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A B S T R A C T

Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by an important heterogeneity,
reflected by different clinical outcomes and chemoresistance. During carcinogenesis, tumor cells display
aberrant glycosylated structures, synthetized by deregulated glycosyltransferases, supporting the tumor pro-
gression. In this study, we aimed to determine whether PDAC could be stratified through their glycosyltrans-
ferase expression profiles better than the current binary classification (basal-like and classical) in order to
improve detection of patients with poor prognosis.
Methods: Bioinformatic analysis of 169 glycosyltransferase RNA sequencing data were performed for 74
patient-derived xenografts (PDX) of resected and unresectable tumors. The Australian cohort of International
Cancer Genome Consortium and the microarray dataset from Puleo patient’s cohort were used as indepen-
dent validation datasets.
Findings: New PDAC stratification based on glycosyltransferase expression profile allowed to distinguish dif-
ferent groups of patients with distinct clinical outcome (p-value = 0.007). A combination of 19 glycosyltrans-
ferases differentially expressed in PDX defined a glyco-signature, whose prognostic value was validated on
datasets including resected whole tumor tissues. The glyco-signature was able to discriminate three clusters
of PDAC patients on the validation cohorts, two clusters displaying a short overall survival compared to one
cluster having a better prognosis. Both poor prognostic clusters having different glyco-profiles in Puleo
patient’s cohort were correlated with stroma activated or desmoplastic subtypes corresponding to distinct
microenvironment features (p-value < 0.0001). Besides, differential expression and enrichment analyses
revealed deregulated functional pathways specific to different clusters.
Interpretation: This study identifies a glyco-signature relevant for a prognostic use, potentially applicable to
resected and unresectable PDAC. Furthermore, it provides new potential therapeutic targets.
Funding: This work was supported by INCa (Grants number 2018-078 and 2018-079), Fondation ARC (Grant
number ARCPJA32020070002326), Canc�eropôle PACA, DGOS (labelization SIRIC, Grant number 6038), Ami-
dex Foundation and Ligue Nationale Contre le Cancer and by institutional fundings from INSERM and the
Aix-Marseille Universit�e.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) ranks seventh among
the causes of cancer deaths [1,2] and is in path to become the second
cause of global cancer mortality by 2030 [3]. The 5-year survival rate
is < 7% and varies depending on the cancer staging at the time of
diagnosis [2,4]. Despite advances in pancreatic cancer research field,
PDAC is still characterized by a resistance to chemotherapies and
presents a disparity in the response to treatments and survival
depending mainly on the surgical management of the patient [5�7].
The main cause of disparities in clinical evolution and resistance to
conventional chemotherapies between patients is related to a signifi-
cant molecular heterogeneity between their tumors. Therefore, strat-
ification of PDAC appears as a favored strategy to improve patient
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Research in Context

Evidence before this study

Pancreatic ductal adenocarcinoma (PDAC) is characterized by
tumor heterogeneity limiting the adapted patient care and con-
tributing to its poor prognosis related to late diagnosis and che-
moresistance. Previous studies have proposed a large-scale
molecular classification of PDAC, describing basal-like and clas-
sical prognostic subtypes. To refine our ability in deciphering
PDAC heterogeneity, we focused on actors of glycosylation
pathways. This process highly deregulated in PDAC, is widely
involved in tumor properties acquisition, impacting each mech-
anistic step of carcinogenesis.

Added value of this study

We show that PDAC stratification through glycosyltransferase
(GT) gene expression profile is significantly associated with
patient survival as an independent prognostic factor. This led to
identification of a glyco-signature funded on 19 GT genes that
allows the stratification of PDAC with specific molecular pro-
files and clinical features of patients driving tumor aggres-
siveness. In addition, the GT gene expression profiles were
correlated with the expression of Lewis blood group antigens
synthetized by many GT included in the glyco-signature. This
signature is able to better describe PDAC than the current clas-
sification by splitting PDAC classical subtype into two clusters
with poor clinical outcome and another one with better prog-
nosis. The two poor pronostic clusters, defined by the glyco-sig-
nature on the validation cohorts, are associated with distinct
microenvironment features suggesting that the glycosylation
pathways of tumor cells can reflect molecular diversity at stro-
mal level.

Implication of all the available evidence

The glyco-signature, potentially applicable to resected and
unresectable PDAC, could be used to predict patient outcome.
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care and allow the best clinical decision for precision medicine. Sev-
eral studies have analyzed gene expression of tumor and/or stroma
from primary and metastatic PDAC by using mRNA expression micro-
array and RNA sequencing (RNA-seq); many molecular subtypes of
PDAC have been proposed with potential prognostic relevance
[8�13]. Importantly, two clusters of PDAC corresponding to classical
and basal-like subtypes are often highlighted with differences in
overall survival (OS) and morphological patterns, constituting a well-
established consensus.

Glycosylation in eukaryotic cells is the major post-translational
modification of macromolecules and participate in the maturation
and acquisition of their functions in the cell [14]. This process
involves mainly sequential actions of different families of glycosyla-
tion enzymes such as glycosyltransferases (GT) and glycosidases,
whose expression and function are tightly regulated in each cell.
These glyco-enzymes are able to produce numerous and various gly-
can chains from monosaccharides to form glycoproteins bearing
mainly N- and O-linked glycans, glycolipids and proteoglycans. Gly-
cosylation deregulation is one of the important mechanisms contrib-
uting to tumor heterogeneity and is now widely accepted as one of
the hallmarks of cancer [15]. A large number of studies have
described significant changes in glycan chains of glycoconjugates and
glycosylation processes in cancers [16,17]. The appearance of aber-
rant glycosylated structures on tumor cells, but also on cells from the
microenvironment, seems to be essential for malignant transforma-
tion, tumor growth, cell signaling, as well as cell adhesion and
metastatic dissemination [18,19]. Upstream, deregulation of this pro-
cess occurs partly at the gene expression level of GT: a deep modifica-
tion of GT gene expression generates aberrant glycosylated antigens
and deregulates the whole glycome of cancer cells contributing to
their aggressive phenotype [15�20].

In PDAC, the most common changes in glycan structures affect
glycosylated Lewis blood group antigens [20�22]. The sialyl-Lewisx

and sialyl-Lewisa antigens, whose biosynthesis is dependent from
a1,3/4-fucosyltransferases (FUT) and a2,3-sialyltransferases
(ST3GAL), are preferentially expressed on the surface of tumor cells,
which, in the blood or lymphatic circulation, can be recognized by
selectins, expressed at the membrane of endothelial cells and could
thus promote the formation of metastases [23,24]. The expression of
truncated O-glycans such as Tn and sialyl-Tn antigens, described in
many cancers, was also observed in PDAC [25,26]. The expression of
sialyl-Tn antigen is dependent on many GT such as polypeptide N-
acetylgalactosaminyltransferase (GALNT) and a2,6-sialyltransferase
(ST6GALNAC) families, but also on deregulated expression of chaper-
one and GT involved in the elongation of O-glycans such as COSMC,
core 1 synthase glycoprotein-N-acetylgalactosamine 3-b-galactosyl-
transferase 1 (C1GALT1) or b1,6-N-acetylglucosaminyltransferases
(GCNT1 or GCNT3). These truncated O-glycans could promote tumor
growth and metastatic behavior [27].

In a previous study, glycoprotein metabolism has been highlighted
as one of the top biological processes significantly deregulated in PDAC
[28] suggesting that relevant subtypes could be identified according to
their aberrant glycosylation processes. In this study, we aimed to deter-
mine whether PDAC could be stratified on the basis of their GT gene
expression profiles involved in the biosynthesis of glycoconjugates. By
using bioinformatic analysis of RNA-seq data focused on 169 GT genes
from patient-derived xenografts (PDX), we have identified a combina-
tion of 19 GT, which was able to discriminate two clusters of PDAC on
PaCaOmics patient’s cohort and three clusters on validation cohorts
associated with specific molecular profiles and clinical features of
patients. These GT genes were validated on public databases as a prog-
nostic glyco-signature, which could allow best patient care in the future
and also highlight new potential targets for diagnosis, prognosis and
therapies of different PDAC.

2. Methods

2.1. PaCaOmics patient’s cohort and PDX

The PaCaOmics patient’s cohort was described in many previous
studies [28�32]. Briefly, three expert clinical centers collaborated on
the PaCaOmics project to establish a pancreatic cancer cohort. It
includes PDAC samples collected from echoendoscopic ultrasound-
guided fine-needle (EUS-FNA) biopsies for patients with unresectable
tumors (25 patients), samples obtained from surgical specimens for
patients undergoing surgery (40 patients) and samples from patients
with carcinomatosis or liver metastasis obtained during explorative
laparotomy (11 patients). The consent forms of informed patient
were collected in a central database according to ethic principles.
Outliers were excluded after a histological selection and 74 patients
suffering exclusively with pancreatic adenocarcinoma were retained
for this study. The tumor samples of these patients were used to gen-
erate PDX. PDX model allows to amplify tumor samples from patients
with resected and unresectable tumors; PDX model from the PaCaO-
mics patient’s cohort is representative of patient tissue and faithfully
recapitulates patient tumors histological characteristics [32]. It is also
possible to discriminate in silico the data from RNA-sequencing
between the human tumor cells and mouse stroma cells by assigning
each sequence to the human or mouse genome. The protocol to gen-
erate PDX was described in detail in previous studies [28�32]. Briefly,
PDAC samples obtained from resected and unresectable tumors were
mixed with Matrigel and implanted with a trocar in the subcutaneous
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upper flank of an anesthetized NMRI-nude mouse. Once xenografted
tumors reached 1 cm3, they were removed and passed to NMRI-nude
mice for 3 cycles of xenografts. Then, tumors were isolated for RNA
extraction and Tissue Microarray construction.

2.2. Ethic statements

This work is a data mining of PaCaOmics data previously pub-
lished [28�32]. The PaCaOmics study was registered at www.clinical
trials.gov with registration number NCT01692873. PDAC samples
were collected from January 2012 to December 2015. The study was
approved by the local ethics committee (Comit�e de protection des
personnes Sud M�editerran�ee I) following patient informed consent.
All experimental procedures on animals were approved by the ethical
committee for animal experimentation and French Ministry of Higher
Education and Research (APAFIS# 9562-2016051914513578). All
experimental protocols were carried out in accordance with the
Guide for the Care and Use of Laboratory Animals (National Acade-
mies Press, 2011).

2.3. RNA-seq analysis and gene selection

RNA libraries were generated from 74 PDX samples, then RNA-seq
data were acquired and processed as previously described [29]. Anal-
yses were performed on genes encoding main GT families involved in
glycosylation machinery from human species-specific RNA reads.
Therefore a gene set of 211 GT genes was extracted from GlycoGene
DataBase (GGDB; https://acgg.asia/ggdb2/) and based on GT gene
group section of Hugo Gene Nomenclature Committee (HGNC:
https://www.genenames.org/data/genegroup/#!/group/424). Among
available genes in our RNA-seq dataset, those belonging to UDP glu-
curonosyltransferase family were excluded as their expression values
were close to 0. Analysis was performed on a list of 169 genes (sup-
plementary Table S1). Unsupervised hierarchical clustering was per-
formed using Euclidean distance algorithm and Ward.D2’s method
for linkage. Heatmap representations of 74 PDX focusing on 169 GT
genes were generated using “ComplexHeatmap” package on RStudio
version 1.2.5033. Relative expression between samples for each gene
is depicted in a color gradation and intensities varying from red to
blue for upregulated and downregulated genes, respectively.

2.4. Hierarchical clustering on principal component (HCPC) analysis and
glyco-signature definition

HCPC analyses were performed using ‘FactoMineR’ and ‘Factoex-
tra’ packages of R programming language. To extract essential infor-
mation and get rid of noise, only components that explain at least 5%
of variances were retained for further analysis. Hierarchical clustering
was then performed on PCA, using Euclidean distance algorithm and
Ward’s method for linkage. The link between the cluster variable and
the quantitative variable corresponding to the GT genes was
described with the square correlation coefficient of the F-test in a
one-way analysis of variance. A total of 19 GT genes showing the
most significant p-values were selected as the most relevant GT
markers in cluster definition constituting the glyco-signature (for
complete HCPC statistics, see supplementary Table S1). In addition,
the statistical significance of the 19 GT gene expression between clus-
ters was assessed by using Kruskal-Wallis test.

2.5. Validation on public datasets

The Australian cohort of International Cancer Genome Consortium
(ICGC) was used as external validation cohort for the glyco-signature
[10]. Both RNA-seq and gene microarray expression datasets, includ-
ing 91 and 269 resected pancreatic tumors, respectively, were down-
loaded from ICGC Data Portal (data repositories, release 20 on http://
dcc.icgc.org/). The Australian ICGC RNA-seq and microarray cohorts
were profiled on Illumina sequencing platform and Illumina microar-
rays, respectively, from frozen samples. Gene expression raw values
were normalized and gene-wise centered. Note that among the 19
GT markers, GALNT4 gene was not part of ICGC gene microarray
expression dataset. The glyco-signature was validated on a second
independent affymetrix transcriptomic dataset, obtained from the
Puleo et al. [12] multi-centric cohort including 309 resected primary
PDAC. This cohort was profiled on Affymetrix HG-U219 microarrays
from paraffin-embedded samples. Transcriptomic profiles were nor-
malized using robust multi-array average and batch effects were cor-
rected. In both affymetrix transcriptomic datasets, multiple probes
are used to target the same gene. The probe showing the highest vari-
ance between samples was selected, since it was considered as the
one providing the most amount of information.

2.6. Comparison with previously established classification

Basal-like/classical subtyping for each dataset was performed
using Purity Independent Subtyping of Tumors (PurIST), an algorithm
of a Single Sample Classifier (SSC) developed by Rashid et al. [33].
Proportions of basal-like and classical subtype PDAC in clusters were
determined for ICGC RNA-seq dataset and the association between
both classifications was assessed using Fisher’s exact test from “stats”
package of R language. Concerning the ICGC microarray dataset and
Puleo patient’s cohort, Pearson’s chi-squared test from “stats” pack-
age of R language was used to determine the significance of subtype
distribution in clusters obtained through analysis of GT gene expres-
sion. Similarly, proportions of subtypes based on microenvironment
features proposed by the authors in Puleo patient’s cohort were
assessed in clusters, using Pearson’s chi-squared test. Standardized
residuals for Pearson’s chi-squared tests were extracted using “ques-
tionr” R package and represented on mosaic plots.

2.7. Survival analyses

Survival analysis based on multivariate Cox proportional hazard
regression model was performed using the “survival” package by
including multiple covariates (clustering, surgical resection and disease
stage) with a confidence interval of CI = 95%. The follow-up starting
point of survival time was defined at the diagnostic time. Concerning
the Puleo’s cohort and the ICGC affymetrix dataset, analyses were per-
formed on the available survival data of 288 and 267 patients, respec-
tively. Overall survival was defined as the time from diagnosis (in
PaCaOmics patient’s cohort) or surgery (in validation cohorts) to death
resulting from any cause. Survival curves were estimated using the
Kaplan-Meier method and OS were compared with the log-rank test.
Multivariate Cox regression analyses and Kaplan-Meier curves were
computed using the “survival” and “survminer” R packages.

2.8. Differential expression and functional analysis

Differential expression analyses comparing pairwise clusters were
performed using “DESeq2” and “limma” R packages for RNA-seq and
microarray datasets, respectively. Adjusted p-value< 0.05 and |log2(fold
change)| > 1 were defined as cut-off criteria. Differentially expressed
genes were represented on volcano-plots and Venn diagrams for com-
parisons between 2 clusters and between 3 clusters, respectively.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed for upregulated and downregu-
lated genes using “ClusterProfiler” R package.

2.9. Statistical analysis

All the statistical analyses performed in this study have been
described in each subsection, respectively. HCPC analyses were
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performed using Euclidean distance algorithm and Ward’s method
for linkage from the “FactoMineR” and “Factoextra” packages of R
language. The link between the cluster and the GT gene variables was
assessed using the F-test of a one-way analysis of variance. Moreover,
associations between classifications were assessed using either the
Pearson’s chi-squared test or the Fisher’s exact test, both from “stats”
package of R language, depending on the sample size. The correlation
analysis between GT genes of the glyco-signature and the PAMG was
performed using the Pearson correlation test. Survival analysis based
on multivariate Cox proportional hazard regression model was per-
formed using the “survival” package by including multiple covariates
with a confidence interval of CI = 95%. Overall survivals were com-
pared using the log-rank test.

2.10. Role of the funding source

The funders did not have any role in the study design, the data
collection, the data analyses, the result interpretation or the writing
of the manuscript.

3. Results

3.1. Expression profiles of GT genes predict overall survival of PDAC
patients

RNA-seq data of 169 GT genes revealed significant differences in
gene expression between tumor cells from 74 PDX (Supplementary
Fig. S1a) highlighting the tumor heterogeneity in GT gene expression.
Subsets of PDAC were distinguishable with a high expression of spe-
cific genes and low expression of others. To deeply explore these
PDAC glyco-profiles, we performed a principal component analysis
(PCA), followed by a hierarchical clustering (HCPC). Two different
clusters of PDAC were identified on PaCaOmics patient’s cohort
(Fig. 1a; Supplementary Fig. S1b, c) based on a specific GT gene
expression profile (Supplementary Table S1). Cluster 1 and cluster 2
included, respectively 21.6% (n = 16/74) and 78.4% (n = 58/74) of
PDAC patients. Interestingly, specific GT gene expression profiles
defined for each cluster were related to prognosis in a multivariate
analysis including surgical resection and disease stage corresponding
to the most relevant factors impacting survival, predicting at best
patient prognosis. PDAC stratification through GT gene expression
profile was significantly associated to patient OS as an independent
prognostic factor with a hazard ratio HR = 0.41 (p-value = 0.007 [95%
CI: 0.22�0.78]) (Fig. 1b) indicating that PDAC patients in cluster 2
have a best survival compared to patients in cluster 1. This result was
shown with OS analysis of clusters 1 and 2, considering separately
resected, locally advanced and metastatic origin samples (Supple-
mentary Fig. S2). This prognostic value, independent of other factors,
suggests that GT gene expression profiles have a significant impact
on the survival of patients.

3.2. Identification of GT genes as prognostic markers

To define GT genes with a major impact on the survival, the top GT
genes whose expressions contributed significantly to cluster definition,
were extracted from HCPC analysis. This results in a selection of 19 GT
genes as the most relevant markers to stratify PDAC (Table 1; Supple-
mentary Table S1). Among these genes, several functional paralogues of
fucosyltransferases including FUT2, FUT3, FUT4, FUT6, and of N-acetyga-
lactosaminyltransferases GALNT4, GALNT6 and GALNT12 were signifi-
cantly downregulated in cluster 1 compared to cluster 2 while GALNT9
was upregulated in cluster 1 (Fig. 1c, d; Supplementary Fig. S1d, Table 1;
Supplementary Table S1). Our results also showed a significant downre-
gulation of A4GNT, B3GALT5, B3GNT6, C1GALT1, GCNT1, GYG2, LFNG,
MGAT5, ST6GALNAC1, ST8SIA3 and XYLT in cluster 1 compared to cluster
2 (Fig. 1c, d; Supplementary Fig. S1d).
3.3. Clinical features of patients and their PDAC molecular profiles

The HCPC analysis allowed the identification of two prognostic
clusters of PDAC with distinct clinical features of patients from
PaCaOmics cohort. Unresectable PDAC represented 75% (n = 12/16) in
cluster 1 whereas cluster 2 included 60% (n = 35/58) of patients with
resected tumors (Fig. 1d). Among the unresectable PDAC, 25% and
17% were locally advanced tumors in clusters 1 and 2, respectively.
Moreover, cluster 1 contains 63% (n = 10/16) of metastatic tumors
compared to cluster 2 with only 34% (n = 20/58) of metastatic tumors
(Fig. 1d). The classification of PDAC into different transcriptomic sub-
types using PurIST classifier showed that 90% of basal-like subtypes
were classified in cluster 1 and inversely cluster 2 regrouped 89% of
classical subtype (p-value < 0.0001, Fisher’s exact test). However, the
composition of cluster 1 is heterogeneous with 56% basal-like vs 44%
classical subtypes and 81% basal-like vs 19% classical subtypes
according to PurIST classifier and stratification proposed by Nicolle
et al. [30], respectively. On the other hand, cluster 2 contains around
2% of PDAC basal-like subtype whatever the classifier used. Then, the
cluster 1 regroups basal-like PDAC subtypes and classical PDAC sub-
types of patients with short survival for the majority of them (Supple-
mentary Table S1). This idea could be refined by the Pancreatic
Adenocarcinoma Molecular Gradient (PAMG) [29], a more precise
stratification of tumors represented by a gradient from pure basal-
like to pure classical. Indeed, the PAMG confirms cluster 1 mixed
composition including tumors with intermediate gradient, although
it does contain the top scored basal-like tumors. Moreover, the com-
parison of the glyco-signature to the PAMG showed that all the 19
genes were significantly correlated to the PAMG. Interestingly, only
GALNT9 gene expression (upregulated in cluster 1) correlated nega-
tively with the PAMG (Pearson correlation coefficient R = -0.47, p-
value = 2.01e-05) indicating its association with basal-like phenotype
in similar way as Vimentin (VIM), a marker of mesenchymal differen-
tiation and aggressive carcinoma. However, other 18 GT gene expres-
sion (upregulated in cluster 2) correlates positively with the PAMG
(Pearson correlation coefficient 0.36 < R < 0.71 and p-value < 0.01)
confirming their association with classical phenotype like GATA6
expression (a marker of classical phenotype) (Supplementary Fig. S3;
Supplementary Table S3). These combined features allow a precise
tumor characterization, which is essential to dissect molecular diver-
sity. Therefore, the glyco-signature of 19 GT genes was found relevant
to stratify PDAC according to their aggressiveness.

In order to assess whether specific GT gene expression profiles
defined for each cluster could have an impact on the formation of glyco-
sylated antigens, immunohistochemical staining using antibodies
against Lewis blood group antigens and GT was performed on PDX-
TMA. As shown in Supplementary Fig. S4, a large majority of PDAC from
cluster 1 displayed a weak or negative staining for Lewisa, Lewisb, Lewisx

and sialyl-Tn antigens compared to cluster 2. Although many GT are
involved in the formation of these glycosylated antigens, these results
are consistent with the transcriptomic data of several GT genes included
in the glyco-signature (Supplementary Fig. S5a�f). Interestingly, all neg-
ative tissues for sialyl-Lewisa expression, except one case, are included
in cluster 1 (Supplementary Fig. S5a). The simultaneous downregulation
of FUT2, FUT3 B3GALT5 gene expression in cluster 1 also affects the bio-
synthesis of Lewisb antigen (Supplementary Fig. S5c). This is also the
case for the expression of truncated O-glycans sialyl-Tn antigens whose
biosynthesis is dependent on the level of expression of ST6GALNAC1
and C1GALT1 which can compete for the same glycan chain as substrate
(Supplementary Fig. S5f-g).

3.4. Validation of the glyco-signature prognostic value on independent
cohorts

To validate the prognostic accuracy of the proposed glyco-signa-
ture, we applied it on three independent external datasets of resected



Fig. 1. Prognostic stratification of PDAC through their GT gene expression profile (a, b) and clinical features of patients with their PDAC molecular profiles (c, d). (a) Biplot of the HCPC anal-
ysis result based on RNA-seq data of 74 PDAC and 169 GT genes. (b) Forest plot of the multivariate survival analysis including PDAC clustering, surgical resection and the disease
stage. (c) Boxplot showing Log2 normalized expression of 19 GT genes stratified by clusters 1 and 2. The lower and upper hinges correspond to the first and third quartiles (the 25th
and 75th percentiles). Kruskal-Wallis p-value was used for the statistical significance between clusters. (d) Heatmap of the two clusters based on transcription signature of 19 GT
genes. Clinical characteristics and molecular classifications of each patient tumor were shown in the corresponding annotation. Color bars indicate the tumor sample type, disease
stage, PAMG and basal-like/classical subtyping based on previously established consensus [30] and PurIST classifier.
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Fig. 2. Validation of the glyco-signature on ICGC patient’s cohort (RNA-seq). (a) Two-dimension representation of the HCPC analysis results and (b) cluster dendrogram related to ICGC
RNA-seq data (n = 91) using 19 GT genes. (c) Survival curves estimated by using the Kaplan-Meier method and comparing OS probabilities between clusters with the log-rank test
(p-value = 0.0042). Cluster 1 and 2 have shorter median OS of 304 and 359 days, respectively compared to cluster 3 with median OS of 719 days. (d) Mosaic plot showing cross-link
between basal-like/classical subtypes and clusters 1, 2 and 3 identified through GT gene prognostic markers. Box height reflects the number of tumors classified in each cluster and
box width represents proportion of basal-like/classical subtypes (p-value < 0.0001, Fisher’s exact test).
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PDAC tumors from ICGC (RNA-seq and microarray) and Puleo
patient’s cohorts. Note that the glyco-signature was determined on
PDX, considering exclusively the epithelial compartment of tumors,
unlike the validation performed on resected whole tumor tissues,
including stromal component of tumors. In this context, HCPC anal-
yses identified systematically three clusters in the three validation
cohorts, through the 19 GT genes, with significant differences in OS.
Clusters 1 and 2 were associated with poor prognosis compared to
the cluster 3 which showed about a double median OS (Figs. 2a�c;
3a�c; 4a�c; Supplementary Fig. S6 a, b, e, f, i, j). Furthermore, statis-
tical analyses showed that the three clusters were significantly asso-
ciated with basal-like/classical subtyping (ICGC patient’s cohort
(RNA-seq): p-value < 0.0001, Fisher’s exact test; ICGC patient’s
cohort (microarray): p-value = 5.424e-05, Chi-squared test; Puleo
patient’s cohort (microarray): p-value = 3.597e-05, Chi-squared
test). While the overwhelming majority of tumors in cluster 3 had a
classical subtype, both clusters 1 and 2 included most of the basal-
like subtype PDAC but contained also a large proportion of classical
subtype PDAC having a poor prognosis (Figs. 2d, 3d; 4d; Supplemen-
tary Fig. S6 c, d, g, h, k, l, m�o). Besides, expression differences of the
19 GT genes in the 3 clusters showed globally a trend of gradual
expression from cluster 1 to cluster 3, except for GALNT9, which is
downregulated in cluster 3 (Supplementary Fig. S7). This is consis-
tent with what was previously shown in PaCaOmics patient’s
cohort. More importantly, the expression of B3GALT5, FUT3,
C1GALT1, GALNT4, GALNT12 and ST6GALNAC1 were strongly downre-
gulated in cluster 1 compared to cluster 2 in the three validation
cohorts.



Fig. 3. Validation of the glyco-signature on ICGC patient’s cohort (microarray). (a) Two-dimension representation of the HCPC analysis results and (b) cluster dendrogram related to
ICGC affymetrix transcriptomic data (n = 269) using 19 GT genes. (c) Survival curves estimated by using the Kaplan-Meier method and comparing OS probabilities between clusters
with the log-rank test (p-value = 0.0019). Clusters 1 and 2 have shorter median OS of 515 and 517 days, respectively compared to cluster 3 with median OS of 1048 days. (d) Mosaic
plot showing cross-link between basal-like/classical subtypes according to PurIST classifier and identified clusters 1, 2 and 3 through GT gene prognostic markers. Box height reflects
the number of tumors classified in each cluster and box width represents proportion of basal-like/classical subtypes (p-value = 5.424e-05, Chi-squared test).
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These validation analyses on expression datasets, obtained from
diverse technological platforms (RNA-seq or microarray) allowed to
assess the glyco-signature accuracy on stratifying PDAC samples
independently of the technological provenance of generated expres-
sion data and increased its robustness.

Tumor subtyping based on the epithelial compartment was not suf-
ficient to explain the two poor prognostic clusters including simulta-
neously basal-like and classical subtype PDAC. Therefore, we assessed
whether identified clusters through GT gene expression could be asso-
ciated with specific microenvironment features as suggested by the
Puleo et al. study [12]. Interestingly, the stromal-driven subtype com-
position was different between the two poor prognostic clusters on
the Puleo patient’s cohort. Cluster 1 includes predominantly desmo-
plastic and immune classical microenvironment (46.7% and 18.9%,
respectively), whereas cluster 2 is significantly uncorrelated with
immune classical subtype and is mainly enriched in stroma-activated
microenvironment (36.3%) (p-value < 0.0001, Pearson’s chi-squared
test) (Fig. 4e). Cluster 3, which includes PDAC patients with a better
prognosis, was characterized by a predominant pure classical microen-
vironment (81%). These particular distributions highlight the impor-
tance of microenvironment features in prognosis related to specific GT
gene expression profiles. Beyond the established basal-like/classical
classification, the glyco-signature was then able to discriminate two
clusters with similar poor prognosis but differing by their microenvi-
ronment features.

3.5. Identification of functional pathways

In order to better characterize the tumor biology and decipher
global transcription patterns related to each cluster, a pairwise



Fig. 4. Validation of the glyco-signature on Puleo patient’s cohort. (a) Two-dimension representation of the HCPC analysis results and (b) cluster dendrogram related to affymetrix
transcriptomic data (n = 309) using 19 GT genes. (c) Survival curves estimated by using the Kaplan-Meier method and comparing OS probabilities between clusters with the log-
rank test (p-value = 0.0045). Cluster 1 and 2 have shorter median OS of 23.8 and 22.9 months, respectively compared to cluster 3 with median OS of 46.4 months. (d) Mosaic plot
showing cross-link between basal-like/classical subtypes according to PurIST classifier and identified clusters 1, 2 and 3 through GT gene prognostic markers. Box height reflects the
number of tumors classified in each cluster and box width represents proportion of basal-like/classical subtypes (p-value = 3.597e-05, Chi-squared test). (e) Mosaic plot showing the
microenvironment subtype proportion in clusters 1, 2 and 3 through GT gene prognostic markers, related to microenvironment-based classification of PDAC tumors, proposed by
Puleo et al. [12]. Box width reflects the number of tumors classified in each cluster and box height represents proportion of microenvironment subtypes (p-value < 0.0001, Chi-
squared test). For both mosaic plots, the standardized residuals, with an absolute value greater than 2.0, indicate boxes contributing to significant chi-square test statistic. The color
range from red to blue indicates whether observed frequency is significantly higher or lower, respectively than the expected frequency (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article).
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differential expression analysis was performed for each dataset
allowing us to highlight lists of differentially expressed genes used
further for the KEGG pathway analyses. Results showed the specific-
ity and relevance of glycosylation process in the determination of the
prognostic clusters. ‘Mucin type O-glycan biosynthesis’ was an
enriched pathway for upregulated genes in clusters with better prog-
nosis (Fig. 5; Supplementary Figs. S8�10; Supplementary Tables S1-2
for the complete enriched biological processes and associated statis-
tics). A large majority of the 19 GT gene markers is part of this path-
way. In particular the glycosylation pathways involving GALNT4,
GALNT6, GALNT12, GCNT1 and ST6GALNAC1 or B3GALT5, FUT2 and
FUT3 were upregulated in cluster 3 and/or 2 vs cluster 2 and/or 1 in
ICGC and Puleo patient’s cohorts (Supplementary Table S1). Similarly,
a core of intrinsically connected pathways including ‘Retinol metabo-
lism’, ‘Chemical carcinogenesis’ as well as ‘Drug metabolism � cyto-
chrome P450’ and ‘Metabolism of xenobiotics by cytochrome P450’
were systematically identified as a KEGG pathway network of upre-
gulated genes in clusters with better prognosis (Fig. 5; Supplemen-
tary Figs. S8�10; Supplementary Tables S1-2). A focused analysis on
redundant genes composing these pathways and identified across
different datasets allowed us to bring out the most relevant ones. In
this way, ADH1C, CYP2C18, CYP2S1, CYP3A5, GSTA1, GSTA2 and
UGT2B17 were found as the major contact points within the network
linking these pathways (Supplementary Tables S1-2). In particular
CYP3A5 involved in these pathways is upregulated in cluster 2 vs clus-
ter 1 in PaCaOmics patient’s cohort and in cluster 3 and 2 vs cluster 1
in ICGC and Puleo patient’s cohorts (Supplementary Table S1).

Moreover, most of the enriched pathways of downregulated
genes in clusters having the best prognosis were related to inflamma-
tory process or immune system such as ‘Cytokine-cytokine receptor
interaction’ and ‘IL-17 signaling pathway’ (Fig. 5; Supplementary
Figs. S8�10; Supplementary Tables S1-2). At the gene level, IL6 is
common to several downregulated pathways in clusters with the
higher OS across multiple comparisons of different datasets (Supple-
mentary Tables S1-2). These microenvironment features were also
found by analyzing the murine stroma compartment between clus-
ters 1 and 2 of PDX samples in PaCaOmics patient’s cohort. In particu-
lar, the ‘Cytokine- cytokine receptor interaction’ pathway is



Fig. 5. KEGG enrichment pathway analysis of prognostic clusters. Dot-plot representations of the top 10 downregulated (left) and upregulated (right) enriched pathways comparing
different clusters as follows: (a) cluster 2 vs cluster 1 in PaCaOmics patient’s cohort, (b) cluster 3 vs cluster 2 in ICGC patient’s cohort (RNA-seq), (c) cluster 3 vs cluster 1 in Puleo
patient’s cohort, and (d) cluster 2 vs cluster 1, (e) cluster 3 vs cluster 1, (f) cluster 2 vs cluster 1 in ICGC patient’s cohort (gene microarray). Dot color gradient corresponds to p-
adjusted values of the enrichment score while circle size is proportional to gene ratio in the corresponding pathway. Green squares highlight the best common enriched pathways
between clusters. For the complete enriched biological processes and associated statistics, see Supplementary Table S2 (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article).
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Table 1.
List of 19 GT genes as prognostic markers.

Gene symbol* Gene name* Glycan synthesis / Function

GALNT9 Polypeptide N-acetylgalactosaminyltransferase 9 Transfers a GalNAc residue to serine or threonine residue of an acceptor
core protein. Initiation of mucin-type O- linked protein glycosylation

A4GNT Alpha-1,4-N-acetylglucosaminyltransferase Transfers an alpha-1,4-GlcNAc residue onto core 2 branched O-glycans.
Biosynthesis of mucin-type O-glycan

B3GALT5 Beta-1,3-galactosyltransferase 5 Transfers a beta-1,3-Gal residue to GlcNAc-based acceptors such as the
core 3 O-glycan. Biosynthesis of type 1 Lewis antigens

B3GNT6 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 Transfers a beta-1,3-GlcNAc residue to GalNAc-serine or -threonine. Bio-
synthesis of mucin-type core 3 O-glycan

C1GALT1 Core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyl-
transferase 1

Transfers a beta-1,3-Gal residue to O-linked GalNAc residue onto protein.
Biosynthesis of mucin-type core 1 O-glycan

FUT2 Fucosyltransferase 2 Transfers an alpha-1,2-Fuc residue to terminal Gal-based acceptors. Lewis
and ABO blood group antigen biosynthesis

FUT3 Fucosyltransferase 3 (Lewis blood group) Transfers an alpha-1,3- or alpha-1,4-Fuc residue to GlcNAc-based accept-
ors. Last step of Lewis blood group antigen biosynthesis

FUT4 Fucosyltransferase 4 Transfers an alpha-1,3-Fuc residue to GlcNAc-based acceptors. Lewis x
(CD15) antigen biosynthesis

FUT6 Fucosyltransferase 6 Transfers an alpha-1,3-Fuc residue to GlcNAc of alpha-2,3 sialylated sub-
strates. Sialyl-Lewis x antigen biosynthesis

GALNT4 Polypeptide N-acetylgalactosaminyltransferase 4 Transfers a GalNAc residue to serine or threonine residue of an acceptor
core protein. Initiation of mucin-type O- linked protein glycosylation

GALNT6 Polypeptide N-acetylgalactosaminyltransferase 6 Transfers a GalNAc residue to serine or threonine residue of an acceptor
core protein. Initiation of mucin-type O- linked protein glycosylation

GALNT12 Polypeptide N-acetylgalactosaminyltransferase 12 Transfers a GalNAc residue to serine or threonine residue of an acceptor
core protein. Initiation of mucin-type O- linked protein glycosylation

GCNT1 Glucosaminyl (N-acetyl) transferase 1 Transfers a beta-1,6-GlcNAc residue onto mucin-type core 1 O-glycan. Bio-
synthesis of mucin-type core 2 branched O-glycan

GYG2 Glycogenin 2 Self-glucosylation (Glc). Initiation reaction of glycogen biosynthesis
LFNG LFNG O-fucosylpeptide Transfers a beta-1,3-GlcNAc residue to O-linked fucose residue onto Notch

molecules. Regulation of Notch molecules activity (Notch signaling
pathway)

MGAT5 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase Transfers a beta-1,6-GlcNAc residue to mannose of biantennary N-linked
glycan present onto glycoproteins. Biosynthesis of tri- and tetra-antenn-
ary complexe N-glycans

ST6GALNAC1 ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 Transfers an alpha-2,6-NeuAc residue to O-linked GalNAc residues onto
protein. Biosynthesis of cancer-associated sialyl-Tn antigen

ST8SIA3 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3 Transfers an alpha-2,8-NeuAc residue to terminal NeuAc of glycolipids and
N-linked glycan of glycoproteins. Biosynthesis of polysialic acid chains

XYLT1 Xylosyltransferase 1 Transfers a Xyl residue to a serine residue of an acceptor core protein. Bio-
synthesis of glycosaminoglycan chains

* according to the HGNC. GALNT9 is up-regulated in cluster 1 and down-regulated in cluster 2; the 18 other GT are down-regulated in cluster 1 and up-regulated in cluster 2.
Gal: Galactose; Fuc: Fucose; Glc: Glucose; Xyl: Xylose; GalNAc: N-acetylgalactosamine; GlcNAc: N-acetylglucosamine; NeuAc: N-acetylneuraminic acid or sialic acid.
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downregulated in murine stroma of cluster 2 compared to cluster 1.
Although the microenvironment of tumor cells is specific to the host
(tumors from murine xenografts or patient tissues), these data show
that common pathways can be deregulated between both samples
(Supplementary Fig. S11).

4. Discussion

PDAC heterogeneity remains a significant limitation in adapted
patient care, contributing to its poor prognosis related to late diagno-
sis and chemoresistance. The approaches to overcome phenotypic
heterogeneity of PDAC were based on deciphering and characterizing
molecular profiles of tumors to define the most homogeneous sub-
types sharing common features [8�13]. In our study, we explored
PDAC heterogeneity by investigating GT expression profiles, which
contribute to the formation of aberrant glycans acquired during can-
cer development [16�18]. We focused on genes involved in glycan
biosynthesis to provide insights on mechanisms driving disrupted
cellular functions and tumor aggressiveness in PDAC. Analysis of PDX
samples from resected and unresectable tumors based on GT gene
expression profile allowed the identification of two PDAC clusters
with different patient prognosis. However, the small number of
patients with unresectable PDAC remains a limitation of the study
and further investigation is needed on more large cohorts to deter-
mine if the glyco-signature is potentially applicable to these patients.
The identified glyco-signature of 19 GT was applied on the validation
cohorts of resected whole tumor tissues, including the stromal com-
ponent. In this validation, the use of expression datasets obtained
from diverse technology (RNA-seq and microarray) increases its
robustness as well as the different types of sample (frozen samples
and paraffin-embedded tissues). The specificity of the glyco-signature
is related to its identification on the epithelial compartment of PDX
samples, before its validation on whole resected tumor tissues.
Although the combination of 19 GT genes is important to stratify
PDAC, further investigation is needed to identify if this combination
is reducible while retaining the same prognostic value. This glyco-sig-
nature was able to discriminate more specifically two separate PDAC
clusters with poor prognosis of patients and one having a better out-
come; these three clusters were associated with distinct microenvi-
ronment compositions as suggested by results obtained through
stratification based on stromal features proposed by Puleo et al. [12].
Moreover, the composition of these two poor prognosis PDAC clus-
ters is mixed including basal-like subtype and classical subtype asso-
ciated to short survival of patients; whereas the cluster including
patients with longer OS contained mainly PDAC of classical subtype.
Recently, Chan-Seng-Yue et al. [34] have identified two subtypes of
basal-like tumors. In parallel, single-cell RNA-seq studies showed the
intra-tumor coexistence of basal-like and classical phenotypes [35].
These findings highlight the challenge associated with the binary
classification of PDAC tumors. Glyco-profile analysis also tends to
detect aggressive PDAC. Indeed, the expression of B3GALT5, FUT3 and
ST6GALNAC1 genes was downregulated in cluster 1 compared to
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cluster 2, whatever the validation cohort used. The ability of these
three GT (B3GALT5, FUT3 and ST6GALNAC1) in association with micro-
environment markers to discriminate both poor prognosis clusters
requires further investigations to be used as biomarkers in order to
improve prognostic accuracy and treatment efficacy of different
PDAC patients.

Studies on classifications of tumors based on their glyco-gene
expression profiles are beginning to emerge [35�38]. A subtype of
patient’s tumors with poor prognosis colorectal cancer was identified
by a glyco-gene signature in which the loss of GALNT6 gene expres-
sion was correlated with invasion and chemoresistance of cancer
cells and was highlighted as a prognostic biomarker [39]. Recently,
B3GNT3, B4GALNT3, FUT3, FUT6, GCNT3 and MGAT3 were shown to
be overexpressed in PDAC [40]. In our study, we bring new insights
on how the glycosylation pathways are altered between different
PDAC clusters. The initiation step of glycosylation is affected with a
downregulation of several polypeptide N-acetylgalactosaminyltrans-
ferases, GALNT4/GALNT6/GALNT12, as well as GT involved in sialyla-
tion such as ST6GALNAC1, or elongation of O-glycans such as
C1GALT1 and GCNT1. Interestingly, the low expression of GALNT6
was associated with poorly differentiated pancreatic tumors and
poor clinical outcome of PDAC patients [41]. It was also shown that
the loss of C1GALT1 expression contributes to PDAC progression and
metastasis formation [42]. These results are consistent with our find-
ings where these two glyco-genes display a lower expression in clus-
ters having the poor outcomes. The same profile is observed with the
a1,2-fucosyltransferase FUT2 and several a1,3-fucosyltransferases,
FUT3 (having also an a1,4-fucosyltransferase activity)/FUT4/FUT6,
which show a concerted and simultaneous deregulation in tumors.
This highlights the importance of impaired fucosylated antigen
expression during malignant transformation and acquisition of can-
cer cell phenotype. Among them, the carbohydrate antigen CA19-9
corresponding to sialyl-Lewisa structure remains the only clinically
used biomarker to monitor disease relapse [43,44]. Our prognostic
signature brings to light deregulation of key GT involved in CA19-9
biosynthesis, such as FUT3 and B3GALT5 [45,23], as important as
a1,2-fucosyltransferase FUT1 downregulation and a2,3-sialyltrans-
ferase ST3GAL (over)-expression [46]. Moreover, CA19-9 was
involved in the development of pancreatitis and PDAC, demonstrat-
ing that abnormal glycosylation can play a key role in pancreatic
oncogenesis [45]. Interestingly, FUT3 and B3GALT5, but also FUT2
were downregulated in cluster 1 compared to cluster 2, all three
associated with poor prognosis of patients, suggesting a decrease of
CA19-9 expression but also Lewisb expression in this cluster. Indeed
the TMA analyses showed that 37.50% (n = 6/16) of tumors are nega-
tive for the expression of sialyl-lewisa in cluster 1 while only 4.25%
(n = 2/47) of tumors are negative for the expression of this antigen in
cluster 2. We have also observed that 81.25% (n = 13/16) of tumors
are negative for the expression of Lewisb in cluster 1 while only
23.40% (n = 11/47) of tumors are negative for the expression of this
antigen in cluster 2. The association of CA19-9 and/or Lewisb with
FUT3, B3GALT5 and/or FUT2 could be interesting prognostic bio-
markers to discriminate PDAC patients with poor prognosis. Further
investigations are needed to validate the potential prognostic values
of these markers. Other GT genes included in the glyco-signature
could also play an important role in PDAC progression. We have
observed a downregulation of A4GNT gene expression encoding for
the a1,4-N-acetylglucosaminyltransferase in the cluster having a
poor outcome. A4GNT is involved in the biosynthesis of O-glycan car-
rying terminal a1,4 N-acetylglucosamine residues (a1,4GlcNAc) onto
mucin 6 (Muc6) (Table 1). A loss of a1,4GlcNAc expression has been
shown in gastric tumorigenesis [47]. Interestingly, a decreased of
a1,4GlcNAc related with MUC6 expression was observed during
tumor progression of PDAC [48]. In recent years, several studies have
also shown that glycosylation of the Notch extracellular domain may
regulate Notch activity during development in mammals but also in
cancer [49]. In particular, Lunatic Fringe (LNFG), which encodes for O-
fucosylpeptide b1,3 N-acetylglucosaminyltransferase (Table 1) can
modulate Notch signalling pathways through the binding between
Notch receptor-Notch ligand [50]. Recently, Zhang et al. [51] have
shown an increase of PDAC development in the LFNGflox/flox;KrasLSL-
G12D;Pdx1-Cre mouse model where LNFG was deleted. These results
are consistent with our findings where this GT displays a lower
expression in clusters having the poor outcomes. Interestingly, GYG2,
a glyco-gene which encodes for glycogenin-2 (Table 1), was identified
in a glucose metabolism-related gene signature from TCGA for pre-
dicting the prognosis of clear cell renal cell carcinoma [52]. Although
these studies have shown the functionnal importance of down-regu-
lated C1GALT1, GALNT6, LFNG and A4GNT in tumor progression of
PDAC, a fully functional validation of other individual GT gene identi-
fied in the glyco-signature is needed. Further investigations will bring
more insights to better characterize the functional and mechanistic
impact of the GT genes in the PDAC progression.

Considering glycosylation involvement in most biological func-
tions, it is widely admitted that its deregulation substantially impairs
and remodels the global tumor biology. Therefore, comparing our GT
expression profile-based classification to a non-tumor driven sub-
types linked to microenvironment features was a relevant way to
capture differential mechanisms driving tumor aggressiveness at a
larger scale. The prognostic value of the glyco-signature may be
explained by its ability to reflect molecular diversity at stromal and
immune level, distinguishing the role of microenvironment signals in
cancer cell phenotype acquisition. This was confirmed with Puleo
patient’s cohort, where two poor prognostic clusters identified
through glycosylation pattern were significantly related to desmo-
plastic and stroma-activated subtypes, suggesting that in cluster 1,
aggressiveness may be linked to the presence of immune cells, endo-
thelial cells and fibroblasts; whereas cluster 2 was characterized by
low immune infiltrates with high level of fibroblasts and endothelial
cells. Interestingly, enriched downregulated pathways in clusters
with best survival are related to inflammatory process and immune
system, confirming the importance of microenvironment signals in
tumor aggressiveness characteristic of patients with poor outcome.
Proinflammatory cytokine IL-6 is found to be downregulated in clus-
ters with best survival but also differentially expressed between the
two poor prognostic clusters in Puleo patient’s cohort. It has been
shown that inflammation mediated by JAK/STAT pathway and driven
by IL-6 signaling is a major cause of chemotherapy resistance and
that blocking IL-6 receptor could enhance chemotherapy efficacy
[53]. In addition, blockade of IL-6 showed an interesting anti-tumor
activity when combined with checkpoint blockade immunotherapy
(PD-L1), by modulating immunological features [54]. This might be
promising to select patients and propose them the adapted care.

Taken together, enriched upregulated pathways in clusters hav-
ing the best survival, including ‘Retinol metabolism’, ‘Chemical
carcinogenesis’, ‘Drug metabolism � cytochrome P450’ and
‘Metabolism of xenobiotics by cytochrome P450’ form an intercon-
nected network. These results are consistent with the identifica-
tion of the ‘Drug metabolism � cytochrome P450’ pathway as a
functional signature to improve the prognosis and sensitivity to
chemotherapeutic agents for PDAC of classical subtype [55].
Among them CYP family and especially CYP3A5 which shows dif-
ferential expression between clusters is known to be involved in
tumor cell autonomous drug detoxification by mediating systemic
drug metabolism [56]. This may be indicative of resistance to pacli-
taxel or tyrosine kinase inhibitors such as erlotinib, or irinotecan
involved in Folfirinox protocol, metabolized by CYP3A5 [56�58].
Therefore, by comparing the two poor prognostic clusters identi-
fied in Puleo and ICGC patient’s cohorts, we could hypothesize a
better sensitivity to these drugs for cluster 1 with downregulated
CYP3A5 compared to cluster 2. Further functional investigations
are needed to consolidate this hypothesis.
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In conclusion, we propose a glyco-signature funded on GT gene
expression allowing a better classification of PDAC according to their
specific mechanisms driving tumor aggressiveness through the gly-
cosylation pathways in tumors and microenvironment. Although fur-
ther investigations are needed, this glyco-signature could contribute
to guide clinical decision by predicting patient outcomes and identi-
fying sensitivity to specific therapies.
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