) 34771 (0.71) 16573 (0.65) 22297 (0.66) 5322 (0.64)

Low 710316 (0.80) 281390 (0.77) 99689 (0.70) 32232 (0.66) 15044 (0.59) 20325 (0.60) 4895 (0.59)

Case 2

High 795161 (0.90) 277961 (0.76) 100010 (0.71) 32603 (0.67) 15713 (0.61) 20748 (0.62) 4925 (0.59)

Medium 757667 (0.86) 267998 (0.74) 99488 (0.70) 32470 (0.67) 15474 (0.60) 20426 (0.61) 4836 (0.58)

Low 678574 (0.77) 264651 (0.72) 94743 (0.67) 31107 (0.64) 14901 (0.59) 19716 (0.59) 4771 (0.57)

https://doi.org/10.1371/journal.pone.0270524.t008
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Fig 2. This figure shows the vaccine policy prescribed under the assumption of heterogeneous model for unlimited vaccine availability, under

infectivity Case 1 and the High reliability level. Fig a) depicts the proportion of the population to be vaccinated for each county and household size

combination. The figure shows that the higher household sizes tend to be vaccinated at a higher rate. Smaller households of size one and two do have

some vaccinations, albeit a lower percentage. These vaccinations are due to the fact that a majority of the population residing in smaller households are

from Group B and C. Fig b) depicts the proportion of population to be vaccinated by county and age group. The figure illustrates the optimal policy,

which is to vaccinate members of Group C population followed by members of Group B and A as a result of the higher relative susceptibility and

infectivity for members of Group C. In Fig c) a series of heatmaps depict the proportion of population to be vaccinated by the model by household size

and age group for each county. The figure indicates that communities should prioritize Group C, followed by Groups B and then A. The priority is to

vaccinate Groups B and C, .i.e., populations with higher relative infectivity and susceptibility, and within each population, prioritize members residing

in larger households.

https://doi.org/10.1371/journal.pone.0270524.g002
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Fig 3. This figure illustrates the vaccination policy prescribed by the heterogeneous model for unlimited vaccine availability, under infectivity

Case 2 and High reliability. Case 2 is defined such that Group A has a higher infectivity than Group C. a) The figure depicts the proportion of the

population to be vaccinated by the model by county and household size. The figure shows that communities should vaccinate the larger households at a

greater rate. This trend is due to the fact that a large number of members of Group A reside with members of Group B and C, and so a higher

vaccination rate is required in this situation in order to effectively block the contagion transmission from a group of higher infectivity to a group of

higher susceptibility. b) Fig depicts the proportion of population to be vaccinated by county and age group. The figure shows that the optimal policy

recommend vaccinating the higher infectivity population, Group A, and the higher susceptibility population, Group C in Travis, Williamson and Hays

counties. For Caldwell, Burnet and Blanco the priority is given to Group C followed by Group B and A respectively. The heatmaps in figure c) depict the

proportion of the population to be vaccinated by household size and age group. The heatmaps illustrate the trend to vaccinate larger households first,

and for smaller households, the preference is to vaccinate Group C followed by Group B.

https://doi.org/10.1371/journal.pone.0270524.g003
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Fig 4. This figure illustrates the reliability adjustment and vaccine sharing capability prescribed by the heterogeneous model under infectivity

Case 1, limited vaccine availability and High reliability level. a) The bar-plot illustrates that reliability adjustment feature of the heterogeneous model

under limited vaccination. ForUnlimited vaccine availability the model achieves the requiredHigh reliability but as the vaccine availability reduces the

reliability levels are adjusted to achieve an optimal vaccination policy. Generally, Travis county reliability is reduced and for other counties reliability is

increased. b) For each county, the heatmap illustrates proportion of population to be vaccinated within an age Group for a case of vaccine availability. It

shows that for Case 1 of infectivity if the reliability is lowered and vaccines are released from a county and assigned to counties where additional

reliability is achieved, generally vaccines are first released from Group A followed by Group B. And the counties receiving these additional vaccines

assign them to Group C first followed by Group B. c) For each county, the heatmap illustrates proportion of population to be vaccinated within a

household size for a case of vaccine availability. Across all the counties there is no clear pattern but the plot shows the vaccination policy per household

size within a county.

https://doi.org/10.1371/journal.pone.0270524.g004
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reliability level. The reliability adjustment and vaccine sharing capability prescribed by the het-

erogeneous model under infectivity Case 2, limited vaccine availability andHigh reliability

level are shown and described in Fig 5. Due to space limitations, complete results for infectivity

Case 1 are given in S2 File, and for infectivity Case 2 in S3 File.

Discussion

Recall that in the heterogeneous model the household types are defined by the size of the

household as well as the age groups of the members residing in the household. Therefore, the

vaccination policy generated by the heterogeneous model is dependent on both the size and

age composition of the members residing in the household. When we consider infectivity Case

1, the results indicate that Group C, which has higher relative susceptibility and infectivity

than Group A and B, should be prioritized. The model prefers to vaccinate Group C irrespec-

tive of the size of household in which they reside. Group C is followed by Group B and then

Group A in terms of the proportion of people vaccinated, where Group A has the lowest rela-

tive susceptibility and infectivity (refer to Fig 2b and 2c). With respect to household size, the

model recommends to vaccinate similar proportion of inhabitants in households of size two

ore more (refer to Fig 2a). This trend occurs because the majority of households of size two

and larger tend to have more members of the Group B and C populations than members of

Group A (refer to Fig 1b), and, in this case. Groups B and C have higher susceptibility and

infectivity than Group A. In short, the model prioritizes vulnerable age groups and, within

each group, prioritizes members of larger households (see Fig 2c). This vaccination policy is

similar to the one implemented in the U.S. at the early stages of vaccine roll out, in which pri-

ority was given to the oldest age group. At the time of this study, the majority of what we call

Group A was not eligible for vaccination, because the FDA had not approved the vaccines for

members of the population 16-years-old and younger.

Under infectivity Case 2, although the required number of vaccinations is similar to that of

Case 1, the model suggests a different vaccination policy. In this case, we assume that the rela-

tive infectivity of Group A is higher than that of Group C, and the relative susceptibility of

Group A is lower that that of Group C. If we observe the household composition by age, the

majority of the people in Group A tend to reside with members of Groups B and C population

in larger households of three or more (refer to Fig 1a). In a larger household, the risk of trans-

mission between a member of Group A and a member of Group B or C is higher. As a result,

the counties should prioritize members of larger households for vaccination (refer to Fig 3a).

Referring to Fig 3b), the model results show that for Travis, Williamson, and Hays counties a

higher proportion of Group A and C are vaccinated when compared to Group B. In scarcely

populated counties of Caldwell, Burnet and Blanco, the priority for vaccination is given to

Group C followed by Group B and Group A, respectively. Fewer members of Group A reside

with members of Group B or C in one- and two-person households, so the optimal vaccine

policy prescribes fewer vaccinations for smaller households. Unlike Case 1, in Case 2 the solu-

tion indicates prioritizing members residing in larger household sizes, and then prioritizing

vulnerable age groups—in this case Groups B and C (refer to Fig 3c). The results from this case

become more relevant as younger members of the population become eligible for the vaccine.

In the case of vaccine shortages, some counties are unable to achieve the defined reliability

levels, and, as a result, the results suggest lower effective reliability levels for Travis County,

Williamson and Hays counties. However, the model increases the reliability levels for Bastrop,

Blanco, Caldwell, and Burnet counties. The increased reliability suggests that additional vac-

cines can be transferred to these counties in order to mitigate additional outbreak scenarios.

For infectivity Case 1, the vaccine policy indicates that instead of vaccinating Group A in the

PLOS ONE COVID-19 vaccination policies under uncertain transmission characteristics using stochastic programming

PLOS ONE | https://doi.org/10.1371/journal.pone.0270524 July 22, 2022 17 / 21

https://doi.org/10.1371/journal.pone.0270524


Fig 5. This figure illustrates the reliability adjustment and vaccine sharing capability prescribed by the heterogeneous model under infectivity

Case 2, limited vaccine availability and High reliability level. a) The bar-plot illustrates that reliability adjustment feature of the heterogeneous model

under limited vaccination. ForUnlimited vaccine availability the model achieves the requiredHigh reliability but as the vaccine availability reduces the

reliability levels are adjusted to achieve an optimal vaccination policy. Generally, Travis county reliability is reduced and for other counties reliability is

increased. b) For each county, the heatmap illustrates proportion of population to be vaccinated within an age group for a case of vaccine availability.

Across all the counties there is no clear pattern but the plot shows the vaccination policy per age group within a county. c) For each county, the heatmap

illustrates proportion of population to be vaccinated within a household size for a case of vaccine availability. It shows that for Case 2 of infectivity if the

reliability is lowered and vaccines are released from a county and assigned to counties where additional reliability is achieved, generally vaccines are first

released from HH1 followed by HH2. And the counties receiving these additional vaccines assign them to higher household size of three and four.

https://doi.org/10.1371/journal.pone.0270524.g005
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counties where reliability is lowered, those vaccines can be distributed to members of Group

C, followed by members of Group B in counties where it is possible to satisfy additional sce-

narios (see Fig 4). In infectivity Case 2, the solution indicates that vaccines for smaller house-

holds in the counties where reliability cannot be met should be redistributed to larger

households in counties where additional reliability can be achieved (see Fig 5).

Conclusion

We introduce a multi-community household-based SP methodology for generating an optimal

vaccination policy to control the outbreak of COVID-19. While generating a vaccination pol-

icy, this new methodology considers uncertainty inherent in both COVID-19 and human

interactions. We develop two stochastic models that use the demographic structure of house-

holds based on census data, as well as age-related heterogeneity to COVID-19 in the sub-popu-

lations of each community. The models generate vaccination policies under unlimited and

limited vaccine availability, respectively, and incorporates the idea of vaccine sharing between

communities in order to control COVID-19 outbreaks. The model was implemented and

tested based on seven neighboring counties in the U.S. state of Texas. Computational results

show that to control the outbreak at least a certain percentage of the population in each county

should be vaccinated, depending on the pre-determined reliability levels. The study also

reveals the vaccine sharing capability of the proposed model among the counties under limited

vaccine availability. This work contributes a new decision-making tool to aid public health

agencies in the optimal allocation of vaccines under uncertainty for multiple communities to

control epidemics through vaccinations. Future research along this line of work include

extending the proposed methodology to include refined age classes and the vaccination status

of individuals. Another direction is to include new models to estimate the outside household

contact rate and incorporating the logistics of vaccine delivery.
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